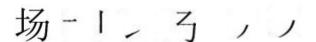

# Using Singular Value Decomposition to Investigate Degraded Chinese Character Recognition: Evidence from Eye Movements During Reading

Hsueh-Cheng Wang<sup>1</sup>, Elizabeth R. Schotter<sup>2</sup>, Bernhard Angele<sup>2</sup>, Jinmian Yang<sup>2</sup>, Dan Simovici<sup>1</sup>, Marc Pomplun<sup>1</sup>, Keith Rayner<sup>2</sup>

Department of Computer Science, University of Massachusetts at Boston, USA
 Department of Psychology, University of California, San Diego, USA

### Word Recognition

- The visual system recognizes objects and words through a hierarchical process beginning with *feature* detection (e.g., Biederman, 1987; Gibson et al., 1963; Hubel & Wiesel, 1962, 1963; McClelland and Rumelhart, 1981; Selfridge, 1957).
- These features are combined into higher-level, more meaningful components (see McClelland & Rumelhart, 1981),
- Word recognition is mediated by an analysis of a word's component *letters* (Balota, Pollatsek & Rayner, 1985; Taft, 1985; McConkie & Zola, 1979; Slattery, Angele & Rayner, 2011).




### In alphabetic languages

- Not all letters are of equal importance to the word recognition process
  - Changes to *initial* letters are more disruptive than changes to medial or final letters (Rayner & Kaiser, 1975; Rayner, White, Johnson, & Liversedge, 2006).
  - Exterior letters are more important than word internal letters (Jordan, Patching, & Thomas, 2003; Rayner et al., 2006).

# The orthographic units of a Chinese character

- Strokes are simple features (e.g., dots, lines, or curves) or combinations of simple features that vary in complexity (Zhang, Wang, Zhang, & Zhang, 2002)
- Strokes order generally follows the order of left to right, top to bottom, and exterior to interior.



### Stroke Removal Studies

- Not all strokes within a character have equal status during character identification (see Tseng, Chang, and Wang, 1965; Yan, Bai, Zang, Bian, Cui, Qi, Rayner, & Liversedge, 2012)
  - Most disruptive: beginning strokes removed
  - Moderately disruptive: **ending** strokes removed
  - Least disruptive: configuration retaining
- "Configuration" is important

# Is there something privileged about the first-written strokes?

- The stroke written order is correlated to stroke position.
- Does deleting first-written strokes alter a greater proportion of the configuration of a character, leading to more impaired reading?
- Are first-written strokes consistent with "the least redundant component" determined by SVD (see below)?

# Singular Value Decomposition (SVD, Strang, 1993)

- SVD, similar to Principal Component Analysis (PCA), is a dimension reduction method in linear algebra to retain the least redundant components contained in a matrix (see Elden, 2007)
- These dimension reduction methods have been extensively used in pattern recognition (Face, Scene, ...)
- SVD has no information about writing order

$$\mathbf{A} = \mathbf{U} \sum \mathbf{V}^{\mathrm{T}}$$

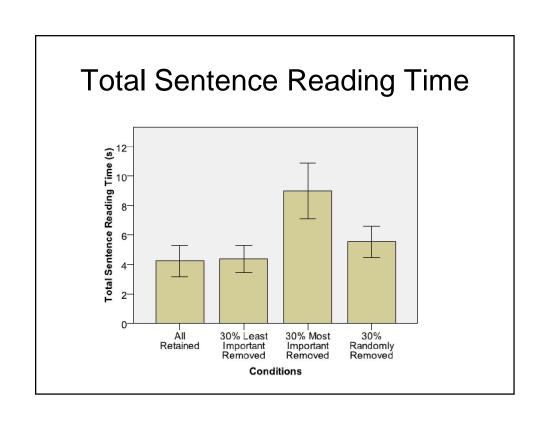
$$= \begin{bmatrix} | & | & | \\ \mathbf{u}_{1} \cdots & \mathbf{u}_{r} \cdots & \mathbf{u}_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & | & \end{bmatrix} \begin{bmatrix} - & \mathbf{v}_{1} & - \\ & \vdots & \\ - & \mathbf{v}_{r} & - \end{bmatrix}$$

$$\xrightarrow{m \times m} \xrightarrow{m \times m} \xrightarrow{m \times n} \xrightarrow{m \to n}$$

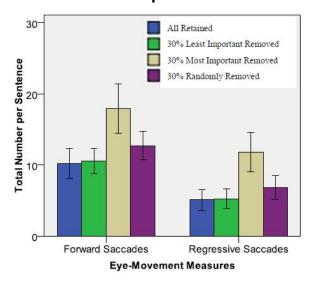
# SVD reduction for Chinese characters

- 他每天早晨都到操场上锻炼身体
- ◎ 他每天早晨都到操场上锻炼身体
- © 证每天早晨都到鹽場上網炼丹14
- @ 日开天早晨前刊捧场上服炼中日

### Decomposing Strokes into Segments


- Four oriented filters decompose each character into simple segments that roughly map on to features
- Reducing bias toward longer or more complex strokes seeming more important
- ◎ 他每天早晨都到操场上锻炼身体
- ◎ (限) / 早春 | 福州 | 南 | 海野 | 月日 | 日
- e 1 1 , 1 , 11 4 1 1 1 1 1 2.1

### Experiment


- Subjects. Twelve students at the University of Massachusetts at Boston
- Materials. Sentences were taken from the 48 sentences in Yan et al. (2012) in four experimental conditions
  - 1. All segments retained,
  - 2. The least important 30% of segments removed,
  - 3. The most important 30% of segments removed,
  - 4. 30% of segments randomly selected to be removed.

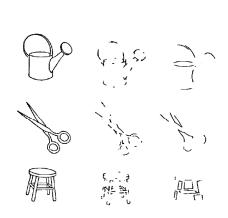
### Stimuli

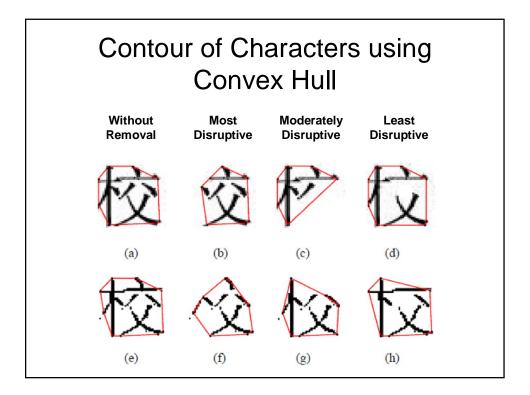
- We reconstructed the characters using only a subset of the segments.
- 1 他每天早晨都到操场上锻炼身体
- 2 他每天早晨都到掉场上锻炼身体
- 3 /3等天甲晨罗至奖汤上氖烁身体
- 4 他每天早晨都到拣场上钱货自休



# Numbers of Forward and Regressive Saccades per Sentence




### Discussion


- The overall results indicate that the mathematical method SVD captured the most informative segments of Chinese characters.
- Is it possible that SVD is identifying the same strokes that were deleted in the Yan et al. study? What is it about those segments that are most informative?
  - Distribution of Degradation Position
  - Measuring Character Configuration using Contour

# Distribution of Removed Strokes/ Segments (a) Most disruptive (b) Moderately disruptive (c) Least disruptive (d) Most disruptive (e) Moderately disruptive (f) Least disruptive

### In Object Recognition

 Contour is important for successful recognition of degraded objects; observers are more accurate at identifying degraded objects when vertices are retained than when the midsections of lines are retained (see Biederman, 1987, for a review)





# Similarity measures between undegraded and degraded characters

 The least disruptive conditions yielded the highest similarity with the original characters, while the most disruptive conditions yielded the lowest similarity

|                       | Yan et al. (2012)    |                        | Current study        |                        |
|-----------------------|----------------------|------------------------|----------------------|------------------------|
|                       | Proportion of        | Proportion of          | Proportion of        | Proportion of          |
|                       | Overlapping Vertices | Overlapping Perimeters | Overlapping Vertices | Overlapping Perimeters |
| Most Disruptive       | 0.58 (0.17)          | 0.46 (0.18)            | 0.71 (0.18)          | 0.47 (0.26)            |
| Moderately Disruptive | 0.73 (0.16)          | 0.52 (0.23)            | 0.78 (0.18)          | 0.61 (0.27)            |
| Least Disruptive      | 0.86 (0.15)          | 0.75 (0.23)            | 0.80 (0.15)          | 0.63 (0.24)            |

### Conclusion

- These data are similar to the data reported by Yan et al. (2012)
  - The most important strokes tended to be located on the left side of the character and the least important tended to be located in the bottom right portion.
  - Semantic radicals usually located on the left or top side
  - Deleting these important strokes would delete a greater proportion of the character, leading to more impaired reading
- There is a correlation between first-written strokes and important segments determined by SVD, which has no information about writing order.