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Abstract—This paper presents the design and evaluation of
a speaker-independent audio-visual speech recognition (AVSR)
system that utilizes a segment-based modeling strategy. The audio
and visual feature streams are integrated using a segment-con-
strained hidden Markov model, which allows the visual classifier
to process visual frames with a constrained amount of asynchrony
relative to proposed acoustic segments. The core experiments in
this paper investigate several different visual model structures,
each of which provides a different means for defining the units
of the visual classifier and the synchrony constraints between
the audio and visual streams. Word recognition experiments
are conducted on the AV-TIMIT corpus under variable additive
noise conditions. Over varying acoustic signal-to-noise ratios,
word error rate reductions between 14% and 60% are observed
when integrating the visual information into the automatic speech
recognition process.

Index Terms—Audio-visual speech recognition, lip-reading,
multimodal speech processing.

I. INTRODUCTION

ISUAL information has been shown to be useful for im-

proving the accuracy of speech recognition in both hu-
mans and machines [1]-[4]. These improvements are the result
of the complementary nature of the audio and visual modalities.
For example, many sounds that are confusable by ear are easily
distinguishable by eye, such as n and m. The improvements
from adding the visual modality are often more pronounced in
noisy conditions where the audio signal-to-noise ratio (SNR) is
reduced [5], [6].

When developing a speech recognition system that incorpo-
rates both the audio and visual modalities, a principled method
for integrating the two streams of information must be designed.
Because of the success of hidden Markov model (HMMSs) in
audio speech recognition, most audio-visual speech recognition
(AVSR) systems extend HMM techniques to incorporate both
modalities. In this paper we describe our efforts in developing
an AVSR system which is built upon our existing segment-based
speech recognizer [7]. This AVSR system incorporates informa-
tion collected from visual measurements of the speaker’s lip re-
gion using an audio-visual integration mechanism that we call
a segment-constrained HMM [8].
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In describing our system, we focus on three important issues
we investigated during the development process. These are as
follows.

* What is an appropriate set of visual units for representing
the visual information and how does this set map into the
underlying phonetic representation used within the speech
recognition search engine?

e How important is it to model audio-visual asynchrony
within the integration mechanism of the recognizer?

* How important is the use of an adaptive weighting scheme
when integrating the audio and visual streams?

The remainder of the paper is organized as follows. In Sec-
tion II we describe the AV-TIMIT corpus that we used for our
experiments. In Section IIT we discuss the architecture of our
AVSR system and the issues we addressed in its development.
In Section IV we present our experimental results. Finally, we
discuss the conclusions we have drawn from our results in Sec-
tion V, and propose future work in Section VI.

II. AV-TIMIT CORPUS
A. Data Collection

All of the experiments in this paper utilize the Audio-Visual
TIMIT corpus collected at MIT [8]. This corpus was collected
in January of 2003 in order to provide a large collection of
audio-visual speech data from many speakers that was not pho-
netically constrained. At the time of its collection, many previ-
ously collected corpora were limited to only one subject [9] or
to a small constrained task such as isolated letters [10], digits
[11]-[13], or a short list of fixed phrases [12], [14], [15]. Only
two of the A/V corpora that had been published in the litera-
ture (including English, French, German, and Japanese) contain
both a large vocabulary and a significant number of speakers.
The first was IBM’s proprietary, 290-subject, large-vocabulary
AV-ViaVoice database of approximately 50 h in duration [4].
This corpus is not currently publicly available. The second was
the VidTIMIT database,! which has been made available for
public use by Sanderson [16].

The main design goals for our AV-TIMIT corpus were: 1) con-
tinuous, phonetically balanced speech; 2) multiple speakers;
3) controlled office environment; and 4) high-resolution video.
To achieve a phonetically balanced data set, speakers were asked
to read from a list of TIMIT-SX sentences [17]. The record-
ings were conducted in a relatively quiet office with controlled
lighting, background, and audio noise level. The audio was
collected with a far-field array microphone located several feet in

Thttp://rsise.anu.edu.au/~conrad/vidtimit
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Fig. 1. Illustration of a search network created for segment-based recognition. The best segment path is highlighted in the segment network.

front of the speaker. Full details about the recording conditions
and equipment can be found in our previous paper [8].

The full corpus contains 223 speakers (117 males and 106 fe-
males). A majority of the speakers came from our organization’s
community. All but 12 of the subjects were native speakers of
English. Different ages and ethnicities were represented, as well
as people with/without beards, glasses, and hats. Each speaker
was asked to read 20 or 21 sentences. The first sentence of each
round was identical for all speakers and was designed to famil-
iarize the speakers with the data collection application. For the
final five sentences in each round, extra side lighting was added
in order to provide a second lighting condition for training and
testing. In total, 23 different rounds of utterances were created
that test subjects were rotated through. Each of the 23 rounds
contained a unique set of TIMIT-SX sentences (from the full
set of 453 sentences) with no overlap after the first sentence.
Each round was spoken by at least nine different speakers. In
total, the AV-TIMIT corpus contains 4597 utterances, making
it roughly 10 times larger than the VidTIMIT corpus. There are
1793 unique words in the vocabulary of the corpus.

B. Experimental Data Sets

For our experiments we subdivided the AV-TIMIT corpus into
three subsets: a training set, a development test set, and a final
test set. The training set consisted of 3608 utterances from 185
speakers. To help constrain our initial experiments, we elected
to train and evaluate using frontal lighting conditions only (and
ignore the side-lighting condition). Under this constraint, the
training set for the visual model is reduced to 2751 utterances
(though the full 3608 utterances can still be used to train the
acoustic model). For evaluation, our development test set con-
tains 284 utterances from 19 speakers in the frontal lighting
condition. The final test set contains 285 utterances from another
19 speakers in the frontal lighting condition. There is no overlap
in speakers or sentences between any of the three data sets.

C. Additive Noise

Though the AV-TIMIT corpus was recorded in a relatively
quiet office, the use of a far-field array microphone allowed for
the range of the signal-to-noise ratio of the data to be fairly siz-
able. Estimates of the average SNR within individual utterances
in the corpus varied from 15 dB to nearly 40 dB with an average
SNR of approximately 25 dB. Because previous studies have

found that the visual channel for speech recognition is especially
helpful in noisier audio conditions, we have added additional
noise to the AV-TIMIT audio to simulate variable SNR condi-
tions. In particular, we have experimented with both white noise
and babble noise data from the NOISEX database for our additive
noise conditions [18]. However, in this paper, we only present
our results using the babble noise condition. When adding
noise, we have varied the average SNR from —10 dB to 20 dB.

III. SYSTEM DEVELOPMENT
A. Segment-Based Speech Recognition

Our audio-visual speech recognition approach builds upon
our existing segment-based speech recognition system [7]. One
of our recognizer’s distinguishing characteristics is its use of
segment-based networks for processing speech. Typical speech
recognizers use measurements extracted from frames processed
at a fixed rate (e.g., every 10 ms). In contrast, segment net-
works contain variable length segment hypotheses which each
correspond to a potential phonetic unit. Our recognizer initially
processes the speech using standard frame-based processing.
Specifically, 14 Mel-Scale cepstral coefficients (MFCCs) are ex-
tracted from the acoustic waveform every 5 ms. However, un-
like frame-based hidden Markov models (HMMs), our system
hypothesizes points in time where salient acoustic landmarks
might exist. These hypothesized landmarks are used to generate
the network of possible segments.

The acoustic modeling component of the system scores fea-
ture vectors extracted from the segments and landmarks present
in the segment network (rather than on individual frames). The
search then forces a one-to-one mapping of segments to pho-
netic events. The end result of recognition is a path through the
segment network in which all selected segments are contiguous
in time and are assigned an appropriate phone. Fig. 1 illustrates
an example segment network constructed for a waveform of the
phrase “computers that talk,” where the optimal path determined
by the recognizer has been highlighted.

B. Visual Feature Extraction

In our system, appearance-based visual features are extracted
from the mouth region of each image using the visual front-end
component of the Intel AVCSR Toolkit.2 Each image is first

Zhttp://sourceforge.net/projects/opencvlibrary/
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normalized for lighting variation using histogram equalization.
Next, a principal components analysis (PCA) transform is ap-
plied, and the top 32 coefficients are retained as the feature
vector for that image. In order to capture information about lip
dynamics, three consecutive vectors are concatenated to create
one 96-dimensional vector per frame.

C. Audio-Visual Integration

Once the audio and visual streams are processed and con-
verted into feature-based observations, a means for integrating
them must be devised. One method is to fuse their observation
spaces such that they can be jointly processed within a single
set of observation models. This approach, commonly referred to
as early integration or feature fusion, simplifies the integration
process by allowing a speech recognizer to use the same search
representation for both audio-only and audio-visual recognition
[3], [10]. On the negative side, the feature concatenation used in
early integration may result in a high-dimensional data space,
potentially making a large multimodal database necessary for
robust statistical model training. Additionally, early integration
makes it difficult to introduce a variety of desirable modeling
techniques such as adaptive weighting of the audio and visual
classification scores, or asynchronous processing of the audio
and visual streams.

The more common approach is to perform late integration or
decision fusion. In this approach, the audio and visual streams
are independently processed and classified. Integration occurs at
a higher level within the search mechanism of the recognizer. A
variety of models have been proposed to perform late integration
including multistream HMMs [19], coupled HMMs [20], and
product HMMs [21]. One advantage to using a late integration
approach is that the audio and visual classifiers are not required
to be trained from exactly the same set of data (as alluded to in
Section II-B).

In our system we have taken a late integration approach to
combining the audio and visual information. As mentioned
earlier, our system performs this integration using a segment-
constrained HMM. This modeling approach is implemented
with three primary steps. First, fixed-length video frames are
mapped to hypothesized variable-length audio segments from
the segment network. The mapping is performed such that any
path through the segment network will incorporate each video
frame exactly once. Second, each context-dependent phonetic
segment defined in the acoustic model stream is mapped to a
context-dependent segment-constrained visual HMM. Finally,
the segment-constrained visual HMM uses a frame-based
Viterbi search over video frames in the segment to generate a
segment-based score for the visual model. Full details of this
process can be found in our previous work [8]. The decision
fusion between the audio and visual models is performed via
a weighted linear combination of the segment-level scores
generated from each model.

One advantage of using a late integration strategy is that the
audio and visual streams are independently classified and hence
can be adaptively weighted. In most systems, including ours,
the relative weighting between the audio and visual streams is
fixed within an utterance, but can be preset based on an estimate
of the expected SNR [22], [23]. Using this scheme, Dupont,
and Luettin observed that the optimal relative visual model
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weighting in their system exhibited a near linear relationship
to the SNR [19]. Algorithms which dynamically alter the
audio-visual weights for local regions within an utterance [4],
[24], or allow different weightings for different word models
[25], have also shown promise.

D. Visual Units Determination

When a late integration strategy is employed, the model struc-
tures devised for the audio and visual classifiers can each be cre-
ated independently. As a result, there is a great deal of freedom
in constructing the classifier used in the visual component and
selecting its unit set. Typical audio-only speech recognition sys-
tems use phones as the basic units for speech recognition. When
incorporating visual information into the process, one is con-
fronted with the problem that the visual signal only provides
partial information about the underlying sequence of phones.
This is because, in general, one can only see a speaker’s lips
and jaw, while the other articulators (e.g., the tongue and the
glottis) are typically hidden from sight. As a result, various sets
of phones that are acoustically distinct may be visually indistin-
guishable. For example, the phones [b] and [p] differ from each
other only in voicing, which is not visually apparent because it
occurs at the glottis.

A system can take advantage of the visual similarities be-
tween different phonetic units by clustering these units together
within the visual classifier. By increasing the number of training
examples in each model class, clustering phonetic events into
classes whose members are (supposedly) visually indistinguish-
able can improve the robustness of the visual models without
(presumably) harming their discriminative ability.

The simplest form of clustering is to map the phones to visual
units called visemes. Visemes are generally defined as the set
of linguistically minimal units which are visually distinguish-
able [26], [27]. While many researchers have utilized the prac-
tice of clustering phonetic elements into viseme classes, there
is no definite consensus about how the set of visemes is consti-
tuted [28]. A study of the literature reveals a variety of different
viseme sets being used within AVSR systems [29]-[31]. Typi-
cally AVSR systems have used viseme sets containing between
12 and 20 different viseme classes. In our initial baseline system,
we too manually crafted a set of 15 visemes [8]. To help us de-
termine a useful set of visemic units for our AVSR system, we
performed bottom-up clustering experiments using models cre-
ated from phonetically labeled visual frames. The clustering of
phones into visemes in our baseline system is shown in Table I.

Though the use of visemes in AVSR tasks is a common prac-
tice, a cursory examination of our set of visemes reveals sev-
eral classes with obvious deficiencies. For example, within the
rounded vowel viseme class (RV), it should be immediately ob-
vious that the phones [aw], [ow], and [uw] should be easily
distinguishable from the phones [w] and [oy] based on the dy-
namics of their lip rounding. The [aw], [ow], and [uw] all be-
come more rounded as the phone progresses, while the [w] and
[oy] start from a rounded position and become less rounded as
the phone progresses. Within the same class the vowel [uh] and
[ao] are not diphthongs or semivowels and likely retain rela-
tively static rounding by comparison.

Supporting the notion that typical visemes sets are too restric-
tive, an early study by Finn and Montgomery found that their
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TABLE 1
MAPPING OF PHONETIC UNITS TO VISEMES FOR OUR EXPERIMENTS
Viseme Label | Phone Set
Sil h# pau
ov ax ih iy dx
BV ah aa
FV ae eh ay ey hh
RV aw uh uw ow a0 w oy
L ell
R er axr r
Y y
LB bp
LCl bel pcl m em
AlCI s z epi tcl dcl n en
Pal ch jh sh zh
SB tdthdh gk
LFr fv
VICI gel kel ng

lip reading system could distinguish between different phonetic
elements even when they belonged to the same viseme class
[32]. Perhaps reflecting a feeling that typical viseme classes
were too general, Bregler ef al. used a much richer set of 42
visemes in their work [33]. Similarly, in the complementary
field of audio-visual speech synthesis, Sannier et al. constructed
a talking face synthesis system based on 44 viseme units [34].

An alternative to using visemes as the basic visual units is to
retain the standard phonetic labels, but to use top-down decision
tree clustering to create tied models (or HMM states) within
the recognizer [35]. Decision-tree clustering can be performed
using a variety of different constraints, and can be tailored to the
specific topology of a given visual model. In our experiments,
discussed later, we compare the use of our baseline viseme set
against automatically generated clusters.

E. Audio-Visual Asynchrony

There is an inherent asynchrony between the visual and audio
cues of speech. Speech is produced via the closely coordinated
movement of several articulators. In some cases, such as the [b]
burst release, the visual and audio cues are well synchronized.
However, due to co-articulation effects and articulator inertia,
the audio and visual cues may not be precisely synchronized
at any given time. The articulators such as the lips and tongue
sometimes move in anticipation of a phonetic event tens or even
hundreds of milliseconds before the phone is actually produced
[1]. In these cases, the visual evidence of the phonetic event may
be evident before the acoustic evidence is produced.

To provide an example, consider the /g/to/m/ transition in the
word segment. Typically, the/g/in this context is unreleased with
only the voiced velar closure [gcl] being realized. Because this
closure is produced with the tongue, the lips are free to form the
closure for the [m] during the [gcl] segment. The labial closure
for [m] does not affect the acoustics of the velar closure [gcl]
because velar closures precede labial closures in the vocal tract.
As aresult, the visual evidence of the [m] can be present before
its acoustic evidence.
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Triphone label:  ao—t+kcl
Triviseme label: RV—SB+VICI
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Triviseme HMM: ¢ \§3/ d
Observation model: SBIRV RV RVIVICL

Fig. 2. Example segment-constrained trivisesme HMM from our system.
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Fig. 3. Using segment-constrained HMMs audio-visual

asynchrony for a given audio segment sequence.

to represent

Many AVSR approaches provide for asynchronous pro-
cessing of the audio and visual streams [19]-[21], [36]. In all
cases, a set of synchrony constraints are used to restrict the de-
gree of allowable asynchrony. For example, phone synchronous
HMM approaches allow fully asynchronous processing of the
states of the audio and visual HMMs within a phone, but force
synchronous state transitions at phone boundaries. Looser
synchronization constraints can allow greater asynchrony at the
expense of greater search complexity.

In our system we use audio segment boundaries as anchor
points for our synchronization constraints. Fig. 2 shows an ex-
ample visual HMM used for the triphone ao—t+kcl (where [a0]
is the current phone, [t] is the left context, and [kcl] is the right
context). In this example, the triphone ao — ¢ + kel is mapped to
the triviseme RV — SB+ VICl based on the viseme clustering in
Table I. The figure also shows the mapping from each triviseme
state to the label of the observation density function it uses. In
this example, the left state of every triviseme HMM is mapped
to a diviseme model (e.g., SB | RV') based on its left context, the
middle state uses a context-independent model for that viseme
(e.g., RV), and the right state is handled by the right side di-
viseme (e.g., RV | VICI). Having established a model structure
for aligning visual frames with an audio segment, the optimal
frame alignment is determined using a Viterbi search over the
frames in a segment.

When using the model structure employed above we can
allow asynchronous processing across phonetic boundaries by
applying appropriate state tying constraints. In our example,
note that the third state (S3) of a triviseme model will use
the same diviseme observation density function as the first
state (S1) of the triviseme model for the following segment.
This is illustrated in Fig. 3, where state 3 of the triviseme
RV — S§B + VIC! and state 1 of the triviseme VIC! — RV 4+ SB
both use the same diviseme observation model, RV | VICI,
for their output probability function. For any sequence of two
triphone segments, the diviseme observation model capturing
the visual transition between these audio segments is allowed
to extend an arbitrary number of visual frames into either the
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preceding or following audio segments. Our HMM topology
also allows the system to skip any of the three states in a
triviseme model. An example of this is shown in Fig. 3 where
the first state of the triviseme RV — SB + VICI is skipped and
the segment begins immediately with state 2 of the HMM.

The specific example in Fig. 3 demonstrates how our ap-
proach can model asynchrony during the [ao] to [kcl] transition
in the word talk. In the visual signal there will be a smooth and
gradual transition from the rounded vowel [ao] into the velar
closure [kcl]. However, in the audio signal an abrupt acoustic
transition occurs at the moment the velar closure is realized.
The acoustic signal then contains silence during the velar clo-
sure [kcl] until it is released with a [k] burst. Thus, the transi-
tional movement of the lips from a rounded to an unrounded po-
sition partially occurs during the velar closure when no acoustic
change is evident. This asynchrony is handled in our model by
allowing the visual frames assigned to RV | VICI viseme tran-
sition to straddle the acoustic segment boundary separating the
[ao] acoustic segment from the [kcl] acoustic segment.

IV. EXPERIMENTS AND RESULTS
A. Recognition Task

In our previous work we evaluated our audio-visual recog-
nizer using a phonetic recognition paradigm [8]. In this work,
we evaluate using a word recognition paradigm which allows
us to incorporate a level of lexical constraint into the task that is
lacking in the phonetic recognition paradigm.

Because the AV-TIMIT corpus is comprised of artificial
hand-crafted sentences, the corpus does not lend itself well to
standard word recognition language modeling techniques. For
our experiments, we do not use a standard statistical language
model but instead employ an unweighted word-pair grammar.
In this grammar, a transition from one word to another can
occur only if that particular word pair sequence occurs in at
least one of the AV-TIMIT sentences. This grammar is very
constraining because 1411 words of the 1793 word vocabulary
in the corpus occur in only one of the 453 AV-TIMIT sentences.
If converted into a statistical model (with all arcs leaving a
node given a uniform likelihood), the perplexity of the word
pair grammar is approximately 3.

From a word constraint perspective, our word recognition
task is easier than the connected digit tasks which are commonly
used for audio-visual recognition experiments. However, be-
cause the AV-TIMIT vocabulary is much larger, the acoustic and
visual models in this task cannot be constructed in a word-de-
pendent manner as they typically are in connected digit tasks.
Thus, developing a robust set of models for both the acoustic
and visual components is far more difficult because the range of
contextual phonetic variability is far greater. It is important to in-
vestigate audio-visual speech recognition on larger vocabulary
tasks in order to determine whether the techniques developed on
small vocabulary tasks can be extended to more general speech
recognition tasks.

B. Visual Model Sets

In this work we have generated three different visual model
sets for our experiments. The first model set is based on the
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viseme set shown in Table I. All triphone labels in the recog-
nizer are mapped to a three-state trivissme HMM model. Within
the AV-TIMIT word recognition task, there are a total of 13 985
unique triphones that the recognizer may hypothesize. Each tri-
phone label is mapped to one of 2690 different triviseme HMMs.
As discussed in Section III-E and shown in Fig. 2, each state in
a visual HMM is then mapped to a corresponding observation
density function. The center states of each HMM are mapped
to one of 15 different context-independent viseme models. The
left and right states in each HMM are mapped to diviseme ob-
servation models for the transitions into the phone from the left
context and out of the phone into the right context. There is
a single observation density function for each of 203 possible
diviseme transitions. Each density function is modeled with a
mixture Gaussian model with a maximum of 50 components.
In total the full model set uses 1915 total Gaussian components
across the 218 observation models. This set of visual models
will be referred to as the Triviseme set.

The second visual model set disposes of the notion of visemes
and uses decision tree clustering to cluster the visual HMM states
directly from the triphone labels. In this case, each triphone is
mapped to a two-state HMM model. The left states of each model
represents the left-side diphone of the triphone and the right
state represents the right-side diphone of the triphone. Decision
tree clustering is performed to cluster similar left-side diphones
together based on their visual feature vectors. Decision tree
clustering is also performed on the right-side diphones indepen-
dently. Unlike the Triviseme unit set, this unit set does not share
a single diphone model across the phonetic boundary. Instead, it
forces the visual observation model to transition synchronously
with the transition of the observation model of the acoustic
stream. In total, the full triphone label set is clustered down
to 147 left-side diphone clusters and 154 right-side diphone
clusters used for observation modeling. These 301 observation
models use a total of 2462 Gaussian components. From these
observation model clusters, each triphone is mapped to a unique
pair of left-side and right-side diphone clusters yielding a total
2928 visual HMM models. This visual model set will be referred
to as the synchronous decision tree (or Sync-DT) model set.

The third visual model set also clusters the visual HMM states
directly from the triphone labels. However, this model uses the
same three-state HMM asynchronous modeling scheme used
by the Triviseme model set. The middle HMM state remains
a context-independent model, but in this case the decision tree
clustering algorithm generated 44 different context-independent
center states. Because the recognizer only uses 54 different pho-
netic labels, this means that most phonetic units are assigned
their own context-independent visual model. The decision tree
clustering also generated 197 diphone clusters. In total these 241
clusters are realized with observation models containing a total
of 2332 Gaussian components. From these observation model
clusters, each triphone is mapped to a unique trio of HMM state
clusters resulting in a total of 10 125 visual HMM models. This
visual model set will be referred to as the asynchronous decision
tree (or Async-DT) model set.

In comparing the three models sets, the structure of the
Triviseme set and the Async-DT set are very similar. The
big difference is the added complexity of the Async-DT set
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TABLE 11
WORD ERROR RATES FOR DIFFERENT AVSR SYSTEMS TESTED ON SPEECH
WITH ADDED BABBLE NOISE USING AUDIO MODELS TRAINED UNDER CLEAN
AUDIO CONDITIONS. ERROR RATE REDUCTIONS ARE RELATIVE TO THE
AUDIO-ONLY SYSTEM. UNDERLINED VALUES REPRESENT THE TOP
PERFORMING SYSTEM FOR THAT PARTICULAR SNR
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TABLE III
WORD ERROR RATES FOR DIFFERENT AVSR SYSTEMS TESTED ON SPEECH
WITH ADDED BABBLE NOISE USING AUDIO MODELS TRAINED UNDER
MATCHED NOISE CONDITIONS. ERROR RATE REDUCTIONS ARE RELATIVE
TO THE AUDIO-ONLY SYSTEM. UNDERLINED VALUES REPRESENT THE
ToP PERFORMING SYSTEM FOR THAT PARTICULAR SNR

SNR Word Error Rates (%) / Error Rate Reduction
(dB) Audio Only | Trivisemes Sync-DT Async-DT
clean 2271/ - 1.54 /32% | 1.36 / 40% | 0.91 / 60%
20 1.81/- 181/ 0% | 1.41/22% | 1.09 / 40%
15 222/ - 204/ 8% | 1.68/24% | 1.77 / 20%
10 381/- 322/15% | 2.67/30% | 2.90 / 24%
125/ - 9.11/27% | 8.11/35% | 9.47 / 24%
0 54.1/ - 39.2/28% | 37.9/30% | 37.1/31%
-5 103.8 / - 90.5/13% | 87.8/15% | 89.3/ 14%
average 258/ - 21.1/18% | 20.1/22% | 204/ 21%
visual-only N/A 96.3 / N/A | 954/ N/A | 96.6 / N/A

resulting from use of 44 context-independent center HMM
states instead of the 15 context-independent viseme states used
by the Triviseme. In comparing the Async-DT set with the
Sync-DT set, there are two big differences. First, the Sync-DT
set separates each transitional diphone into two models, one for
the left-side of the phonetic boundary and one for the right-side
of the boundary. This increases the number of diphone classes
by more than 50%. However, the Sync-DT set also eliminates
the use of a context-independent center state in each HMM
which reduces its complexity. We eliminated the center states
in order to make the complexity of the Sync-DT and Async-DT
models as similar as possible (for the purpose of providing a
fairer comparison of the models). Overall, the Async-DT model
set has only 5% fewer Gaussian components (spread over 20%
fewer observations models) than the Sync-DT model set.

C. Visual Modeling Results

Our final results on the AV-TIMIT test set when adding
varying amounts of babble noise to the audio are shown in
Tables II and III. Table II shows the results when the acoustic
models are trained using only the clean speech condition.
Table III shows the results when the acoustic models are trained
using the same noise condition as the test data. These two tables
represent the best case and worst case scenarios for speech
recognition under variable unseen noise conditions. In practice,
a system would likely use some form of noise compensation
or acoustic model adaptation to account for the environmental
noise condition, and the results would be expected to fall some-
where between the mismatched condition results in Table IT and
the matched condition results in Table III. All results in these
tables use a fixed set of audio-visual fusion weights, as will
be discussed in Section IV-D. For reference, the results when
using only the visual information are also shown in Table II.

Within the two tables the best performing visual model set
for each SNR is underlined. The results show that the visual in-
formation can significantly improve the speech recognition ac-
curacy even under high SNR conditions. Using the Async-DT
models over variable acoustic SNR conditions, relative reduc-
tions in word error rate of between 14% and 60% are obtained.

SNR Word Error Rates (%) / Error Rate Reduction
(dB) Audio Only | Trivisemes Sync-DT Async-DT
clean 2271 - 1.54 /32% | 1.36 / 40% | 0.91 / 60%
20 1.90/ - 1.45/24% | 0.95/50% | 1.04 / 44%
15 1.99 /- 1.50 /25% | 1.00 / 50% | 1.00 / 50%
10 249/ - 218/ 13% | 1.77/29% | 1.41 / 44%
526/ - 490/ 7% | 426/ 19% | 4.26 / 19%
0 16.5/ - 141/ 15% | 14.6 / 12% | 12.3 / 26%
-5 624/ - 48.7 /1 22% | 46.3 / 26% | 46.4 / 26%
-10 90.9 / - 79.0/13% | 789/ 13% | 78.3 / 14%
average 229/ - 192/16% | 18.6/19% | 182 /21%

The results also show that the automatically clustered models
sets Sync-DT and Async-DT generally outperform the manually
crafted Triviseme model set. There is not a single SNR value in
either the mismatched or matched model conditions in which
the Triviseme model set is the top performer. A discussion of
these results will follow in Section V.

D. Stream Weighting Results

In this paper we utilize a static weighting scheme where the
audio visual classifier weights are fixed for the duration of the
utterance. However, the weights can be preset based on the ex-
pected SNR of the audio stream. The AV-TIMIT development
test set is used to determine the optimal weighting factors for the
different recognizer components. In total, there are four weights
to tune (the audio boundary model weight, the audio segment
model weight, the visual model weight, and a word transition
weight for controlling the tradeoff between word insertions and
deletions). We fixed the audio boundary model weight at a value
of 1 and then optimized the audio segment model weight and
word transition weight using an audio-only recognition para-
digm under various different noise conditions. Over all of the
conditions we tested, the optimal weights for the audio-only rec-
ognizer remained virtually identical. As a result, we elected to
set these weights to fixed values that were approximately op-
timal on the development set for all future experiments.

When we added the visual stream to the task, we optimized
the visual model weight for each SNR level relative to the fixed
audio model weights. As expected, there is a correlation be-
tween the SNR and the optimal weighting factor. Fig. 4 shows
the optimal visual model weight values for different SNR values
in babble noise on the development test set using the Triviseme
visual models. A linear best fit approximation of the optimal
weights is also shown. As can be seen in the figure, the optimal
visual weight nearly doubles as the SNR is varied from the clean
condition to —10 dB.

Despite the correlation between the visual weight and the
SNR observed in Fig. 4, we also discovered that the visual
weight at any given SNR can be varied significantly from
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Fig. 4. Optimal weighting of visual stream for speech recognition using the
Triviseme visual model tested on the AV-TIMIT development data over varying
SNR levels. The linear best fit weighting function is also shown.
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Fig. 5. AVSR performance of Triviseme visual models when using matched
versus mismatched acoustic models, and when using a fixed visual model weight
versus a variable weight this is adapted to the SNR.

the optimal weight without causing a severe degradation in
recognition accuracy. This observation led us to believe that
there may be little difference in performance on unseen data
between setting the visual weight to a single fixed value for
all SNRs versus using the variable weights from the linear
best fit function shown in Fig. 4. To verify this we tested the
two weighting schemes on the AV-TIMIT test data using the
Triviseme visual models. In this test, the single fixed visual
weight was set to the average optimal weight observed in
Fig. 4. The results of this test are shown in Fig. 5 where we
can observe that there is no advantage in our system to using
a variable weighting scheme based on the SNR. This figure
also shows the significant difference in performance between
the matched and mismatched acoustic model conditions. This
shows that adaption of the acoustic models to the current
noise condition is far more important than adaptation of the
audio-visual weighting factor.
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V. CONCLUSION

The experiments presented in this paper have yielded sev-
eral results that are worth comment. First, although Potamianos
et al. claim that using “different speech classes in the audio-
and visual-only components complicates audiovisual integra-
tion” [4], we have found no added complications in our system
from taking such an approach. No alterations in the audio com-
ponents or primary search mechanism needed to be made when
adding the visual components. Further more, allowing different
speech classes among the different components lets each com-
ponent be independently optimized without forcing any con-
straints upon it from other components.

Second, it is our conclusion that visemes, though useful for
expository and educational purposes, are a suboptimal repre-
sentation when used within the model structure of a speech
recognizer. Our experiments indicate that it is better to retain
the phonetic labels within the visual model structure and allow
data-driven clustering techniques to perform any label classing
that may be necessary.

Next, our results do not show that asynchronous modeling of
the audio and visual streams is better than synchronous mod-
eling. Tables II and III fail to show an advantage for either
the asynchronous Async-DT model or the synchronous Sync-DT
model. Although more study of this issue is needed, we believe
that the combination of context dependent modeling with a suf-
ficiently large enough amount of training data may allow a syn-
chronous multistream model the ability to implicitly learn the
effects of articulator asynchrony without requiring any explicit
method for modeling it.

Next, though we did observe a correlation between the SNR
of an utterance and the optimal audio-visual fusion weighting,
we did not observe a significant difference in performance
on unseen data when an adaptive weighting scheme based on
the SNR was used in place of a single pre-set weighting. This
is partially explained by the fact that the SNR levels in our
experiments represent the average SNR. Thus, even in noisy
conditions, there will be some regions of the signal where the
SNR is considerably higher than the average and other regions
where it is considerably lower than the average. This variance
of the local SNR across an utterance could explain why a wide
range of weighting ratios between the audio and visual streams
yielded similar results in our system. Further study of this issue
is needed in order to determine if a locally adaptive weighting
scheme can give further improvements.

Finally, our experiments have demonstrated the difficulty of
automatic speech recognition for larger vocabulary tasks based
only on visual information. While lip-reading systems have typi-
cally been able to achieve speaker-independent error rates of 40%
on digit strings recorded under studio conditions [3], [19], large
vocabulary recognition using only visual information remains
an extremely difficult problem in need of further study. Like the
large vocabulary system of Potamianos et al. [3], our AV-TIMIT
system also has a word error rate greater than 90% when using
only visual information. The high error rate of the visual-only
system may also partially explain why very little is gained from
adapting the stream weights of the audio and visual components
of the system as the SNR gets worse. Because there are no SNR
conditions in which the visual system is significantly better than
the audio system, there is little to be gained from increasing the
relative weight of the visual model in low-SNR conditions.
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VI. FUTURE WORK

In this work we focused on the issues of visual-model unit
selection, audio-visual asynchrony, and audio-visual stream
weighting. However, there are still many interesting problems
left to investigate. One open question is the effect of lexical and
language model constraint within AVSR systems. Because the
visual signal typically does not provide as much phonetic disam-
biguation as the audio signal, strong lexical constraint may be
needed in order to take full advantage of the visual information.
In future work we plan to explore the effect of language model
perplexity on the speech recognition performance improvements
observed from the addition of the visual signal. Also, because
our segment-based approach has significant differences with
the more traditional coupled-HMM approaches used by others,
experiments directly comparing these approaches could be
illuminating.
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