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Abstract—In early 1997, our group initiated a project to develop
JUPITER, a conversational interface that allows users to obtain
worldwide weather forecast information over the telephone
using spoken dialogue. It has served as the primary research
platform for our group on many issues related to human language
technology, including telephone-based speech recognition, robust
language understanding, language generation, dialogue modeling,
and multilingual interfaces. Over a two year period since coming
on line in May 1997, JUPITER has received, via a toll-free number
in North America, over 30 000 calls (totaling over 180 000 utter-
ances), mostly from naive users. The purpose of this paper is to
describe our development effort in terms of the underlying human
language technologies as well as other system-related issues such
as utterance rejection and content harvesting. We will also present
some evaluation results on the system and its components.

Index Terms—Conversational interfaces, dialogue systems,
speech understanding, telephone-based speech recognition.

I. INTRODUCTION

FOR MORE than a decade, our group has been involved
in the development ofconversational interfaces, interfaces

that enable a user to interact with a computer as if it were a
conversational partner. To realize such interfaces, several human
language technologies must be developed and integrated. On the
input side, speech recognition must be augmented with natural
language processing, so that utterances can beunderstood, in
the context of the preceding dialogue. On the output side, lan-
guage generation must be integrated with speech synthesis, so
that the information sought by the user, as well as any clari-
fication dialogue generated by the system, can be verbalized.
In 1989, we first demonstrated such a conversational interface
in the form of the VOYAGER urban navigation and exploration
system [1]. In 1994, we introduced PEGASUS, a spoken lan-
guage interface to the on-line EASYSABRE reservation system
[2]. PEGASUSevolved from our DARPA air travel information
service (ATIS) common task system, but included a far more so-
phisticated dialogue model.
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Increasingly, we have found our research agenda being
shaped by a strong desire to develop human language tech-
nologies and utilize them in a way that will enable universal
information access. This has led to our introduction of the
GALAXY client-server architecture [3], [4], in which the client
can be lightweight, relying on remote servers to perform the
compute and knowledge intensive tasks. A logical outgrowth
of this research direction is to make use of the most lightweight
of all clients: the telephone. Telephone-based information
access and delivery is important because the telephone is so
much more pervasive when compared to PC’s equipped with
Internet access. By using the telephone as a means of accessing
information, we can empower a much larger population. In the
scenario that we envision, a user can conductvirtual browsing
in the information space without ever having to point or click,
or even be tethered to a PC.

Telephone-based interactions pose several research chal-
lenges. For example, telephone speech is often hard to recognize
and understand due to the reduced channel bandwidth and the
presence of noise. In addition,displayless interactionrelies on
only the human auditory channel to receive the information,
and thus potentially increases the cognitive load. Such a setting
demands a high-quality verbal response. Perhaps even more
importantly, the language generation and dialogue management
components of the system must work in concert to present
the information in digestible chunks, so that the user can
easily absorb it. Furthermore, near real-time performance is
necessary, since prolonged delay over the phone can be quite
annoying to users and render the system unusable.

In 1997, we began to develop JUPITER, a conversational inter-
face that allows users to access and receive on-line weather fore-
cast information for over 500 cities worldwide over the phone.
JUPITERutilizes the client-server architecture of GALAXY . It can
give a weather report for a particular day or several days, and an-
swer specific questions about weather phenomena such as tem-
perature, wind speed, precipitation, pressure, humidity, sunrise
time, advisories, etc. Over a two year period since coming on
line in May 1997, JUPITER has received over 30 000 calls (to-
taling over 180 000 utterances) via a toll-free number in North
America, mostly from naive users.

JUPITER also represents our first attempt atcontent pro-
cessing. Increasingly, we see the need to utilize human language
technologies for understanding the content in order to manipu-
late and deliver the information to the user, since so much of the
available content (e.g., in newspapers, radio broadcasts, or Web
pages) is linguistic in nature. JUPITER addresses several key
issues in content processing, including information selection,
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Fig. 1. Example spoken dialogue between JUPITER and a user.

sampling, redundancy reduction, and semantic representation.
The linguistic information that exists online often contains
much more detail than the user would like. In the case of
JUPITER, for example, the weather information for a given
city can be quite extensive, whereas the user may only be
interested in the temperature. To be able to provideinformation
on demandand deliver just the information that a user needs,
JUPITER must fully understand the information it is presenting
to the user, so that it will be able to select a subset relevant to
the question and avoid boring the user with long and possibly
irrelevant monologues. Furthermore, JUPITER’s forecasts are
obtained from multiple sites on the World Wide Web, whose
information content complement one another. It must recognize
when two sources are providing overlapping information, and
select one or the other based on quality considerations. Finally,
by representing all linguistic data in a language-transparent
semantic frame format, the notion of translating the weather
reports into other languages becomes far more feasible.

The purpose of this paper is to describe our development ef-
fort, and to present some evaluation results on the system and
its components. The paper is organized as follows. We first pro-
vide a system overview. This is followed by a discussion of the
human language technology development effort. We then de-
scribe our data collection effort, and present some evaluation
results. We conclude with a discussion of lessons learned and
future work.

II. SYSTEM OVERVIEW

To access JUPITER, a user calls a toll-free number in North
America.1 After a connection has been established, JUPITER

speaks a greeting message. After the greeting, the user is free to
engage in a conversation with JUPITER, inquiring about weather
forecasts for selected cities. The system signals the completion
of its turn by playing a brief high tone, indicating its readiness
to accept new input. When the system detects that the user has
stopped talking, it plays a brief low tone, indicating that it is
no longer recording. At this writing, users can only interrupt
JUPITER by pressing the “*” key;verbal barge-in has not yet
been implemented. Fig. 1 gives an example of interactions
between JUPITER and a real user.

1The number is 1-888-573-8255. For overseas calls, the number is 1-617-258-
0300. For more information about the system, users can also access JUPITER’s
home page at http://www.sls.lcs.mit.edu/jupiter.

A. System Architecture

The initial implementation of JUPITER makes use of our
GALAXY conversational system architecture [3]. Since its
introduction in 1994 as a client-server architecture, GALAXY

has served as the testbed for our research and development of
human language technologies, resulting in systems in different
domains and languages, and with different access mechanisms.
In 1996, we made our first significant architectural redesign
to permit universal access via any Web browser. The resulting
WebGalaxy system made use of a hub to mediate between a
Java GUI client and various compute and domain servers [4].

In 1998, GALAXY was designated as the first reference ar-
chitecture of the newly launched DARPA Communicator ini-
tiative in the US. As a result, we have developed a new ver-
sion of the GALAXY architecture, this time with the specific
goals of promoting resource sharing and plug-and-play capa-
bility across multiple sites [5]. To enable multiple system devel-
opers to experiment with different domains, components, and
control strategies, we made the hub “programmable,” i.e., a
scripting language controls the flow through each dialogue, such
that the same executable can be specialized to a variety of dif-
ferent system configurations. The hub communicates with the
various servers via a standardized protocol.

In January 1999, we switched JUPITER to this new, config-
urable hub architecture, illustrated in Fig. 2. As illustrated in
the figure, human language technology servers communicate
through the programmable hub using a scripting language. The
audio server interacts with the user over the phone line. The turn
management server interprets the user query and prepares the
system response. The turn manager communicates with the ap-
plication back-end via a module-to-module subdialogue medi-
ated by the hub. The application back end server retrieves data-
base tuples from a relational database using SQL.

B. Creating the Content

JUPITER can provide weather forecast information for more
than 500 cities worldwide. It currently obtains its information
from several complementary weather sources available either
from the Web, including CNN, the National Weather Service,
and USA Today, or through direct satellite feeds from WSI.
Weather information from the Web is updated three times a
day, by polling the various sources for any changes in predic-
tions. Some web sites, such as CNN andUSA Today, provide



ZUE et al.: JUPITER 87

Fig. 2. Illustration of theGALAXY -II architecture.

multiday weather related information on a large number of
domestic and international cities, although the information
is limited to general weather conditions (e.g., sunny, partly
cloudy, etc.) and temperature ranges. The satellite feed pro-
vides up-to-the-minute weather information on such things as
temperature and humidity.

The National Weather Service provides detailed weather
forecasts for 279 JUPITERcities in unrestricted and unformatted
text. Since they provide a rich description of the weather,
including predictions of amounts of precipitation, advisories
for hurricanes, floods, etc., we feel it is worth the extra effort to
process them. Extraction of the information is done using our
natural language understanding component, TINA, described in
Section III-B2.

III. H UMAN LANGUAGE TECHNOLOGIES

In this section, we briefly describe JUPITER’s human language
technology servers shown in Fig. 2. These include speech recog-
nition, frame construction (i.e., language understanding), lan-
guage generation, and turn management.2

A. Speech Recognition

For speech recognition, we use the SUMMIT segment-based
speech recognition system developed in our group [6], [7]. Some
of the relevant aspects of the recognizer are described below.

1) Vocabulary: JUPITER’s vocabulary has evolved with our
periodic analyses of the growing corpus. It currently contains
1957 words, including 650 cities and 166 countries; nearly half
of the vocabulary contains geography-related words. The design
of the geography vocabulary was based on the cities for which
we were able to provide weather information, as well as com-
monly asked cities. Other words were incorporated based on fre-
quency of usage and whether or not the word could be used in a
query which the natural language component could understand.

2We omit text-to-speech generation, which is currently implemented using a
commercially available text to speech system, DECtalk.

JUPITERcurrently has an out-of-vocabulary (OOV) rate of 1.9%
on a 2507 utterance test set (versus 1.3% on training data).

2) Phonological Modeling:In the current JUPITER recog-
nizer, baseform pronunciations for words are represented using
62 different phonetic units. After drawing the pronunciations for
the JUPITER vocabulary from the LDC PRONLEX dictionary, al-
ternate pronunciations are explicitly provided for some words.3

In addition to the standard pronunciations for single words pro-
vided byPRONLEX, the baseform file was also augmented with
common multi-word sequences which are often reduced, such
as “gonna,” “wanna,” etc.

A series of phonological rules were applied to the phonetic
baseforms to expand each word into a graph of alternate pronun-
ciations. These rules account for many different phonological
phenomena such as place assimilation, gemination, epenthetic
silence insertion, alveolar stop flapping, and schwa deletion.
These phonological rules primarily utilize phonetic context in-
formation when proposing alternate pronunciations, although
syllabification and stress information can also be used. We have
made extensive modification to these rules, based on our exam-
ination of the JUPITER data.

Arcs in the pronunciation graph are augmented with proba-
bilities that give preference to more likely pronunciations and
penalize less likely pronunciations. Currently, these probabili-
ties are maximum likelihood estimates taken from forced align-
ments of the training data. The addition of pronunciation graph
probabilities reduced error rates by nearly 9% (1% absolute) on
a 2500 utterance development set.

In addition to the basic set of 62 units, we have also explored
the use of larger inventories of units which incorporate stress in-
formation, or which represent larger phonetic sequences which
are highly coarticulated (e.g., “or,” “all”). However, we have
thus far been unable to achieve consistent gains with these more
complex inventories. We plan to continue exploring alternative
representations in the future.

3) Language Modeling:The JUPITER system makes use of
both class bigram and trigram language models. Nearly 200
classes were defined to improve the robustness of the bigram.
When trained on a set of nearly 54 000 utterances and evalu-
ated on a test set of 2507 utterances, the word-class bigram and
trigram had perplexities of 20.8 and 18.7, respectively. These
are slightly lower than the respectiveword bigram and trigram
perplexities of 21.6 and 19.9. Note that the class bigram also
improved the speed of the recognizer, as it has 20% fewer con-
nections to consider during the search.

During recognition, the class bigram language model is used
in the forward Viterbi search. The class trigram language model
was originally deployed in a second pass as part of a backward

search which used the bigram scores as a look ahead es-
timate. However, we observed that the search was suscep-
tible to severe thrashing when there were significant differences
between the bigram and trigram language models. We subse-
quently modified the search to first use the backward class bi-
gram to produce an intermediate word graph representation.
This word graph is then rescored with class trigram language

3Vocabulary words missing from the PRONLEX dictionary were entered man-
ually.



88 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 1, JANUARY 2000

model scores and can be converted to-best outputs if desired.
This strategy significantly reduced the worst-case latency of a
development set from 12 s to 2 s, with a median latency under
1 s.

4) Acoustic Modeling:For acoustic modeling, the current
JUPITER configuration makes use of context-dependent land-
mark-based diphone models which require the training of both
transition and internal diphone models [6]. Internal diphones
model the characteristics of landmarks occurring within the
boundaries of a hypothesized phonetic segment, while transi-
tion diphones model the characteristics of landmarks occurring
at the boundary of two hypothesized phonetic segments. Since
there is not enough data to compute acoustic models for all
possible diphones, a set of equivalence classes are used to pool
data. The current set of 715 classes was determined manually,
since they perform slightly better than the automated methods
we have explored.

For each landmark, 14 MFCC averages were computed for
eight different regions surrounding the landmark, creating a
112-dimensional feature vector. This feature set was reduced
to 50 dimensions using principal component analysis. The
715 class diphone models were trained with mixture Gaussian
models, with up to 50 components per class. The current models
were trained on over 58 000 utterances, collected during system
interactions with JUPITER. There are nearly 18 000 Gaussian
components in total.

5) Lexical Access:We have recently re-implemented the
lexical access search components of SUMMIT to use weighted
finite-state transducers with the goals of increasing recognition
speed while allowing more flexibility in the types of constraints.
We view recognition as finding the best path(s) through the
composition , where represents the scored (on demand)
acoustic segment graph and the complete model of an
utterance from acoustic model labels through the language
model. We compute , where maps
context-independent labels on its right to context-dependent
(diphone in the case of JUPITER) labels on its left, applies
phonological rules, is the lexicon mapping pronunciations to
words, and is the language model. Any of these transductions
can be weighted. A big advantage of this formulation is that the
search components operate on asingletransducer ; the details
of its composition are not a concern to the search. As such,
can be precomputed and optimized in various ways or it can
be computed on demand as needed. This use of a cascade of
weighted finite-state transducers is inspired by work at AT&T
[8], [9].

We have achieved our best recognition speed by precom-
puting minimize determinize for ,
a word-class bigram. This yields a deterministic (modulo ho-
mophones), minimal transducer that incorporates all contextual,
phonological, lexical, and language model constraints [9]. For
the current version of the JUPITER recognizer, has 84 357
states and 562 361 arcs.

For greater system flexibility, we can compute
minimize determinize , performing the composition
with “on the fly” during the search. For example, the use of a
dynamic language model that changes during a dialogue would
require this approach. However, with on-the-fly composition we

have found that the system runs about 40% slower than for the
fully composed and optimized .

B. Language Understanding

TINA, a natural language understanding system developed in
our group, is used to transform the words into a meaning rep-
resentation [10]. TINA is used in JUPITER in two distinct ways.
It parses user queries into a semantic frame for interpretation
by the system, to performquery understanding. It also parses
weather reports into a meaning representation for purposes of
content understanding.

1) Query Understanding:For processing user queries, our
TINA system selects the most promising candidate hypothesis
from a recognizer word graph. It makes use of a manually con-
structed grammar that encodes both syntactic and semantic in-
formation in the parse tree. The final selection process takes
into account both the recognition and parse scores, as well as
the prior dialogue context. For example, if the system has just
listed a set of cities that it knows in California, it will prefer a
hypothesis that contains one of the cities on this list.

The grammar attempts to cover all the legitimate ways people
could ask questions about weather, but also supports robust
parsing through a mechanism that allows unimportant words to
be skipped and that can parse sequences of phrase-level units
with full connectivity [11]. Probabilities for both the full parse
and robust parse solutions are jointly trained on a large corpus
of utterances from our data collection, using a completely
automatic procedure. In our experience, the evidence of a
complete well-formed sentence is a reliable cue, and therefore
we have implemented the algorithm to prefer a full parse
solution over a robust parse candidate with a superior score.
In some cases TINA is unable to produce a solution, even with
robust parsing options. For these utterances, the system backs
off to a keyword spotting algorithm, which simply extracts all
significant keywords that appear sufficiently often in the top
ten recognizer hypotheses derived from the word graph.

2) Content Understanding:Three times daily, TINA au-
tomatically parses thecontent, i.e., the weather reports, into
semantic frames. Most of our data sources produce outputs in
a highly predictable format that are easily covered by a small
grammar. However, the National Weather Service reports are
prepared manually by expert forecasters. As a consequence,
they often contain complex linguistic forms. Some sample
sentences are given in Fig. 3. During the first few months of
weather harvesting, we invested considerable effort in writing
parse rules to cover these constructs. Subsequently, our efforts
have dropped down to a maintenance level, with the rule base
growing very slowly over time. As of this writing, the parse
failure rate has been reduced to a fraction of one percent, and
is predominantly due to spelling errors.

The parsing process produces semantic frames, which are
then sorted into categories based on the meaning. As illustrated
in Fig. 4, each weather report is first converted to an indexed
list of semantic frames, one for each sentence. The indices are
then entered into the relational database under appropriate top-
icalized categories. To retrieve the answer to a particular user
request, the system first retrieves the indices of the relevant sen-
tences in the weather report via an SQL query, then orders them
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Fig. 3. Example sentences obtained from National Weather Service weather
reports. These sentences are all covered by our grammar.

Fig. 4. Extract from an online weather report maintained by the National
Weather Service, indexed and annotated for categories.

sequentially, and finally paraphrases each of the corresponding
semantic frames in turn, to compose a verbal response. Delays
are minimal, since the system has preprocessed all current in-
formation into semantic frames in a local cache.

The final step of processing occurs when the user requests
information. At this time, the selected parse frames are con-
verted into natural English using our GENESISlanguage genera-
tion system (next section). The response is then a paraphrase of
selected portions of the original weather report.

An example of selective database retrieval is given in Fig. 5.
The user first asked whether it would snow that day in North
Dakota. The SQL query returned all the cities in North Dakota
for which some mention of snow was made. A follow-up query
asks for the particular conditions in Fargo, and the system
replies with all parts of that day’s weather report that mention
snow, which turns out to include a sentence mainly about the
wind speed.

C. Language Generation

Language generation in JUPITER makes use of GENESIS,
MIT’s language generation module [12]. JUPITERuses GENESIS

for three very different types of output. In each, the input to
GENESIS is a semantic frame, produced by either TINA, the
JUPITER turn manager (next section), or a combination of both.
The outputs are either a response to be spoken to a user, an
SQL query for accessing the weather database, or a set of
keyword-value pairs to aid in interpretation of user queries.

Control for GENESISis configured into three distinct compo-
nents: a lexicon, a set of message templates, and a set of rewrite
rules. The lexicon’s main role is to specify the surface form
of a semantic frame entry, including the construction of inflec-
tional endings (gender, case, number, etc.). Message templates

Fig. 5. Example of a short dialogue between a user and JUPITER, showing the
database query and the filtered responses.

are used to recursively construct phrases describing the topics,
predicates, and clauses of a semantic frame. Finally, the rewrite
rules are intended to capture surface phonotactic constraints and
contractions. In English, we use rewrite rules to generate the
proper form of the indefinite articles “a” or “an,” or to merge
“a other” into “another.” JUPITER utilizes a separate set of con-
trol files for each of its three languages (i.e., English, SQL, and
keyword-value).

The system response in JUPITERis typically composed from a
list of frames, with each frame in the list corresponding to a part
of the weather forecast that answers the specific user query. If
the user asked about rain, for example, what would then follow
are the clause frames from the weather database dealing with
precipitation (including references to accumulation, rain mixed
with snow, etc.). A phrase containing the reference city and
date is inserted prior to the list of frames, to provide contex-
tual grounding for the user. Thus, for example, the response to a
query regarding New York City might start with “In New York
City, tomorrow.” An example of a frame used to construct a user
response can be found in Fig. 6.

JUPITER’s parsed weather forecast data are stored in a rela-
tional database. When the JUPITER turn manager is ready to
access this database, it first sends a request to GENESIS for a
well-formed SQL query. The semantic frame representing the
user input is included along with this request, as well as a key
designating that the output language is SQL. GENESIS treats
SQL as it does any other language, returning a paraphrase of
the semantic frame in SQL, as it would in English or Chinese.

The turn manager makes use of one other language for pro-
cessing user queries, a flattened representation of the keys and
values from the input semantic frame. Paraphrases in this “key-
word-value” language are used by the dialogue control module
in the turn manager, as well as by the evaluation module to as-
sess understanding accuracy. Fig. 7 shows an example of the se-
mantic frame constructed from user input and the corresponding
English, SQL, and keyword-value representations for that query.

D. Turn Management

By monitoring log files from our user interactions with
JUPITER, we have become increasingly aware of the benefits
of letting real users influence the design of the interaction.
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Fig. 6. Excerpts from a response frame for the query “What is the weather
going to be like tomorrow in New York?” The response by the system was “In
New York City Saturday, mostly sunny and brisk,. . ., chilly with lows around
40. What other information can I give you?” Note: “c. . . =” clause, “p. . . =”
predicate, and “q. . . =” quantified noun phrase.

Fig. 7. Example semantic frame and various paraphrases for the query “What
is the weather going to be like tomorrow in New York?”

We have discovered several interesting issues with regard to
appropriate response planning to accommodate users’ requests.
One of the critical aspects of any conversational interface is the
need to inform the user of the scope of the system’s knowledge.
For example, JUPITER has information about a small subset
(approximately 500) of the cities in the world, and users need to
be directed to select relevant available data when their explicit
request yields no information. Even for the cities it knows,
JUPITER does not necessarily have the same knowledge for all
cities.

JUPITER has a separate geography table organized hierarchi-
cally, enabling users to ask questions such as “What cities do

you know about in the Caribbean?” This table is also used to
provide a means of summarizing a result that is too lengthy
to present fully. For example, if the user asks where it will be
snowing in the United States, there may be a long list of cities
expecting snow. The system then climbs a geographical hier-
archy until the list is reduced to a readable size. For example,
JUPITERmight list the states where it is snowing, or it might be
required to reduce the set even further to broad regions such as
“New England,” and “Northwest.” We try to restrict the size of
an enumerated list to under ten items, if possible.

During our data collection sessions, we noticed considerable
frustration among users seeking information about sunrise and
sunset times, when such information did not exist for the cities
they requested. We realized that the system needs to distin-
guish between the general set of cities it knows, and the par-
ticular knowledge associated with each of those cities. Based
on these observations, we decided to augment the system with
the capability of suggesting a list of alternative cities in the
same geographic region for which the requested dataareavail-
able. This even applies for cities that are completely unknown
to JUPITER, as long as the user has given additional information
that can be used to infer a neighborhood. Thus, if the user asks
for the weather in an incompatiblecity state pair (e.g., due
to an out-of-vocabulary word or misrecognition), JUPITER will
respond with a list of the cities that itdoesknow for that state.

In addition to these general considerations, several phe-
nomena required special attention. For example, we had calls
after midnight when users, asking for “tomorrow’s” weather,
really wanted “today’s” weather, defined from midnight to
midnight. We also had foreign callers who wanted temperature
information presented in degrees Celsius rather than Fahren-
heit. We have augmented the system to take these issues into
account. Converting temperature to Celsius turned out to be a
fairly complex process for the frequent cases where temperature
was expressed in qualitative terms such as “highs mid to upper
80’s.” Finally, to encourage the user to continue the dialogue
after each exchange, we implemented a simple mechanism to
alternate among a set of continuation phrases, such as “Can I
help you with something else?” Fig. 1 shows an actual dialogue
between a user and JUPITER, illustrating this behavior.

At the highest level, JUPITER’s dialogue module is controlled
by a “dialogue control table,” which is external to the code. This
mechanism is used by all of our GALAXY domains, and we have
found it to be very effective in helping system developers to
visualize the program flow in the turn manager. The strategy first
evolved out of our experience in developing the PEGASUSflight
reservation system [2], where it quickly became apparent that
complex nestings of subroutine calls led to intractable systems.
The mechanism is intended to accomplish two major goals: 1)
to transform the hierarchical, organization of nested subroutine
calls into a linear sequence of operation calls and 2) to provide
a mechanism to succinctly outline the entire system’s activities
in one or two pages of text.

Each of our turn managers is controlled by a dialogue con-
trol table, which specifies a sequence of operations that will fire
whenever the specified conditions are met. The conditions con-
sist of arithmetic, string, and logical tests on variables. Upon
firing, each operation typically alters the state of one or more
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variables, and can return one of three possible outcomes: “con-
tinue,” “stop,” and “restart.” Typically, the early rules in the
table concern verification that the query is complete and well-
formed. Once a query is prepared, a database call produces a
result table. The latter half of the dialogue control table is then
concerned with interpreting the table and preparing a user re-
sponse frame.

JUPITER invokes the “restart” action whenever it determines
that the query may be over-specified. For example, when the
user asks, “Are there any advisories?” the discourse component
assumes any region specified in a preceding query. Once the
query is evaluated and no advisories are found, JUPITER drops
the region constraint and reissues the request, by returning pro-
gram control to the top of the dialogue control table. JUPITER

would then summarize advisories found anywhere in the United
States. Similarly, if the user asks for sunrise time in a partic-
ular city, and JUPITER discovers that it does not have that in-
formation, it restarts with a request for sunrise time in the state
associated with that city, after adding to the response frame a
comment about the missing information. The resulting response
string would be “I have no sunrise information forcity . I have
sunrise information for the following cities instate: list of
cities with sunrise information.”

E. Confidence Scoring

A deployed system can produce many unanticipated conse-
quences. In examining the JUPITERcorpus, we were surprised to
find that users sometimes asked questions that were completely
outside of the weather domain, such as “What is today’s lottery
number?” and “Are there any restaurants in Cambridge?” We
decided to augment the vocabulary with support for the most
frequently asked out-of-domain queries, replying with a spe-
cific apology. It became clear, however, that we also needed a
sophisticated form of rejection of misunderstood or unantici-
pated out-of-domain utterances. This would be far preferable to
providing a possibly lengthy, incorrect response. To this end,
we developed a confidence scoring algorithm, with the goal of
providing a mechanism to eliminate incorrectly understood sen-
tences as much as possible, while continuing to accept as many
as possible utterances which were correctly understood.

Different system components can reject a user utterance. The
speech recognition component can make use of the likelihood
of the acoustic models for a hypothesized word sequence. Phe-
nomena such as out-of-vocabulary or partial words, extraneous
noise, and poor signal-to-noise ratio are often mismatched with
the acoustic models and can be a source of recognition error.
A poor acoustic score can therefore potentially signal an unre-
liable recognizer hypotheseis. Another indicator of an unreli-
able hypothesis can be provided by the language model score.
Often, when confronted by out-of-vocabulary items, the rec-
ognizer will hypothesize an unlikely sequence of words in an
attempt to match at the acoustic-phonetic level. Finally, when

-best outputs are computed, the relative scores of successive
hypotheses can be an indication of recognizer confidence. In
addition to the speech recognizer, the natural language compo-
nent can also provide valuable information. For example, it is
extremely useful to know if the utterance can be parsed.

To carry out this research [13], we first developed a proce-
dure that automatically tags an utterance as either “Accept” or
“Reject,” based on a semantic-frame comparison between the
recognized and transcribed orthographies. On an evaluation set
of more than 2000 utterances, our automatic algorithm achieved
a better than 90% agreement with manual annotation.

Once a sufficient number of utterances has been correctly
tagged, we can investigate the usefulness of various features
for utterance rejection. We have thus far concentrated on ut-
terance-level features, because such features are easily com-
puted and can alleviate the need to combine individual word
confidence scores into a meaningful rejection score for the en-
tire utterance. In addition to recognition-based features (e.g.,
the acoustic and language model scores, the number of words
and phones in the hypotheses, and the number of-best hy-
potheses), we also investigated the use of linguistic and applica-
tion-specific features (e.g., parse probability, and the quality of
the parse), as well as semantic features (e.g., the relative weights
of the word classes).

Next, a Fisher linear discriminant analysis (LDA) classifier
was used iteratively to select the best feature set for the classi-
fication task. On each iteration, the topfeature sets from the
previous iteration were each augmented with one additional fea-
ture from the set of unused features. The new feature
sets were scored using LDA classification on a development set,
and the top feature sets were retained for the next iteration.
The LDA threshold for each classifier was set to maintain a false
rejection rate of 2% on a development set. The procedure termi-
nated when no additional improvement was found. Using this
method, we selected a set of 14 features for utterance rejection,
which had a correct rejection rate of 60%.

IV. THE JUPITER CORPUS

A. Data Collection

Several different methods have been employed to collect
data for JUPITER. We created an initial corpus of approximately
3500 read utterances collected from a variety of local tele-
phone handsets and recording environments. This data set was
augmented with over 1000 utterances collected in a wizard
environment [14]. These data were used to create an initial
version of JUPITER, which naive users could then call via a
toll-free number to ask for weather information. The benefit
of this eventual setup is that it provides us with a continuous
source of data from interested users. Over the past two years,
we have collected over 180 000 utterances from over 30 000
calls, all without widely advertising the availability of the
system. At this writing, we average over 100 calls per day.
Fig. 8 shows the amount of data collected each month over a
two year period starting from May 1997.

Tools have been developed so that incoming data can be tran-
scribed on a daily basis [15]. The transcriber starts with the or-
thography hypothesized by the recognizer during the call, and
makes corrections by listening to the waveform file. The tran-
scribed data are also marked for obvious nonspeech sounds,
spontaneous speech artifacts, speaker type (male, female, child),
and other characteristics as appropriate (e.g., speaker phone,
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Fig. 8. Plot of the amount of JUPITER data collected from naive users via a
toll-free number each month over a two year period starting from May 1997.

heavily accented speech). The transcribed calls are then bun-
dled into sets containing approximately 500 utterances and are
added to the training corpus as they become available (with sets
periodically set aside for testing).

B. Data Analysis

Data analysis is based on approximately 59 000 utterances
from over 10 000 calls. A breakdown of the live data shows
that just over 70% of callers are males and approximately 21%
females. The remainder of the utterances in the corpus were
spoken by children. A portion of the utterances was from non-
native speakers, although the system performs adequately on
speakers whose dialect or accent does not differ too much from
general American English. Callers with strong accents consti-
tuted approximately 7% of the calls and 14% of the utterances. A
small fraction (0.1%) of the utterances included talkers speaking
in a foreign language (e.g., Spanish, French, German, or Chi-
nese).

The signal quality of the data varied substantially depending
on the handset, line conditions, and background noise. It is clear
that speaker phones were used in approximately 5% of the calls
due to the presence of multiple talkers in an utterance. Less than
0.5% of the calls was estimated to be from cellular or car phones.

Over 11% of the utterances contained significant noises.
About half of this noise was due to cross-talk from other
speakers, while the other half was due to nonspeech noises.
The most common identifiable nonspeech noise was caused by
the user hanging up the phone at the end of a recording (e.g.,
after saying goodbye). Other distinguishable sources of noise
included (in descending order of occurrence) television, music,
phone rings, touch tones, etc.

There were a number of spontaneous speech effects present
in the recorded data. Over 6% of the utterances included filled
pauses (“uh,” “um,” etc.) which were explicitly modeled as
words in the recognizer, since they had consistent pronun-
ciations, and occurred in predictable places in utterances.
Utterances contained partial words another 6% of the time,
although approximately two thirds of these were due to clip-
ping at the beginning or end of an utterance. The remaining
artifacts were contained in less than 2% of the utterances and
included phenomena such as (in descending order of occur-
rence) laughter, throat clearing, mumbling, shouting, coughing,
breathing, sighing, sneezing, etc.

Fig. 9. Detailed analysis of the speech recognition results. (IV= in
vocabulary).

V. PERFORMANCEEVALUATION

JUPITERis a system that is under constant development. From
time to time, we evaluate its performance on unseen test sets. In
this section, we will report a snapshot of JUPITER’s performance
both at the component and system level.

A. Speech Recognition

The recognition test data, consisting of 2507 utterances, rep-
resents a collection of calls randomly selected over our data
collection period. Of these, 2003 were free of artifacts such
as partial words, cross-talk, etc., and a further subset of 1793
were considered to be “in vocabulary” in that they contained
no out-of-vocabulary words. The 504 utterances containing an
artifact and the other 210 utterances containing an out-of-vo-
cabulary word were combined to create a 714 utterance “out of
vocab” set. About 72% of the in-vocabulary utterances (1298)
were from male speakers, about 21% (380) were from females,
and 7% (115) from children.

Fig. 9detailsJUPITER’srecognitionperformanceonthetestset.
Thewordandsentenceerrorrates(WERandSER)fortheentiretest
setare20.4%and40.2%,respectively.Theerrorratesdecreasedby
approximately25%whenutterancescontainingcrosstalkorother
nonspeech artifacts were removed. For the in-vocabulary subset,
WERandSERarereducedto10.4and24.8%,respectively.Closer
examinationofthein-vocabularyutterancesrevealsthaterrorrates
forfemalesaresomewhathigherthanthoseformales,andtheerror
ratesforchildrenaresignificantlyworse.This isprobablyareflec-
tion of the lack of training material for females and children, al-
though theremaybeother factors.

Performance on speakers judged to have a strong foreign
accent is more than twice as bad as that for male speakers.
Finally, the system has considerable trouble (57.3% WER) with
utterances containing out-of-vocabulary words and artifacts.
This rate may be artificially high, however, due to the nature
of the alignment procedure with reference orthographies.4 It
is reassuring, however, to observe that the system performs
extremely well on “expert” callers (i.e., mainly staff in our
group) who have considerable experience using the JUPITER

4Partial words always caused an error due to the nature of our mark-up
scheme. Noise artifacts may or may not have caused an error since they
were excluded from the alignment transcription (making perfect sentence
recognition possible). They typically produced one or more insertion errors
however (e.g., during cross-talk).
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system, but were not used for training or testing. This behavior
is typical of users who become familiar with the system
capabilities (a case of users adapting to the computer!).

B. Language Understanding

Language understanding was evaluated using two measures
analogous to word and sentence error rates, which we have
calledkeywordandunderstanding error rates. Keyword error
rate (KER) was designed to be similar to word error rate and
uses the same metrics of substitution, insertion, and deletion.
Keyword error rate is computed on a set of keyword-value
pairs that are automatically generated for each utterance with
a parsable orthographic transcription. We have developed
a special language within GENESIS for evaluation, one that
captures the salient semantic concepts from an utterance in a
flattened representation using the formatKEYWORD: VALUE.
For example, the utterance, “Will it rain tomorrow in Boston?”
would be paraphrased into the string “TOPIC: rain; DATE:
tomorrow; CITY: Boston” for evaluation. The recognition
hypothesis “Will it rain tomorrow in Austin?” would produce
a similar paraphrase, with one substitution, on theCITY key.
The KER reported in this paper is computed by summing
insertions, deletions, and substitutions, and dividing that
number by the total number of keys generated from the parsed
utterances. An utterance is considered to be understood if all
the keyword-value pairs between the hypothesis and reference
agree. This is measured by the understanding error rate (UER).

Numbers for understanding error are divided into three cate-
gories, based on how the utterance was treated at data collection
time and the parse status of the transcription string. Utterances
that were answered at run-time and whose transcription strings
parse are scored fully for understanding. These utterances may
include out-of-domain words or other nonspeech artifacts, but
they are included here if their orthographic transcription parses.
Utterances that were rejected by the confidence-scoring module
are scored separately. The understanding score of these utter-
ances is irrelevant for overall system performance, since the
JUPITERturn manager did not generate an answer, but it is useful
as a way of evaluating the confidence-scoring module. Finally,
utterances whose transcriptions do not parse cannot be automat-
ically evaluated for understanding since there is no way to au-
tomatically create a reference meaning representation.

Table I shows the speech understanding evaluation performed
on the same evaluation test set that was used for speech recog-
nition. Out of a total of 2507 recorded utterances, 269 contained
no speech, and were eliminated from further consideration for
this evaluation. JUPITER was able to answer nearly 80% (1755
out of 2238) of the remaining utterances. The word and sentence
recognition error rates for this subset were 13.1% and 33.9%,
respectively. Keyword error rate for this subset is 14.5%, and
the corresponding utterance understanding error rate is 21.2%.
Note that many utterances containing recognition errors were
correctly understood. Approximately 5% (105 out of 2238) of
the utterances were rejected, and these utterances have much
higher error rates. Had these utterances not been rejected, the
understanding error rate for them would have been 41.9%. The
remaining utterances (17%, or 378 out of 2238) did not have

TABLE I
PERFORMANCE SUMMARY FOR WORD

(WER), SENTENCE(SER), KEYWORD (KER), AND UNDERSTANDING (UER)
ERRORRATES (IN PERCENT) FOR THE2507 UTTERANCETESTSET. WERAND

SER ARE FORRECOGNITIONONLY. KER IS BASED ON THEKEYWORD-VALUE

EVALUATION , WHILE UER MEASURESUNDERSTANDING ERROR AT

THE UTTERANCE LEVEL

a reference parse, and thus are not “evaluable” using the auto-
matic procedure that we developed. Some of these utterances
may have been answered correctly, but we have no automatic
way of evaluating them. The word and sentence error rates were
very high on these data however.

C. Content Understanding

On a typical day, our natural language system, TINA, parses
20 000sentencesfromtheNationalWeatherService.Shortlyafter
we began parsing these weather reports, we decided to maintain
a careful record of parse coverage over time so that we could
determine if the system was reaching convergence in its ability
to process content. From an initial parse coverage of 89% during
the first week, the system rapidly achieved a parse coverage of
over 99% by the eleventh week. Due to the seasonal nature of
weatherevents(e.g.,summerhurricanes,wintersnowstorms),we
occasionally encountered previously unseen weather forecasts
during the first year of JUPITER development, requiring new
grammar rules toaccommodate them. In recentmonths,however,
the number of sentences that cannot be parsed hovers around 40
per day, or 0.2%. These sentences are typically set aside and dealt
withbythesystemdevelopersonamonthlybasis.

D. Utterance Rejection

Utterance rejection was evaluated using 25 000 utterances
collected from naive users during the first part of 1998. Our
utterance rejection algorithm incorrectly rejected 2.8% and
correctly rejected 63.3% of all utterances, for a total of 82.7%
correctAccept/Rejectdecision. Table II shows the classification
results in greater detail. Closer examination of incorrectly
accepted utterances reveals that there were often misrecognized
city names contained in the recognizer hypothesis, or the
utterance contained out-of-vocabulary city names, nonspeech
events, or out-of-domain requests.

The system responses to rejection are conditioned on the pre-
ceding dialogue’s rejection pattern. The response to a first rejec-
tion is simply, “I’m sorry I didn’t understand you.” Subsequent
rejections elicit increasingly detailed “help” messages, intended
to encourage the user to speak sentences within the domain. We
have analyzed a corpus of over 6500 queries to see what ef-
fect the prior rejection pattern has on the likelihood of rejection
of subsequent utterances. As might be anticipated, the system
is significantly more likely to accept an utterance subsequent
to a previously correctly accepted utterance (80%) rather than
subsequent to a single correctly rejected utterance (56%). After
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TABLE II
EVALUATION RESULTS FORJUPITER’S UTTERANCE REJECTIONALGORITHM.
CONFIDENCESCORING RESULTS: THE CORRECTDECISION WASMADE IN

82.7%OF THE CASES((14 075 + 6879)/25 346)

the second contiguous rejection, the system recovers somewhat,
but to only a 64% acceptance rate, still far short of the perfor-
mance after a correct acceptance. This is in spite of the detailed
“help” message that has been provided at this point. In general,
system performance is the worst (in terms of recognition and
understanding) after multiple failures—if the system is having
trouble understanding the user, it continues to have trouble (an
example of usersnot adapting to the system!).

VI. DISCUSSION

JUPITER is an example of a new generation of speech-based
interfaces that combines several human language technologies to
help users access information using a conversational paradigm.
Many speech-based interfaces can be considered conversational
(e.g.,[16]–[19]),andtheydifferprimarilyinthedegreewithwhich
the system maintains an active role in the conversation. For most
of the conversational interfaces deployed commercially today,
the computer takes control of the interaction by requiring that the
user answer a set of prescribed questions, much like the DTMF
implementation of interactive voice responses (IVR) systems.
In contrast, systems like JUPITERcan deal withmixed-initiative,
goal-oriented dialogue, in which both the user and the computer
participate tosolveaprobleminteractively.

JUPITER’s content is more complex than data stored in reg-
ularized tables. The original weather reports are linguistically
diverse, and therefore natural language processing is an inte-
gral part of content creation. Besides, the information is dy-
namic, requiring frequency updates. Finally, the knowledge base
of the weather domain (e.g., humidity, temperature, weather ad-
visories, etc.) is conceptually rich and can potentially lead to a
wide variety of ways users can query the system.

JUPITER is a manifestation of our ongoing research strategy
of developing human language technologies withinreal appli-
cations, rather than relying on mock-ups, however realistic they
might be. We believe that this strategy will force us to confront
critical technical issues that may otherwise not require our atten-
tion, such as dialogue modeling, new word detection/learning,
confidence scoring, robust recognition of accented speech, and
portability across domains and languages. We also believe that
working on real applications has the potential benefit of short-
ening the interval between technology demonstration and its de-
ployment. Above all, real applications that can help people solve
problems will be used by real users, thus providing us with a rich
and continuing source of useful data. These data are far more
useful than anything we could collect in a laboratory environ-
ment.

Fig. 10 shows, over a two-year period, the cumulative amount
of data collected from real users and the corresponding WER’s

Fig. 10. Comparison of recognition performance and the number of utterances
collected from real users over time. Note that thex-axis has a nonlinear time
scale, reflecting the time when new versions of the recognizer were released.

of our recognizer. Before we made the system accessible
through a toll-free number, the WER was about 10% for labo-
ratory collected data. The WER more than tripled during the
first week of data collection. As more data were collected, we
were able to build better lexical, language, and acoustic models.
As a result, the WER continued to decrease over time. This
negative correlation suggests that making the system available
to real users is a crucial aspect of system development. If the
system can provide real and useful information to users, they
will continue to call, thus providing us with a constant supply
of useful data. These data have provided a fertile playground
for our staff and students to explore different aspects of spoken
language research [20]–[23].

Fig. 10 suggests that domain-specific data are crucial for
good recognition performance. This is also the case for other
components, such as language understanding. Until we can
make language technology components domain-independent,
or the knowledge acquisition process automatic, building
conversational systems for real-world applications will con-
tinue to be labor intensive. The development of tools that
facilitate knowledge acquisition is an important aspect of the
research infrastructure. Even if we can solve these problems,
there are a myriad of issues that needs attention, including
content processing (e.g., dealing with changes in the format of
an HTML document), audio capture (e.g., enabling multiple
audio streams), and keeping the system constantly available.
Many of these issues have little to do with the development of
human language technologies. Nonetheless, they represent a
significant part of the system development overhead.

Over the past year, we have begun to utilize JUPITER as the
domain in which to conduct research on multi-lingual conver-
sational interfaces, including German, Japanese, Mandarin Chi-
nese, and Spanish. Our approach is predicated on the assump-
tion that the users’ queries in different languages can be rep-
resented using a common semantic frame [24]. In the case of
JUPITER, this appears to be the case. We have begun an effort
to paraphrase the weather responses in English into these other
languages. For each of these languages, a native speaker who is
also fluent in English is preparing the corresponding GENESIS

generation rules. In addition, we are also incorporating weather
reports in foreign languages, so that region-specific information
(e.g., typhoons) can be made available. There were a few in-
stances in which the same word in English had to be given a
different translation depending on the context. For example, the
word “light,” translates differently into Mandarin for the two
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phrases, “light wind” (“qinq1 feng1”) and “light rain” (“xiao3
yu3”). GENESIShandles this situation using a semantic grammar
that can categorize the two cases into different adjective types.

To address the issue of portability, we are in the process of
developing other, similar online services as natural extensions
to JUPITER. There are a number of similar domains for which
the information is dynamic and the vocabulary is sufficiently
limited to support practical conversational interfaces. These in-
clude flight status information, traffic information, and naviga-
tion information. Having multiple application domains will also
provide us with the opportunity to explore strategies to navigate
seamlessly from one domain to another. We have had some suc-
cess in building recognizers in these domains using JUPITER’s
acoustic models.

Finally, JUPITER represents our first attempt at building con-
versational interfaces to serve real-world users. While it ad-
dressed several important research issues such as telephone-
based speech recognition/understanding, virtual browsing, and
information on demand, the weather information domain simply
does not require extensive dialogue management.5 To support
dialogue research, we have recently started the development of
MERCURY, a conversational interface for travel planning, which
requires tens of turns to accomplish a typical task of making a
round-trip flight reservation [25].
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