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MCE Training Techniques for Topic Identification
of Spoken Audio Documents

Timothy J. Hazen, Senior Member, IEEE

Abstract—In this paper, we discuss the use of minimum classifi-
cation error (MCE) training as a means for improving traditional
approaches to topic identification such as naive Bayes classifiers
and support vector machines. A key element of our new MCE
training techniques is their ability to efficiently apply jackknifing
or leave-one-out training to yield improved models which gener-
alize better to unseen data. Experiments were conducted using
recorded human–human telephone conversations from the Fisher
Corpus using feature vector representations from word-based
automatic speech recognition lattices. Sizeable improvements
in topic identification accuracy using the new MCE training
techniques were observed.

Index Terms—Discriminative training, machine learning, speech
recognition, topic identification.

I. INTRODUCTION

T HE problem of topic identification (topic ID) has long
been studied in the text processing community where

research has produced a variety of techniques and enabled
applications such as e-mail spam filtering and inappropriate
web material detection [16], [22], [26]. The speech processing
community has largely based its topic ID research on tech-
niques originally developed for text processing. In particular,
both Bayesian classifiers [21], [25] and support vector ma-
chines (SVMs) [10], as applied to bag-of-words document
representations have been successfully ported to speech-based
applications. Minimum classification error (MCE) training has
also been used in the call routing field to further improve the
performance of linear classifiers [18], [20], [30]. Although
these techniques have proven effective, they still possess known
deficiencies which remain open research topics. In this paper,
we introduce novel methods for applying MCE training to
classifiers which improve upon these existing approaches.

One challenging aspect of the topic ID problem is that the
common words most prevalent in a document (i.e., articles, con-
junctions, auxiliary verbs, etc.) are also the least relevant for de-
termining the underlying topic. Instead it is the sporadic use of
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a few topic-specific content words which typically define the
topic. Thus, it is important for topic ID systems to reduce the
effect of function words on classification decisions while en-
hancing the contribution of content bearing words. Various tech-
niques have been developed to address this problem including
stop listing, feature selection, and feature weighting (e.g., in-
verse document frequency weighting). Though these techniques
have proven effective, they generally provide only an indirect
means for determining which words are most important for topic
ID. A better approach is to determine the relative importance of
words based directly on their contribution to the correct classifi-
cation of the topic. We have previously shown that MCE training
can yield sizeable improvements in topic ID accuracy when ap-
plied to feature weights in both naive Bayes classifiers [13] and
SVMs [14].

Another issue of concern arises from the traditional approach
of training multi-class SVMs. For a classification problem with

classes, SVM training would typically optimize different
two-class one-versus-rest classifiers independently instead of
globally optimizing a single -class classifier. As a result, the
scores of the different two-class SVMs may not be well cali-
brated for comparison within the -class problem. Platt [23]
has addressed this calibration issue by fitting sigmoid functions
to the outputs of the SVM classifiers to generate scores approx-
imating probabilities, while Haffner et al. [10] and Brummer
and van Leeuwan [2] have used logistic regression to calibrate
the output scores of various types of classifiers. We have previ-
ously presented a mechanism for calibrating multi-class SVMs
using the MCE algorithm that operates using an efficient leave-
one-out approximation which allows all training tokens to be
treated as unseen data during the optimization process [15].

Although methods for training multi-class SVMs using soft-
margin objective functions exist [7], some researchers have ex-
pressed concerns about the soft-margin optimization approach
and its sensitivity to outlier training tokens. Arenas-García and
Pérez-Cruz [1] have argued instead for optimization using em-
pirical risk minimization. Similarly, Gao et al. [8] have intro-
duced a maximum figure of merit approach for optimizing the
detection performance of SVM-based topic detection systems,
while Hatch et al. [11] have proposed a minimum equal error
rate optimization process for training the SVM parameters in
speaker recognition systems. In these cases, soft margin opti-
mization was replaced by an objective function mirroring the
system’s evaluation criterion. In our previous work, we have
similarly developed an MCE approach for training the parame-
ters of a multi-class SVM classifier [15].

In this paper, we summarize the MCE training techniques
we have developed and the experimental results we have ob-
tained for topic identification of spoken audio documents. This
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paper extends our previous work by providing additional al-
gorithmic details and empirical analyses not provided in our
previous work. We demonstrate the effectiveness of our tech-
niques on topic ID experiments conducted on the Fisher corpus
of recorded human–human conversations.

II. SPOKEN DOCUMENT REPRESENTATIONS FOR TOPIC ID

A. Overview

For the topic ID problem, assume we have a collection
of training data containing indi-
vidual audio documents. Also assume that we have a set

of different topics of interest. In the
closed-set topic classification problem that we will address in
this paper we assume that each document is associated with
one and only one topic .

In the commonly used bag-of-words approach, each docu-
ment is represented by the occurrence counts of the individual
words present in the document, independent of their ordering.
Thus, a document can be represented as

(1)

Here, each is the occurrence count of a specific word ,
where is a specific word from a vocabulary containing

unique words. This bag-of-words representation has proven
highly effective despite its simplicity [16], [19].

B. Extracting Features From ASR Lattices

When performing topic ID on spoken audio documents,
the spoken words must be ascertained using automatic speech
recognition (ASR). In many domains, highly accurate and
robust ASR is not yet possible thereby requiring topic ID
systems to be capable of handling errorful ASR outputs. In
this situation, it has become standard practice to produce a
network, or lattice, of alternate ASR hypotheses instead of the
single top-choice (or 1-best) hypothesis. From an ASR lattice,
a posterior probability of occurrence for each word hypothesis
can be computed. The posterior probabilities for an individual
word can be summed across all lattice arcs containing that
word from all lattices associated with an audio document to
produce an estimated occurrence count for that word in the
audio document. For consistency, we also represent the esti-
mated count for word as when this count is derived from
the ASR output lattices.

C. Feature Selection

Topic ID systems often preselect a set of features (i.e., words)
which carry the most topic relevant information for further
processing while ignoring words that carry little to no value
for identifying topics. A variety of feature selection methods
have been previously explored for both text processing [29]
and speech processing [12]. In our work, we have had the
most success selecting features based on the estimated topic
posterior probability , where is a specific topic and

is a specific word. The maximum a posteriori probability
(MAP) estimate of is expressed as

(2)

Here, is the number of times word appears in docu-
ments about topic is the total number of times appears
over all documents, is the total number of topics, and
is the prior likelihood of topic as estimated from the training
corpus. Feature selection in this work is performed by selecting
the top words which maximize for each .

D. Feature Vector Normalization

Each document is typically represented by a feature vector
that represents the contents of . Because different documents

can have different lengths, it can be useful to apply L1 normal-
ization to convert a collection of raw word counts into a nor-
malized feature vector . The value for element in an L1
normalized vector for document is given as

(3)

Here, can either represent the full vocabulary or a subset of
selected features.

E. Feature Weighting

In practice, classifiers such as SVMs often do not directly use
the vector of raw word counts or relative frequencies, but in-
stead employ some form of feature weighting in order to de-em-
phasize the common function words (i.e., articles, conjunctions,
prepositions, etc.) while enhancing the important content words.
One weighting function for de-emphasizing common words that
can be applied to an L1 normalized feature vector is expressed
as

(4)

Here, is estimated from the full collection of training doc-
uments using MAP estimation as follows:

(5)

In this expression, is the number of occurrences of the spe-
cific word in the training corpus and is the total count of
all words from the word vocabulary in the training corpus.
Vector normalization and weighting as expressed in (4) has been
referred to as the term frequency-log likelihood ratio (TF-LLR)
representation [3].

Another commonly used weighting is inverse document fre-
quency (IDF), as represented as

(6)

Here, is the total number of training documents while
is the number of training documents containing the

word . Because the words in audio documents are generally
not known, is also not known and must be estimated
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from ASR lattices [28]. In our work, is estimated from
the training corpus as

(7)

Here, is an estimated count of word in document as com-
puted from ASR posterior lattices. Thus, can have a posi-
tive value less than one. The parameter provides a floor on

thus setting an upper bound on . In our work, we
set . Using IDF weighting in conjunction with the raw
counts yields the traditional term frequency-inverse docu-
ment frequency (TF-IDF) representation:

(8)

III. TRADITIONAL CLASSIFIERS

A. Naive Bayes Classification

In our naive Bayes approach to topic ID, a hypothesis testing
likelihood ratio approach is used. A document, represented by a
relative frequency feature vector , is scored against a specific
topic using this expression

(9)

Here, is the probability of word within documents
on topic while is the probability of in documents
that are not on topic . The features in are determined as
in (3). The offset value can be used to incorporate the prior
distribution , though our experiments all assume that topics
are equally likely and .

The probability function is learned from labeled
training data using MAP estimation as follows:

(10)

Here, is the number of unique words in the vocabulary,
is the count of over documents on topic , and is

the total count of all words in documents on topic . is
estimated in the same manner using documents not about topic
. The term represents the prior likelihood of occurring

as represented by (5).

B. Support Vectors Machines

Traditional SVM training finds a hyperplane which maxi-
mally separates positive and negative training tokens in a vector
space [27]. SVMs are commonly trained with soft margin op-
timization which allows training tokens to violate the SVM’s
separation margin constraint with some penalty [6].

In its standard form, an SVM is a two-class classifier. To
create a multi-class SVM for a problem with classes, a one-
versus-rest SVM classifier is typically learned for each topic

class yielding the following scoring function:

(11)

Here, each vector is a unique training vector or support vector
from the set of training documents. Each value represents
the learned support vector weight for training vector for topic
class . For notational simplicity, the values here absorb the

valued class labels which are often included in the SVM
expression. The value is an offset which is typically set such
that vectors lying on the decision hyperplane receive a neutral
score of zero.

The function is a kernel function for comparing the
vectors and . While many kernel functions may be used in
a support vector machine, a linear kernel function is generally
adequate for typical topic ID problems and is used in this work.
The linear kernel function is simply the dot product between the
two component vectors

(12)

The vectors in this SVM kernel function would typically be rep-
resented using either the TF-IDF or TF-LLR form.

C. Linear Classifier Representation

Both the naive Bayes and linear SVM classifiers are linear
classifiers, i.e., classifiers that define one linear separating hy-
perplane per class in the feature vector space. For a single topic
, a linear classifier can be expressed as

(13)

where is a linear projection vector for topic and is a score
offset which is typically set to center the topic decision boundary
around the score of 0. From here, the set of projection vectors

can be concatenated to form a matrix and the score offsets
can be concatenated to form a vector , thus creating a multi-

class linear classifier defined as

... (14)

Within this interpretation, is sometimes referred to as the
routing matrix within the call routing literature [18], [20].

The naive Bayes expression in (9) can be written in the linear
classifier form by expressing each element within is as
follows:

(15)

Similarly, the linear kernel SVM expressed by (11) and (12)
can be written in the linear classifier form by expressing each
element within as follows:

(16)

Here, represents element of support vector .
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IV. MCE TRAINING

A. MCE Training Overview

The primary focus of this paper is the use of minimum
classification error (MCE) training on topic ID classifiers.
MCE training adjusts the parameters of a classifier in order to
minimize its classification error rate [17]. It applies an iterative
gradient descent approach to minimize a smooth optimization
function approximating the error rate of the classifier. This
process begins with the computation of a misclassification mea-
sure for a feature vector being scored by a classifier.
A simple misclassification measure for the classifier on vector

is expressed as follows:

(17)

Here represents the correct topic for vector (assuming
is assigned one and only one topic label) and is the best
scoring incorrect topic. In (17), documents with
are correctly classified, while indicates a classifi-
cation error. A step function applied to could be used to
indicate whether an error has been made. Because gradient de-
scent training requires a smooth function that is differentiable,
an error step function can instead be approximated with a sig-
moid loss function as follows:

(18)

Here, is the slope factor of the sigmoid function. Larger values
of yield closer approximations to the step function. MCE
seeks to minimize the average of value of over all . For a
specific can be differentiated with respect to any model
parameter as follows:

(19)

From the partial derivatives of the loss function over all param-
eters, gradient descent optimization is performed on these pa-
rameters. This can proceed either in sequential mode (where the
parameters are updated after each document is observed) or in
batch mode (where partial derivatives are accumulated over the
whole document collection and a single update is performed at
the end of iteration). The MCE batch update for a general pa-
rameter is as follows:

(20)

Here, represents the th iteration of MCE training and is
a learning rate controlling the gradient descent step size. For
sequential learning, the summation is removed and the update is
performed after each individual document is observed. Training
progresses until convergence of the average value of the loss
function is achieved.

B. MCE Training From Multiple Incorrect Hypotheses

In (17), the misclassification measure is computed using only
the single top scoring incorrect hypothesis. This expression can

be generalized to incorporate information from all incorrect hy-
potheses as follows:

(21)

where

(22)

Here, the score for the single best incorrect topic is replaced
with a weighted combination of the scores from all incorrect
topics with the worst scoring topics contributing the most to the
score. The weighting of the individual topics is controlled by the
scaling factor . When , then (21) reduces to the form
of (17).

C. MCE Training of Feature Weights

In practice the process of feature selection is generally found
to be beneficial to topic ID systems. By ignoring words that carry
little topic discrimination ability, the noise created by the pres-
ence of these words in the decision process is removed and ac-
curacy is improved. However, the feature selection process is a
blunt instrument; words are deemed either useful and kept, or
useless and ignored. A more nuanced approached would be to as-
sign continuous valued weights to the features. For example, the
basic linear classifier expression in (14) could be rewritten as

(23)

Here, the operator performs a term-wise multiplication of vec-
tors and , where each element of serves as a contin-
uous valued feature weight applied to the corresponding feature

. If each consists of the full set of word features in the vo-
cabulary , then a feature selection process could be viewed as
setting for all selected words and for all ig-
nored words. In our previous work, we have explored learning the
feature weights in automatically using the MCE training algo-
rithm for either the naive Bayes classifier [13] or the SVM clas-
sifier [14]. Because both classifiers can be reduced to the linear
classifier form of (23), the MCE training process is largely iden-
tical for both. Also note that MCE training of feature weights can
be applied to either the full vocabulary of all words, or to only a
preselected set of words retained by the feature selection process.

To perform MCE training of the weights in , the MCE al-
gorithm computes the partial derivative of the misclassification
measure [as required by (19)] with respect to each feature
weight within as follows:

(24)

Here, resembles a posterior probability over the incorrect
topics as defined by

(25)
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Here, the variable can be viewed as a posterior scaling factor.
As , then for the best scoring incorrect topic

, and for all other incorrect topics .
When updating the feature vector weights, the average loss

function can often be improved simply by jointly increasing
the magnitude of all feature weights, i.e., whenever there are
sufficiently more correctly classified training vectors than in-
correctly classified vectors the average loss is reduced simply
by pushing all training tokens further away from the decision
boundary. To avoid this trap, normalization is applied to force
the L1 distance of the feature weights to remain fixed during it-
erative updating. Thus, the following normalization is applied
after every training iteration :

(26)

D. Jackknife Training

When training the feature weighting vector , we would
ideally like to learn which features are most useful for topic
identification using previously unseen training data (i.e., training
data not used to train ). This would help alleviate the poten-
tial problem of over-tuning the feature weighting vector to the
training data. On the other hand, we would also like to use all
available data to train the routing matrix if at all possible. One
solution to this problem is to perform data jackknifing when
training . In this approach, we subdivide the training data into

separate non-overlapping partitions . For each
partition , we can train a routing matrix using all of the data
except the documents in partition . We can then perform MCE
updating on each training vector using instead of .
In this fashion every training vector can be treated
as an unseen vector during MCE training of , while the final
routing matrix can still be trained using all available training
data. In the extreme case, we can set such that the
jackknife training is equivalent to leave-one-out training.

E. MCE Optimization of SVM Parameters

Recall from Section III-B, that the basic form of an SVM
classifier for topic is

(27)

Recall also that support vector weights absorb the valued
class labels in our notation. Because of the geometric con-
straints imposed in SVM training, the positive training tokens
for class have positive valued weights , while the negative
training tokens have negative weights. Furthermore, if the set of
training vectors is divided into the set of positive document exem-
plars for class , and the set of negative document exemplars
for class , the following equality holds:

(28)

Here, we have introduced the term , which we will refer to as
the SVM scaling factor for class . We can further define a set
of prescaled support vector weights as

(29)

We should also note that factoring the scale factor out of the
summation in (28) yields the following constraint:

(30)

Next, we can define the weighted sum of kernel scores for the
positive and negative support vectors independently as

(31)

(32)

We next define the full unscaled SVM score to be

(33)

Using these definitions we can rewrite (27) as

(34)

Using this interpretation of the SVM expression, the discrim-
inative capabilities of the individual two-class SVMs created
for each class are captured by the set of class specific support
vector weights contained within , while the calibra-
tion of the full multi-class SVM is captured by the settings of
the scale factors and decision thresholds .

To optimize our multi-class SVM system, we use MCE
training applied to the individual parameters of the SVM clas-
sifier. We will refer to a process that optimizes only the SVM
scale and threshold parameters, and , as calibration. If we
additionally train the prescaled support vector weights , we
will refer to this as full optimization.

While SVM training often selects a sparse subset of training
vectors to be support vectors, our derivation uses all training
vectors within the SVM expression in (27), with the non-support
vectors carrying a weight of zero. MCE training thus allows
training vectors that start with an initial weight of zero to obtain
a nonzero weight during optimization.

For MCE training we must first compute the partial deriva-
tives of the misclassification measure with respect to each
parameter. The expressions of these derivatives for each
and parameter are

if
if

(35)

if
if

(36)

if
if

(37)
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Here, the parameters are posterior-like weights over the in-
correct classes as defined in (25).

To maintain scoring within the same dynamic range as the
original classifier, the collection of and terms are normal-
ized after each training iteration to adhere to these L1 distance
constraints

and (38)

We also require the support vector weights to adhere to the
constraints given in (30) and we impose the constraint that the
weights for the positive training tokens of a class must be non-
negative while the weights for the negative training tokens must
be non-positive.

During full optimization, the and are first optimized
using batch training, while the weights are held fixed, and
then the weights are optimized using batch training while
the and parameters are held fixed. The training procedure
iteratively alternates between these two optimization steps until
convergence is reached.

F. Leave-One-Out Scoring for SVMs

While jackknife style training can be used with SVMs, it
would require separate SVM training runs for each partition.
This can become computationally cumbersome, if not prohib-
itively expensive, as the number of partitions grows. To ad-
dress this issue, we have developed an efficient approximation
to leave-one-out scoring for SVMs.

In leave-one-out scoring, a training vector to be scored
must be removed from the training set, the trained models must
be adjusted to account for the removal of this vector, and the ad-
justed model must produce a score for the held out vector. From
this score the loss can be determined and the appropriate
MCE updates can be computed for the held out vector. Our ap-
proach approximates the score of an SVM model by removing
the training vector as a support vector and renormalizing the
weights of the remaining support vectors to account for the lost
weight of the held-out vector. In the case that the held-out vector

is a positive support vector for class , the computation of
is approximated as follows:

(39)

This expression is not valid for the degenerate case where
, but in our experiments we have yet to encounter

this case. Should this occur one could approximate
by assigning uniform weights to the remaining collection of
positive training vectors for class . For the case where the
held-out vector is a negative support vector for class , we
similarly adjust the computation of as follows:

(40)

Using this leave-one-out scoring approximation, every training
vector in the training set can be used as an unseen observation
during MCE training.

G. Comparison to Previous Work

At this point, it important to contrast the MCE training pre-
sented in this paper with the previous use of MCE training in
the call routing field [18], [20], [30]. All of these previous ef-
forts used MCE to optimize a routing matrix . Various clas-
sifiers were used to initialize including classifiers based on
cosine similarity metrics [18], naive Bayes classifiers [20] and
Beta classifiers [30]. In each of the previous efforts the routing
matrix is optimized with MCE training directly on the training
data. Despite the successes of these previous efforts, these ap-
proaches have some drawbacks.

First, special care was required in these efforts to avoid over-
training to the training set. This is likely because the full routing
matrix required a large number of parameters ( pa-
rameters for a system with features and topics). In our
work, over-training is at least partially ameliorated through the
training of smaller sets of tied parameters, such as the dif-
ferent feature weights in , or the set of sparse support
vector weights present in the SVM.

Next, by optimizing the routing matrix directly on the training
data, these previous MCE approaches cannot improve perfor-
mance if the initial classification error rate on the training data
is already very small (or zero) because little further improve-
ment can be gained from additional MCE training. The jack-
knife and leave-one-out training methods used in our work allow
all training tokens to be treated as unseen data during MCE
training thus improving generalization to actual unseen data.
Additionally, when directly optimizing the full routing matrix,
the underlying structure of the original classifier is inherently
lost during the MCE training process. As such, there is not
an obvious avenue for employing similar jackknife or leave-
one-out training with these previous methods.

V. EXPERIMENTAL DETAILS

A. Data Set

Our experiments used the English Phase 1 portion of the
Fisher Corpus containing 10-minute-long telephone conversa-
tions between two people [5]. Each conversation discussed one
topic chosen from a set of 40 prespecified topics. For this work,
the corpus was subdivided into three subsets: 1) a 553 hour
recognizer training set containing 3104 calls; 2) a 244 hour
topic ID training set with 1374 calls; and 3) a 226 hour topic
ID test set with 1372 calls.

B. Word-Based Speech Recognition

For word-based ASR we use the MIT SUMMIT speech rec-
ognizer [9]. The system’s acoustic models were trained using
a standard maximum-likelihood approach on the full 553 hour
recognition training set without any form of speaker normaliza-
tion or adaptation. For language modeling, the system uses a
basic trigram language model with a 31.5 K word vocabulary
trained using the transcripts of the recognizer training set. This
system performs recognition faster than real time (on a current
PC) but its error rate is high (over 40%).

When the recognizer was run on the topic ID training set, only
30 364 words from the full recognizer vocabulary were observed
in the resulting collection of lattice outputs. Thus, these 30 364
words represent the full vocabulary set actually used in the topic
ID experiments.
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C. Training and Testing Details

In our experiments, every call in the topic ID train and test sets
is represented by a single feature vector containing the expected
counts of the words observed during the call as hypothesized by
the ASR system. The topic ID models are trained and optimized
using only the topic ID training set, and topic ID performance
is measured on the topic ID test set. Performance in this paper
is measured using the classification error rate for the closed set
topic ID scenario.

In our SVM experiments, the initial SVM is trained using the
open source LIBSVM Package [4] with a linear kernel and a
margin cost of 10. The training data in our experiments is lin-
early separable for most feature set sizes, so we did not explore
any other kernel functions. Also, all settings of the SVM margin
cost greater than 1 generally yield identical results while perfor-
mance degrades for costs less than 1 (i.e., the SVM margin term
dominates the soft margin training).

D. MCE Parameter Settings

When using the MCE training algorithms described in this
work, appropriate values must be set for the sigmoid slope factor

, the posterior scale factor of the scoring function for incor-
rect topics, and the MCE learning rate parameter . In this work,
we set and in all experiments. We should note
that our investigations have shown that performance is not very
sensitive to the setting of though performance does degrade
severely when . Across the wide range of values ,
little difference in performance is observed, though very large
values of can result in slower convergence during training.
For , it is typically the case that only the top 1 to 5 in-
correct topic hypotheses receive non-negligible weights during
MCE training updates. The system is more sensitive to the set-
ting of though values ranging between all give
very similar results.

It is important for the learning rate to be appropriately set in
order for efficient convergence of MCE training to occur. Our
system adaptively tunes during MCE training using a modified
version of the RPROP algorithm [24]. RPROP increases or de-
creases in response to the observed rate of convergence of the
average loss function over the previous three training iterations.
In our experiments is initialized to a value of 1, but it is not un-
common for it to vary by numerous orders in magnitude during
training. Using this approach, MCE training in our experiments
typically requires between 50 and 500 iterations to fully con-
verge. We must also note that the MCE algorithm is also only
guaranteed to converge to a local minimum in the average loss
function and not necessarily to the globally optimal solution.

In our experiments, sequential MCE training was used when
learning the feature weights in the naive Bayes system. In prac-
tice, batch training yielded similar results in the naive Bayes
system but its convergence during training was slower. Batch
MCE training was used in all SVM experiments, as sequential
training (for reasons we have not yet determined) behaved er-
ratically in the SVM system.

VI. EXPERIMENTAL RESULTS

A. ASR Lattice Versus ASR 1-Best Result

Fig. 1 shows the baseline performance for the naive Bayesclas-
sifier,andfortheSVMclassifierusingTF-LLRfeatureweighting,

Fig. 1. Closed set topic classification results for naive Bayes and SVM classi-
fiers using 1-best ASR output and full ASR lattices, as the number of preselected
features is varied from the full vocabulary size of over 30 K words down to 384
words.

as thenumberofpreselectedfeatures isvariedfromthefullvocab-
ulary of 30 364 words down to only 384 words. Feature selection
is performed as discussed in Section II-C. The most discrimi-
native words per topic were selected using (2) for different values
of ranging from 10 to 1000. Performance using the 1-best ASR
hypotheses is compared against using ASR lattices. The full lat-
tices are particularly beneficial to the SVM system but also yield
improvements for the naive Bayes system. All other experiments
in this paper are conducted using ASR lattices.

B. Convergence of MCE Training of Feature Weights

Fig. 2 shows the performance of the full vocabulary naive
Bayes system during MCE training of the feature weights. The
figure shows both the classification error rate and the average
value of the loss function (expressed as a percentage) for both
the training set and the (unseen) test set. For the training set,
these metrics are computed over all held-out training partitions
used during the jackknife process. On the training data, the loss
function decreases monotonically until convergence is reached.
On the test data, some evidence of training overshoot is observed
when the MCE learning rate reaches a peak value of at
iteration 73. Starting at iteration 73 the RPROP algorithm begins
a series of learning rate reductions which restore the learning
process towards smooth and continuous improvement on both
the training data and the test set. Similar MCE learning patterns
are observed in our other experiments.

C. Results for MCE Training of Feature Weights

Fig. 3 shows the closed-set classification results for both
the naive Bayes (NB) classifier and the SVM classifier using
TF-LLR feature weighting. Results are shown both with and
without the application of MCE feature weight (FW) training
as the number of preselected features is varied from the full
vocabulary of 30 364 words down to 384 words. MCE feature
weight training on the NB system is performed using the
jackknifing approach with ten training partitions. MCE feature
weight training on the SVM system is performed using the
SVM leave-one-out approximation.

As seen in the figure, the standard NB and SVM systems both
benefit from the application of feature selection. The best NB
system achieves an error rate of 10.0% using 912 features (down
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Fig. 2. Closed set topic classification error rate and average loss on the train
and test sets for the models produced during each iteration of MCE training of
feature weights for the naive Bayes system using the full vocabulary.

Fig. 3. Closed set topic classification results for naive Bayes and SVM classi-
fiers, both with and without MCE feature weight (FW) training, as the number
of preselected features is varied from the full vocabulary size of 30 K words
down to 384 words.

from 14.1% using the full vocabulary). The standard SVM per-
forms better than the naive Bayes system when using the full vo-
cabulary (12.5% versus 14.1%) but it also sees less benefit from
feature selection with its best performance of 11.0% achieved
with a feature set of 3154 preselected words.

Both the NB and SVM systems see substantial improvements
in accuracy when MCE feature weight training is applied. The
error rate of the NB system using the full vocabulary is reduced
from 14.1% to 8.3% after applying the MCE training. This
full vocabulary result is close to the best NB result using MCE
training of 7.7% achieved with a feature set size of 3151 words.
With MCE feature weight training, the SVM system achieves
its best accuracy of 8.6% when using the full vocabulary.

D. Results for MCE Training of SVM Parameters

Fig. 4 shows the classification results when applying MCE
training to parameters of the TF-LLR SVM classifier. The
results compare the basic SVM system and the SVM system
with MCE FW training against the basic SVM trained with the
MCE calibration and MCE optimization processes described in
Section IV.E. The results show that MCE calibration improves
the basic SVM when the feature set size is large but the cal-
ibration process is not as effective as MCE FW training. On

Fig. 4. Closed set topic classification results for the basic SVM, the MCE cal-
ibrated SVM, the MCE optimized SVM, and the basic SVM with MCE feature
weight (FW) training, as the number of preselected features is varied from the
full vocabulary of 30 K words down to 384 words.

the other hand, the full MCE optimization of the SVM yields
better results than MCE FW training at all but the smallest
and largest feature set sizes. The MCE optimization of the
SVM parameters also provides sizeable improvements over the
baseline SVM at all but the smallest feature set sizes, thereby
showing the efficacy of this training procedure.

E. Results for Full MCE Training

Fig. 5 shows the results when combining MCE training of fea-
ture weights with MCE training of SVM parameters within the
TF-LLR SVM classifier. For comparison, the figure first shows
the naive Bayes system with MCE FW training from Fig. 3
and the SVM system with MCE FW training from Fig. 4. The
figure then shows the SVM system with FW training when it is
subsequently trained using MCE calibration and full MCE op-
timization. In these cases, MCE calibration has little additional
effect on performance, perhaps because the MCE FW training
is implicitly creating a system with better calibrated scores. On
the other hand, full MCE optimization does provide some ad-
ditional benefit beyond MCE FW training for the larger feature
set sizes.

It is important to note that MCE optimization in our exper-
iments was performed once after MCE FW training was ap-
plied to the initial SVM models. Alternatively, the MCE FW
training and MCE optimization stages could be iteratively reap-
plied multiple times. We performed this experiment as well, but
found that this approach resulted in over-tuning to the training
set and degraded performance on the test set.

F. Importance of Jackknife Training

OurMCEtraining techniquesrelyon theuseofeither jackknife
training (for the naive Bayes systems) or leave-one-out training
(for the SVM systems). This process is particularly important for
success on our data set. When processing high-dimensionality
data, it is very easy to create a classifier that has little to no error
on the training data. In our final experiments (presented in the
next subsection), the baseline SVM systems are able to perfectly
separate the training data achieving an error rate of 0% on the
training data. As a result, any further MCE training of the SVM
applied directly to the training data without using leave-one-out
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Fig. 5. Closed set topic classification results for the NB classifier with MCE
feature weight (FW) training, the basic SVM with MCE FW training, the MCE
calibrated SVM with MCE FW training, and the MCE optimized SVM with
MCE FW training as the number of preselected features is varied from the full
vocabulary of 30 K words down to 384 words.

training yields no discernible effect. Our baseline naive Bayes
system also has a very low training error of 2.3%. Thus, MCE
training without jackknifing performs corrective training on only
a small number of errors, and fails to yield any improvements that
generalize to the test data. We also attempted to directly optimize
the full routing matrices initialized using naive Bayes and SVM
classifiers on the training data using the MCE approach of Kuo
and Lee [18] and Liu et al. [20]. These attempts resulted in no
improvement to the SVM system and a statistically insignificant
degradation of the naive Bayes system.

G. Correlation of Training Loss and CER

In examining Figs. 3–5, it is easy to recognize that optimal
performance on the test set can be achieved only if the system
can predetermine the best feature set size to use. Towards this
end, Fig. 6 shows the relationship between the classification
error rate on the test set and the average loss of the system on the
training set for the four systems presented in Fig. 5. These plots
show a very clear correlation between the training loss and the
classification performance on the final test set when comparing
different feature set sizes used within a particular classifier con-
figuration. This demonstrates that the selection of the best fea-
ture set size to use for a particular classifier can be reasonably
determined by choosing the feature set size that produces the
smallest average loss on the (held-out) training data.

H. Summary of Final Results

Table I summarizes our results using various forms of MCE
training on the naive Bayes classifier and on the SVM classifier
using either TF-LLR or TF-IDF normalization. For each specific
classifier and MCE training condition, eight different feature sets
ranging insize fromonly 384wordsup to the fullvocabularywere
used during training. The feature set that achieved the lowest av-
erage lossover the trainingdatawasselectedforuseon the test set.
The results in terms of total classification errors and classification
error rate are displayed for the automatically selected feature sets
in Table I.

In Table I, the best baseline system on this task is the naive
Bayes system using only 912 preselected words as features. This

Fig. 6. Closed set topic classification error rate versus MCE training average
loss for the NB classifier with MCE feature weight (FW) training, the basic SVM
with MCE FW training, the MCE calibrated SVM with MCE FW training, and
the MCE optimized SVM with MCE FW training as the number of preselected
features is varied from the full vocabulary of 30 K words down to 384 words.

TABLE I
TOPIC ID PERFORMANCE FOR THE VARIOUS CLASSIFIERS DESCRIBED

IN THIS PAPER USING THE SET OF PRESELECTED FEATURES FOR

EACH CLASSIFIER THAT YIELDS THE MINIMUM AVERAGE LOSS

OVER JACKKNIFED OR LEAVE-ONE-OUT TRAINING DATA

systemachievesanerrorrateof10.0%andoutperformsbothbase-
line SVM systems. When MCE feature weight training is applied
to the naive Bayes system, we find that the selected feature set in-
creases in size to 3151 words, and the error rate is reduced by
a relative 23% down to 7.7%. This improvement is statistically
significant to a level of using a McNemar significance
test. This is also the best result obtained in these experiments.

In examining the effect of MCE training on the SVM sys-
tems, we observe that all forms of MCE training introduced in
this paper improve the performance of the SVM models. When
the combination of MCE feature weight training and full MCE
optimization of the SVM parameters are used in sequence, the
TF-LLR SVM sees a 35% reduction in error rate from 12.5%
down to 8.1% while the TF-IDF SVM sees a 20% reduction
in error rate from 11.4% down to 9.1%. Though the baseline
TF-IDF SVM system achieves a better result than the baseline
TF-LLR SVM system, it is interesting to note that the TF-LLR
system is better after MCE training is applied.

In the TF-LLR SVM results, all five of the different combina-
tions of MCE training yielded statistically significant improve-
ments over the baseline SVM system to a level of or
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better using a McNemar significance test. However, almost all of
the performance differences between these five combinations of
MCE training applied to the TF-LLR SVM are not statistically
significant. In the TF-IDF SVM results, only the differences be-
tweenthethreesystemsusingMCEtrainingofthefeatureweights
(FW)andthebaselineTF-IDFSVMsystemwerestatisticallysig-
nificant. Thus, further experiments on a larger data set will be
needed to firmly determine if the gains observed from the combi-
nation of training both feature weights and SVM parameters rep-
resent a convincingly useful combination of training techniques.

Although the results also show the MCE trained naive Bayes
system outperforming the best SVM systems, we should note
that this result is unusual as a majority of the text categoriza-
tion literature points to the SVM approach being superior to
the naive Bayes approach. However, a closer examination of
Figs. 3–5 reveals that the naive Bayes system reaches its best
performance with a relatively small number of features while
the SVM system achieves better performance as the dimension-
ality grows. Thus, when using the MCE techniques presented
in this paper, one might expect better relative performance from
SVM systems on problems with a larger feature space than the
one used in these experiments.

VII. CONCLUSION

In this paper, we have discussed the use of minimum classi-
fication error (MCE) training as a means for improving naive
Bayes and SVM classifiers for the topic ID problem. We have
presented novel MCE training techniques which can efficiently
apply jackknifing or leave-one-out training to yield improved
models which generalize better to unseen data. Experiments
were conducted on data from the Fisher Corpus using feature
vector representations from word-based automatic speech
recognition lattices. Our experiments demonstrated sizeable
improvements in topic identification accuracy using the new
MCE training techniques. In future work, we plan to apply these
techniques on other topic ID corpora and to other problems
such as automatic language identification.
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