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The MIT summit speech recognition system models pronunciation using a phonemic baseform dictionary along
with rewrite rules for phonological variation and multi-word reductions. Each pronunciation component is en-
coded within a finite-state transducer (FST) representation whose transition weights can be trained using an EM
algorithm for finite-state networks. This paper details our modeling approach and demonstrates its benefits and
weaknesses, both conceptually and empirically, using the recognizer for our jupiter weather information system.
Experiments show that the use of phonological rules within our system achieves word error rate reductions be-
tween 4% and 9% over different test sets when compared against a system using no phonological rules. The same
FST representation can also be used in generative mode within a concatenative speech synthesizer.

1. Introduction

Pronunciation variation has been identified as
a major cause of errors for a variety of auto-
matic speech recognition tasks (McCallester et
al., 1998). In particular, pronunciation varia-
tion can be quite severe in spontaneous, conver-
sational speech. To address this problem, this pa-
per presents a pronunciation modeling approach
that has been under development at MIT for more
than a decade. This approach systematically
models pronunciation variants using information
from a variety of levels in the linguistic hierar-
chy. Pronunciation variation can be influenced by
the higher level linguistic features of a word (e.g.,
morphology, part of speech, tense, etc.) (Seneff,
1998), the lexical stress and syllable structure of
a word (Greenberg, 1999), and the specific phone-
mic content of a word sequence (Riley et al.,
1999; Tajchman et al., 1995). When all of the
knowledge in the linguistic hierarchy is brought
to bear upon the problem, it becomes easier to
devise a consistent, generalized model that accu-
rately describes the allowable pronunciation vari-
ants for particular words. This paper presents the
pronunciation modeling approach that has been

∗This research was supported by DARPA under contract
N66001-99-1-8904, monitored through Naval Command,
Control and Ocean Surveillance Center.

implemented and evaluated within the summit

speech recognition system developed at MIT.
Pronunciation variation in today’s speech

recognition technology is typically encoded using
some combination of a lexical pronunciation dic-
tionary, a set of phonological rewrite rules, and
a collection of context-dependent acoustic mod-
els. The component which models a particu-
lar type of pronunciation variation can be dif-
ferent from recognizer to recognizer. Some rec-
ognizers rely almost entirely on their context-
dependent acoustic models to capture phonolog-
ical effects (Hain, 2002), while other systems
explicitly model phonological variation with a
set of phonological rewrite rules (Hazen et al.,
2002). Some systems do not use an explicit set
of phonological rules but account for a wide va-
riety of phonological effects using (multiple) al-
ternate pronunciations directly in the pronuncia-
tion dictionary (Lamel & Adda, 1996). In this
paper we use the summit recognizer to exam-
ine the advantages and disadvantages of account-
ing for general phonological variation explicitly
with phonological rules versus implicitly within
context-dependent acoustic models. We also de-
scribe a pronunciation variation modeling ap-
proach which uses a cascade of finite-state trans-
ducers, each of which models different variations
resulting from different underlying causes.
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Figure 1. The output of a graphical interface displaying a sample waveform, its spectrogram, the hy-
pothesized summit segment network with the best path segment sequence highlighted, the time-aligned
phonetic transcription of the best path, and the time-aligned word transcription of the best path.

2. General Overview

2.1. Segment-Based Recognition

The experiments presented in this paper use
the summit speech recognition system. Summit

uses a segment-based approach for acoustic mod-
eling (Glass, 2003). This approach differs from
the standard hidden Markov modeling (HMM)
approach in that the acoustic-phonetic models
are compared against pre-hypothesized variable-
length segments instead of fixed-length frames.
While HMM systems allow multiple frames to be
absorbed by a single phoneme model via self-loops
on the HMM states, our segment-based approach
assumes a one-to-one mapping of hypothesized
segments to phonetic events. This approach al-
lows the multiple frames of a segment to be mod-
eled jointly, removing the frame independence as-
sumption used in the standard HMM. Details
of summit’s acoustic modeling technique can be
found in (Ström et al., 1999).

Figure 1 shows the recognizer’s graphical dis-

play containing a segment graph (with the rec-
ognizer’s best path highlighted) along with the
corresponding phonetic transcription. It is im-
portant to note that summit pre-generates a seg-
ment network based on measures of local acoustic
change before the search begins. The smallest hy-
pothesized segments can be as short as a single
10 millisecond frame (which would correspond to
short phonetic events such as the burst of a /b/),
but segments are typically longer in regions where
the acoustic signal is relatively stationary (such
as vowels which are seldom shorter than 50 mil-
liseconds and often longer than 100 milliseconds).

The segment-based approach presents several
modeling issues which are generally not present
in frame-based HMM systems. For example, in
HMM recognizers a single multi-state phoneme
model can be used to implicitly learn the clo-
sure and burst regions of a plosive consonant.
However, in our segment-based approach plosives
must be explicitly modeled as two distinct pho-
netic events, a closure and a release. This is nec-
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Figure 2. The set of distinct FST components
which are composed to form the full FST search
network within the summit recognizer.

essary because the segmentation algorithm will
observe two distinct acoustic regions and may not
hypothesize a single segment spanning both the
closure and the burst regions.

Another issue faced by our segment-based ap-
proach is its difficulty in absorbing deleted or
unrealized phonemic events which are required
within its search path. An HMM need only ab-
sorb as little as one poorly scoring frame when
a phonemic event in its search path is not re-
alized, while summit must potentially absorb a
whole multi-frame segment. As a result, accurate
phonetic modeling that accounts for potentially
deleted phonemic events is more crucial for the
summit segment-based approach than for frame-
based HMM approaches. It is our belief that ac-
curate phonetic segmentation and classification is
important for distinguishing between acoustically
confusable words.

2.2. FST-Based Search

The summit recognizer utilizes a finite-state
transducer (FST) representation for its lexi-

cal and language modeling components. The
FST representation allows the various hierarchi-
cal components of the recognizer’s search space
to be represented within a single parsimonious
network through the use of generic FST opera-
tions such as composition, determinization and
minimization (Pereira & Riley, 1997). The full
search network used by summit is illustrated in
Figure 2. The figure shows the five primary hi-
erarchical components of the search space: the
language model (G), a set of word-level rewrite
rules for reductions and contractions (R), the lex-
ical pronunciation dictionary (L), the phonologi-
cal rules (P ), and the mapping from phonetic se-
quences to context-dependent model labels (C).
Each of these components can be independently
created and represented as an FST. By compos-
ing the FSTs such that the output labels of the
lower-level components become the inputs for the
higher-level components, a single FST network is
created which encodes the constraints of all five
individual components. The full network (N) can
be represented mathematically with the following
FST composition expression:

N = C ◦ P ◦ L ◦ R ◦ G

This paper focuses on the reductions FST R,
the lexicon FST L and the phonological rules FST
P . It is important to note that our system uses
weighted FSTs, where the arcs in the FST contain
weights that are summed across the length of any
chosen path through the FST network.2 In our
default configuration, all of the FST components,
except the language model (G), have a weight of
zero on every arc.

2.3. Levels of Pronunciation Variation

In our pronunciation modeling approach we
distinguish between four different levels of pro-
nunciation variation: (1) variations that depend
on word-level features of lexical items (such as
part of speech, case, tense, etc.), (2) variations
that are particular to specific lexical entries, (3)
variations that depend on the stress and syllable
position of phonemes, and (4) variations that de-
pend only on local phonemic or phonetic context.

2This applies to the semiring relevant for log probabilities.
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It is important to note that pronunciation vari-
ation can result from other sources as well, such
as human error (i.e., mispronunciations), regional
dialect, or foreign accent. We don’t explicitly
account for these types of variations within the
framework presented in this paper. However, an
FST-based approach for learning phonetic trans-
formations due to foreign accents has been pre-
viously explored within the context of our recog-
nizer (Livescu & Glass, 2000).

In the following paragraphs we provide English
examples of the variants listed above. Type (1)
variants include contractions (what’s, can’t, etc.),
reductions (gonna, wanna, etc.), part-of-speech
variants (as in the noun and verb versions of
record), and tense variants (as in the past and
present tense versions of read). In most speech
recognition systems, these types of variants are
handled in very superficial manners. Reductions
and contractions are typically entered into the
pronunciation lexicon as distinct entries indepen-
dent of the entries of their constituent words. All
alternate pronunciations due to part of speech or
tense are typically entered into the pronunciation
lexicon within a single entry without regard to
their underlying syntactic properties. In our sys-
tem reductions and contractions are handled by
the reductions FST R, while all other type (1)
variants are encoded as alternate pronunciations
within lexical entries in the lexicon FST L. In fu-
ture work we may investigate methods for explic-
itly delineating pronunciation variations caused
by the part of speech, case, or tense of a word.

Type (2) variants are simply word-dependent
pronunciation variants which are not the result of
any linguistic features of that word. A simple ex-
ample of a word with a type (2) variant is either,
which has two different phonemic pronunciations
as shown here:

either: ( iy | ay ) th er

These variants are typically encoded manually by
lexicographers. In our system these variants are
all handled as alternate pronunciations in the lex-
icon FST L.

Variants of type (3) in English are typically re-
lated to the realization of stop (or plosive) con-
sonants. The set of possible allophones of a stop

consonant in English is heavily dependent on its
position within a syllable and the stress associ-
ated with the syllables preceding and following
the stop. For example, a stop in the suffix or coda
position of a syllable can be unreleased, while
stops in the prefix position of a stressed sylla-
ble must be released. An example is shown here
using the word laptop:

laptop: l ae pd t aa pd

In this example, the label /pd/ is used to repre-
sent a /p/ within a syllable suffix or coda whose
burst can be deleted. The /t/ in this example is
in the onset position of the syllable and therefore
must have a burst release. Type (3) variants are
encoded using syllable-position-dependent phone-
mic labels directly in the lexicon FST L. The
details of the creation of the pronunciation lex-
icon using these special labels are presented in
Section 3.2.

Variants of type (4) can be entirely deter-
mined by local phonemic or phonetic context and
are independent of any higher-level knowledge
of lexical features, lexical stress, or syllabifica-
tion. Examples of these effects are vowel fronting,
place assimilation of stops and fricatives, gemi-
nation of nasals and fricatives, and the insertion
of epenthetic silences. To account for type (4)
variants we have developed our own FST mech-
anism for applying context-dependent phonolog-
ical rules. The details of the syntax and applica-
tion of the rules are described in (Hetherington,
2001). Examples of these rules will be presented
in Section 3.3. In relation to Figure 2, type (4)
variants are generated by the phonological rules
FST P .

In some cases, it may be debatable which vari-
ant type describes a particular alternate pronun-
ciation. For example, one could ask if the dele-
tion of the third syllable schwa in the word tem-
perature is a generalizable variant that can be
expressed with a phonological rule or a variant
specific to this word that must be encoded in its
baseform pronunciation. In this work, we make
no claims about how the specific decisions on the
labeling of pronunciation variants into the four
types listed above should be made. The frame-
work we have developed is agnostic to these spe-
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cific decisions. It is more important that these de-
cisions be made consistently so that all expected
pronunciation variations are accounted for within
some FST component of the system (and prefer-
ably not accounted for redundantly within multi-
ple FSTs).

2.4. Modeling Variation with Context-

Dependent Models

When devising an approach for capturing
phonological variation there is flexibility in the
specific model in which certain types of phono-
logical variation are captured. In particular, cer-
tain forms of phonological variation can easily be
modeled either explicitly with phonological rules
using symbolically distinct allophonic variants, or
implicitly using context-dependent (CD) acous-
tic models which capture the acoustic variation
from different allophones within their probabil-
ity density functions (Jurafsky et al., 2001). One
example is the place assimilation effect, which al-
lows the phoneme /d/ to be realized phonetically
as the palatal affricate [jh] when followed by the
phoneme /y/ (as in the word sequence did you).
The effect could be modeled symbolically with a
phonological rewrite rule allowing the phoneme
/d/ to be optionally realized as [jh]. Alternately,
it can be captured in a context-dependent acous-
tic model which implicitly learns the [jh] realiza-
tion within the density function for the context-
dependent model for the phoneme /d/ in the right
context of the phoneme /y/.

Modeling effects such as place assimilation
within the context-dependent acoustic model has
several advantages. First, this type of model sim-
plifies the search by utilizing fewer alternate pro-
nunciation paths in the search space. The like-
lihoods of the alternate allophones are encoded
directly into the observation density function of
the acoustic models. Additionally, no hard deci-
sion about which allophone is used is ever made
during either training or actual recognition.

Pushing the modeling of allophonic variation
into the context-dependent acoustic model does
have potential drawbacks as well. In particu-
lar, traditional context-dependent acoustic mod-
els may not accurately represent the true set
of allophonic variants because they ignore stress

and syllable-boundary information. For example,
consider the two word sequences “the speech” and
“this peach”. Both of these word sequences can
be realized with the same phonetic sequence:

th ix s pcl p iy tcl ch

In this particular example, there are two acousti-
cally distinct allophonic variants of /p/; the /p/
in “the speech” is unaspirated while the /p/ in
“this peach” is aspirated. The exact variant of
/p/ is determined by the location of the fricative
/s/ in the syllable structure. In “the speech” the
/s/ forms a syllable-initial consonant cluster with
the /p/ thereby causing the /p/ to be unaspi-
rated. In “this peach” the /s/ belongs to the pre-
ceding syllable thereby causing the /p/ to be as-
pirated. A standard context-dependent acoustic
model will model these variants inexactly, allow-
ing the /p/ to be either aspirated or unaspirated
in either case. In essence, pushing the modeling of
phonological variation into the context-dependent
acoustic models runs the risk of creating models
which over-generate the set of allowable realiza-
tions for specific phonemic sequences.

It should be noted that promising meth-
ods for adding stress and syllable informa-
tion into the contextual information used by
context-dependent acoustic models have been
explored (Riley et al., 1999; Shafran, 2001).
These approaches can alleviate allophonic over-
generation problems, like the one presented
above, at the expense of an increase in the com-
plexity of the conditioning context.

3. Pronunciation Modeling in SUMMIT

3.1. Deriving the Reduction FST

To handle reductions and contractions, a re-
duction FST (R) is created which encodes rewrite
rules that map contractions and other multi-word
reductions to their underlying canonical form.
Some examples of these rewrite rules are as fol-
lows:

gonna → going to
how’s → how is
I’d → I would | I had
lemme → let me



6

In some cases, such as the contraction I’d, a
contracted form could represent more than one
canonical form. The output of the reduction FST
R serves as the input to the grammar FST G,
thus allowing/constraining the grammar FST G

to operate on the intended sequence of canonical
words, irrespective of their surface realization. In
the jupiter weather information domain, the re-
duction FST R contains 120 different contracted
or reduced forms of word sequences.

3.2. Deriving the Lexicon FST

The lexicon FST represents the phonemic pro-
nunciations of the words in the system’s vo-
cabulary (including contractions and reductions).
This FST is created primarily by extracting pro-
nunciations from a syllabified dictionary. The
dictionary used in our experiments is a combi-
nation of the PronLex dictionary,3 the Carnegie
Mellon University Pronouncing Dictionary,4 and
manually crafted pronunciations derived by ex-
perts in our group. The full dictionary was auto-
matically syllabified using rules originally derived
by Church (Church, 1983). The syllabified dictio-
nary expresses the pronunciations with a set of 41
basic phonemic labels.

As mentioned earlier the dictionary can con-
tain alternate pronunciations for each entry. To
provide an example about the typical number of
alternate pronunciations in L, roughly 17% of the
entries in our jupiter weather information lexi-
con contain more than one pronunciation.

From the syllabified dictionary, a set of rewrite
rules is used to generate special phonemic stop
labels, which capture information about the al-
lowable phonetic realizations of each stop based
on stress and syllable position information. For
example, stops in an onset position of a syllable
retain their standard phonemic label (/b/, /d/,
/k/, etc.) while stops in the suffix or coda of
a syllable are converted to labels indicating that
their closure can be unreleased with the burst be-
ing deleted (/bd/, /dd/, /kd/, etc.). In total, the
set of 6 standard stop labels are converted into a

3Available from the Linguistic Data Consortium:
http://www.ldc.upenn.edu
4Available from the Speech at CMU web page:
http://www.speech.cs.cmu.edu/speech/

set of 20 different stop labels for the purpose of
encoding the allowable allophones for each stop.

One potential issue that arises is the potential
harm that may be introduced by incorrect syl-
labification. This could result from inappropriate
selections of the various stop labels. We did not
find this to be a serious problem in our system for
two reasons. First, the number of incorrect syl-
labifications was small and limited to three par-
ticular types of words: compound words, foreign
words, and words with common prefixes and suf-
fixes like co- and -ed. Within our full reference
lexicon, we manually corrected all of the incorrect
syllabifications contained in words with common
suffixes and prefixes. We also manually checked
the syllabification of every word in the vocabu-
lary of the recognizer used in our experiments.
Second, even without the manual corrections, the
typical result of an improper syllabification is the
production of a stop label that over-generates the
potential allophones. While this may lead to in-
creased confusions, it is not as serious a problem
as failing to generate an expected alternate pro-
nunciation for a word. We have not, however,
examined the potential degradation that might
have resulted without our manual corrections.

3.3. Deriving the Phonological FST

To encode the possible pronunciation variants
caused by phonological effects, we have developed
a syntax for specifying phonological rules and a
mechanism for converting these rules into an FST
representation. In this approach phonological
rules are expressed as a set of context-dependent
rewrite rules. All of the phonological rules in our
system have been manually derived based upon
acoustic-phonetic knowledge, and upon actual ob-
servation of phonological effects present within
the spectrograms of the data collected by our sys-
tems. The full set of phonological rules contains
164 context-dependent rewrite rules (excluding
canonical context-independent rules which map
phonemes one-for-one to their equivalent pho-
netic units). A full description of the expressive
capabilities of the phonological rule syntax and
the mechanism for compiling the rules into an
FST can be found in (Hetherington, 2001).

To demonstrate some of the expressive capa-
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bilities of our phonological rule syntax, we now
provide some examples of the phonological rules
used in our system. Two example phonological
rules for the phoneme /s/ are:

{l m n ng} s {l m n w} → [epi] s [epi]
{} s {y} → s | sh

The first rule expresses the allowed phonetic real-
izations of the phoneme /s/ when the preceding
phoneme is an /l/, /m/, /n/, or /ng/ and the
following phoneme is an /l/, /m/, /n/, or /w/.
In these phonemic contexts, the phoneme /s/ can
have an epenthetic silence optionally inserted be-
fore and/or after its phonetic realization of [s]. In
the second rule the phoneme /s/ can be realized
as either the phone [s] or the phone [sh] when fol-
lowed by the phoneme /y/ (i.e., the /s/ can be
palatalized).

To provide another example, the following rule
accounts for the optional deletion of /t/ in a syl-
lable suffix position when it is preceded by an /f/
or /s/ (as in the words west and crafts):

{f s} td {} → [tcl [t]]

In this example the /t/ (as represented by /td/)
can be fully realized with a closure and a release,
can be produced as an unreleased closure, or can
be completely deleted.

To provide one more example, the following
rule can be used to optionally insert a transitional
[y] unit following an /iy/ when the /iy/ is followed
by another vowel or semivowel:

{} iy {VOWEL r l w hh} → iy [y]

While this specific type of phonological effect is
typically handled within the context-dependent
acoustic models of a recognizer, this type of rule
can be effective for providing additional detail
to time-aligned phonetic segmentations. This
can be especially helpful when utilizing automat-
ically derived time-alignments for corpus-based
concatenative synthesis.

3.4. Training the Pronunciation FSTs

As the number of rules introducing alternate
pronunciations increases, the problem of con-
fusibility between acoustically similar words in-
creases. In particular, the additional rules could

lead to the generation of many alternate pronun-
ciations which are incorrect or, at the very least,
highly improbable. By taking the likelihood of
the various alternate pronunciations into account
within the pronunciation model, the potential for
the recognizer to select a highly unlikely alternate
pronunciation within an incorrectly hypothesized
word is reduced.

To incorporate knowledge about the likeli-
hoods of the alternate pronunciations encoded
within the various component FSTs, we have
implemented an EM training algorithm for ar-
bitrary determinizable FST networks (Dempster
et al., 1977; Eisner, 2002). The goal of the
training is to produce the conditional probabil-
ity of an input sequence given an output se-
quence, for example Pr(phones |phonemes) for P

or Pr(phonemes |words) for L. These probabil-
ities are encoded using weights upon the arcs of
the various component FSTs. In other words, the
FST-EM training algorithm produces a weighted
finite state transducer which encodes the likeli-
hoods of the underlying alternate pronunciations
enabled by each unweighted FST. Within the
phonological rule FST P , training implicitly en-
codes the likelihoods of each alternate pronunci-
ation introduced within each context-dependent
phonological rule. If each of the FST components
is trained independently, then the composition of
trained FSTs tr(P ) ◦ tr(L) ◦ tr(R) encodes the
probability of a phone sequence given a sequence
of canonical words via a probability chain rule.

When using the training algorithm it is impor-
tant to note that the size of the trained FSTs can
be larger than those of the untrained FSTs. In
general, a given FST topology might not support
a conditional probability of an input sequence
given an output sequence. We train a joint prob-
ability model and convert this to a conditional
probability model, and this conversion generally
results in a topology change and increased size.
More details are available in (Shu & Hethering-
ton, 2002).

The training algorithm can be used to train
the individual component FSTs independently or
jointly. When training the components indepen-
dently (i.e., tr(P ) ◦ tr(L) ◦ tr(R)) the likelihoods
of specific phonological rules can be generalized



8

across all words sharing these rules. When train-
ing the components jointly (i.e., tr(P ◦ L ◦ R))
the phonological rule probabilities are not shared
across words and the likelihood of a particular
realization of a phonological rule becomes depen-
dent on the word in which it is applied. In previ-
ous experiments we found that joint training dra-
matically increased the size of the final static FST
without improving the recognizer’s accuracy (Shu
& Hetherington, 2002).

4. Experiments & Results

4.1. Phonological Rule Sets

To investigate the effectiveness of using phono-
logical rules, we evaluated three different sets of
rules. These rule sets can be described as follows:

• Basic phoneme rule set: This set of
rules generates a one-to-one mapping of
phonemes to phones. This is essentially the
same as applying no rules except for the fact
that we split stop and affricate phonemes
into two phonetic segments to represent the
closure and release portions of the phones
with different models.

• Insertion and deletion rule set: This set of
rules augments the basic set with a collec-
tion of rules for inserting or deleting pho-
netic segments in certain contexts. This pri-
marily includes the deletion of stop bursts
or entire stop consonants, the reduction of
stops to flaps, the insertion of epenthetic
silences near strong fricatives, and the re-
placement of schwa-nasal or schwa-liquid
combinations with syllabic nasal or syl-
labic liquid units. This set adds an addi-
tional 65 context-dependent rules to the ba-
sic phoneme rules.

• Full rule set: This set augments the inser-
tion and deletion rules with a large set of
rules for allophonic variation. This includes
the introduction of new allophonic labels for
stops and semivowels as well as rules for
place assimilation and gemination. This set
contains 164 context-dependent rules be-
yond the basic phoneme rules.

tcl l ae n t axt tcl
ax

ae

(b) Insertion/deletion rule set

(c) Full rule set

(a) Basic rule set

tcl l ae n tt tcl
ax

ae

ix

axntcl

ll

l ae n tt tcl
ax

ae
tcl

tcl

dx

ax

n

ix
tq
dx

Figure 4. Phonetic pronunciation networks for
the word Atlanta generated from three different
phonological rule sets.

To illustrate the types of phonological variation
that these rule sets can cover, consider the three
pronunciation networks for the word Atlanta in
Figure 4. The baseform pronunciation of Atlanta
in the lexicon is expressed as:

Atlanta: ( ae | ax ) td l ae n tn ax

In this pronunciation, the special label /td/ rep-
resents a /t/ in the suffix of a syllable, which can
be unreleased, and the /tn/ represents a word in-
ternal /t/ following an /n/, which can be deleted.
These special labels were automatically generated
when the lexicon FST was created from the syl-
labified dictionary.

In (a), the basic rule set produces a single pho-
netic representation for each phoneme in the base-
form pronunciation. In the case of the /t/ stop
consonants, the phonetic representation contains
two phonetic units: the closure [tcl] and the burst
[t]. In (b), the insertion/deletion rule set allows
the first /t/ to be alternately realized with an un-
released burst or as a flap, while the second /t/
can be completely deleted. In (c), the full rule
set introduces several new allophonic variants in-
cluding a fronted schwa and a glottal stop /t/.
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Figure 3. The output of summit’s graphical interface on the word sequence Atlanta Georgia when the
recognizer uses only a basic set of phonological rules which do not generate any phonological variants.

By creating these three distinct sets of phono-
logical rules we can examine the effect of modeling
different phonological variants either within the
phonological rules or within the acoustic models.
We first examine the effectiveness of introduc-
ing rules that account for phonetic insertions and
deletions against the basic set of rules which do
not allow insertions and deletions. Figure 3 shows
the phonetic alignment obtained by the summit

recognizer using only the basic set of phonological
rules on the same utterance presented earlier in
Figure 1. An examination of the phonetic align-
ment in Figure 3 presents anecdotal evidence that
the recognizer is not able to model the true se-
quence of phonetic events with the minimal set
of phonological rules. This is particularly obvi-
ous in the word Atlanta where the recognizer was
forced to insert [t] releases for both /t/ phonemes
despite the fact that the speaker actually used
the glottal stop allophone for the first /t/ and
completely deleted the second /t/. Despite the
poor phonetic transcription, the recognizer was
still able to recognize this utterance correctly.

By augmenting the insertion/deletion rule set
with rules which cover substitutional allophonic
variation, we can investigate the effectiveness
of modeling allophonic variation implicitly us-
ing context-dependent acoustic models versus ex-
plicitly using context-dependent phonetic rewrite
rules. Anecdotal evidence of the effectiveness
of utilizing explicit rewrite rules to capture al-
lophonic variation can be seen in the example in
Figure 1 (in Section 2.1). By examining the pho-
netic transcription in this figure, it can be ob-
served that the recognizer successfully identified
the use of the glottal stop variant of /t/ at the be-
ginning of Atlanta and the use of fronted schwas
at the end of both Atlanta and Georgia.

4.2. Experimental Details

Our experiments were conducted using the
summit recognizer trained specifically for the
jupiter weather information system, a conver-
sational interface for retrieving weather reports
and information for over 500 cities around the
world (Glass et al., 1999; Zue et al., 2000). This
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recognizer has a vocabulary of 1915 words (ex-
cluding contracted or reduced forms) and includes
5 noise models for modeling non-speech artifacts
and 3 models for filled pauses. The recognizer’s
acoustic model uses diphone landmark modeling
and segment duration modeling. Diagonal Gaus-
sian mixture models are used for the system’s
acoustic models. Details of the acoustic mod-
eling component of the recognizer are available
in (Ström et al., 1999).

The system models were trained using 126,966
utterances collected over the telephone network
by publicly available dialogue system maintained
by our group. Approximately 75% of this data
was collected by the jupiter system. The sys-
tem was tested on a randomly selected set of 1888
utterances from calls made to jupiter’s toll-free
telephone line (we call this the full test set). Re-
sults are also reported for a 1303 utterance subset
of the test data containing only in-vocabulary ut-
terances with no non-speech artifacts (we call this
the clean test set). The evaluation on the clean
test set allows us to examine the performance of
the modeling techniques independent of the con-
founding factors contributed by unknown words
and non-speech artifacts.

4.3. Results with Untrained FSTs

Table 1 contains the results of our experiments
when using untrained versions of the component
FSTs. As can be observed in the table, incorpo-
rating phonological rules for handling insertions
and deletions of phonetic events resulted in a rela-
tive word error rate reduction of 9% (from 12.1%
to 11.0%) on the clean test set.5 Over the full
test set the error rate reduction was a more mod-
est 4% (from 19.1% to 18.4%). Using the matched
pairs sentence-segment word error (MAPSSWE)
significance test (Gillick & Cox, 1989), the im-
provement is statistically significant to the level
of p=.005. These results demonstrate that stan-
dard context-dependent models by themselves are
not sufficient for modeling contextual effects that
cause the number of realized phonetic events to

5These results are slightly different than results presented
in (Hazen et al., 2002) because the clean test set now con-
tains ten additional utterances that were inadvertently ex-
cluded from this set in our earlier experiments.

Table 1
Performance of jupiter recognizer on the full
test set and on the clean test set using three differ-
ent sets of phonological rules and untrained FSTs.

Phonological Word Error Rate (%)
Rule Set Full Test Set Clean Test Set
Basic Set 19.1 12.1

Ins./Del. Set 18.4 11.0
Full Rule Set 19.0 11.7

be different from the underlying canonical form.
Table 1 also shows that the additional rules

in the full rule set actually degrade performance.
However, a MAPSSWE significance test finds this
degradation to be statistically insignificant at the
level of p=.005. These additional rules explicitly
model allophonic variations which do not alter
the number of phonetic events (such as palatal-
ization, vowel fronting, etc.). This suggests that
the context-dependent acoustic models are suffi-
cient for modeling allophonic variation caused by
phonetic context, and that the added complexity
required to explicitly model these effects does not
provide any benefit (and may actually hinder the
recognizer’s performance).

It is important to note that the increase in the
error rate of the system using the full rule set does
not result from increasing the complexity of the
search space without increasing the search’s prun-
ing thresholds. The accuracy using the full rule
set does not improve when the pruning thresh-
olds are relaxed. Thus, the accuracy degrada-
tion is purely a result of the discriminative ca-
pabilities of the models. One might hypothe-
size, based on these results, that increasing the
number of allowable phonetic realizations for each
word increases the likelihood of its confusion with
other words (as has also been suggested by oth-
ers (Hain, 2002)).

4.4. Model Complexity Issues

To further demonstrate the effect that adding
phonological rules has on the recognizer’s com-
plexity, Table 2 shows the size of the recognizer
for each of the three different rule sets in terms of
the number of states and arcs in the pre-compiled
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Table 2
Effect of phonological rules on the size of the un-
trained static FST search network (i.e., C ◦ P ◦
L ◦ R ◦ G) in terms of the FST states, FST arcs,
and size.

Phonological Full Static FST
Rule Set # States # Arcs Size
Basic Set 39389 215633 5.0 MB

Ins./Del. Set 45263 282603 6.5 MB
Full Set 54641 386500 8.7 MB

untrained FST network. The table shows a dra-
matic increase in the complexity of the search
space as additional phonological rules are added
to the system. The full rule set causes a 70%
increase in the size (in megabytes) of the lexi-
cal search network compared to the basic rule
set and a 30% increase compared to the inser-
tion/deletion rule set.

The addition of new phonological rules to a sys-
tem requires the creation of a new set of acous-
tic models. The number of acoustic models is
determined for each phonological rule set auto-
matically based on phonetic-context decision-tree
clustering. The number of Gaussians per context-
dependent model is determined via an empirically
optimized heuristic which is based on the num-
ber of training samples available for each model.
Specifically, a model contains one Gaussian com-
ponent for every N training tokens (where N is
the number of dimensions in the input feature
vector, which is 50 in this system). The maxi-
mum number of Gaussians per model is capped
at 75.

Table 3 shows a dramatic increase in the num-
ber of acoustic models and Gaussian components
used by the acoustic model set as the size of the
phonological rule sets increases. This is a re-
sult of the new allophonic variants introduced by
the rule sets and the new contexts they produce.
As the number of new allophonic variants and
their contexts increases, the potential number of
acoustically dissimilar context-dependent models
also increases. Table 3 shows that the full rule
set produces 66% more symbolically distinct di-

Table 3
Effect of phonological rules on the size of the
context-dependent acoustic models and the num-
ber of unique diphone pairs.

Phonolog. CD Acoustic Models
Rule Set Diphones Models Gaussians
Basic Set 3668 1173 38349

Ins/Del Set 4734 1388 41677
Full Set 6105 1630 45976

phones (i.e., adjacent phone pairs) than the basic
rule set and 29% more than the insertion/deletion
rule set.

4.5. Analysis of Acoustic Model Size

In examining Table 3, one could argue that the
experiments presented in Table 1 are inherently
unfair because each system uses a different num-
ber of Gaussian components. To demonstrate
that the differences in accuracy are not the result
of differences in the number of parameters in the
acoustic model sets, a second set of models, with
roughly the same number of Gaussian compo-
nents as the model set for the insertion/deletion
rules, was trained for both the basic rule set and
the full rule set.

For the basic rule set, the maximum number
of Gaussian components per class was increased
from 75 to 90. This resulted in a new model
set with a total of 41,572 Gaussian components
(just shy of the 41,677 components in the in-
sertion/deletion rule set). This increase in the
number of parameters resulted in an insignificant
degradation in word error rate from 19.1% to
19.2%.

For the full rule rule set, the maximum number
of Gaussian components per class was decreased
from 75 to 67. This resulted in a new model
set containing 41,712 components (just slightly
larger than the insertion/deletion rule set). This
decrease in the number of Gaussian components
degraded the word error rate slightly from 19.0%
to 19.2%.

These results confirm that the difference in per-
formance between the three rule sets is not the
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Table 4
Performance of jupiter recognizer on the full
test set when training the phonological FST P

and the reductions FST R.

Training Word Error Rate (%)
Condition Ins./Del. Set Full Rule Set
P ◦ L ◦ R 18.4 19.0

tr(P ) ◦ L ◦ R 18.2 18.6
P ◦ L ◦ tr(R) 18.2 18.8

result of a difference in the number of parame-
ters provided to the acoustic model. The inser-
tion/deletion rule set maintains superiority over
the other two model sets even when their acoustic
model sets are adjusted to use roughly the same
number of parameters as the models of the inser-
tion/deletion rule set.

4.6. Results with Trained FSTs

Table 4 shows the results on the full test set
when various component FSTs are trained. By
examining the first and second lines of Table 4,
we see that training the phonological FST P im-
proves the performance of the system using the
full rule set (from 19.0% to 18.6%). This im-
provement is similar to past results we have ob-
tained (Shu & Hetherington, 2002). The system
exhibits a smaller improvement (from 18.4% to
18.2%) when training the P FST for the inser-
tion/deletion rule set.6 One can note that the
insertion/deletion rule set with an untrained P

still achieves a lower error rate than the full rule
set using a trained P .

A comparison of the first and third lines of Ta-
ble 4 shows that training the reductions FST R

provides modest improvements to both systems.
We also attempted to train the lexical FST L but
did not achieve any performance improvement for
either system from this training. We are also un-
able to report results for any system that com-
bines a trained P with a trained R because the

6This result differs slightly from our result in (Hazen et al.,
2002), where no improvement was observed when training
the P FST for the insertion/deletion rule set. The new
result was obtained after the correction of an error in our
original evaluation of this rule set.

memory requirements for computing the composi-
tion of the individual component FSTs were pro-
hibitively large. In past results using a slightly
different pronunciation approach, where reduc-
tions were encoded directly within L, we were
able to build a system which used both a trained
P and a trained L within the final static FST to
achieve a modest performance improvement (Shu
& Hetherington, 2002). We are currently investi-
gating approximation methods to help reduce the
size of the trained FSTs (and hence the memory
requirements for building the final static FST).

5. Pronunciation Variation for Synthesis

Although this paper has focused on speech
recognition, we have also utilized the same pro-
nunciation framework in our group’s concatena-
tive speech synthesis system envoice (Yi et al.,
2000; Yi & Glass, 2002). When applying the
framework for synthesis, the FST network is given
a sequence of words and is searched in the re-
verse direction (i.e., in generative mode) to find
an appropriate sequence of waveform segments
from a speech corpus to concatenate. In gen-
erative mode the phonological rules can also be
weighted in order to provide preferences for spe-
cific types of phonological variation. For exam-
ple, the synthesizer can be coerced into generat-
ing casual, highly-reduced speech, by weighting
the FST networks to prefer reduced words, flaps
and unreleased or deleted plosives. To generate
well articulated speech the FST networks can be
weighted to prefer unreduced words and fully ar-
ticulated plosives.

6. Summary

This paper has presented the phonological
modeling approach developed at MIT for use
in the segment-based summit speech recognition
system. We have evaluated the approach in the
context of the jupiter weather information do-
main, a publicly-available conversational system
for providing weather information. Results show
that the explicit modeling of phonological effects
that cause the deletion or insertion of phonetic
events reduced word error rates by 9% on our
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clean, in-vocabulary test set and by 4% over our
full test set. Our results also demonstrated that
phonological effects which cause allophonic vari-
ation without altering the number of phonetic
events can be modeled implicitly with context-
dependent models to achieve better accuracy and
less search space complexity than a system which
models these effects explicitly within phonological
rewrite rules.

Anecdotal visual examinations of the phonetic
transcriptions generated using a full set of phono-
logical rules demonstrate a dramatic improve-
ment in phonetic segmentation and classification
accuracy during forced path recognition over a
system using no phonological rules. This may
not be of great consequence for word recog-
nition, but it is vitally important for corpus-
based concatenative synthesizers that rely on ac-
curate automatically-derived time-aligned pho-
netic transcriptions in order to generate natural-
sounding synthesized waveforms.

7. Future Work

While our work in this paper has been eval-
uated on spontaneous speech collected within
a conversational system, we have found that
human-human conversations tend to have even
greater phonological variation than the human-
machine data we have collected. Thus, we hope
to evaluate our phonological modeling techniques
on human-human corpora such as Switchboard or
SPINE. We believe accurate modeling of phono-
logical variation will have even greater benefits
for these tasks.

While our paper has focused on modeling
phonological variation within a sequence of in-
dependent FST layers, our group is also pur-
suing an approach which integrates the multi-
ple layers within a single probabilistic hierarchi-
cal tree structure. This approach, called angie,
has the potential advantage of learning general-
izations across the layers of the hierarchy which
are currently modeled independently in our FST
approach (Seneff & Wang, 2002).
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