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Abstract 

There have been several computational alternatives to the 
cloze task (Taylor, 1953) intended to approximate word 
predictability effects on eye movements during reading. In 
this study, we implement a computational model that 
instantiates each content word in a sentence as an input that 
activates semantic concepts in working memory.  The 
predictability of a word is then determined by the extent to 
which its corresponding semantic representation is associated 
with the network of concepts already active in working 
memory from the preceding context. The computation of 
concept activation is based on a connectionist model 
(Landscape model, see van den Broek, 2010). Latent semantic 
analysis (LSA) is used to establish connections between 
words and simulate the long-term semantic associations 
among concepts (Landauer & Dumais, 1997). This model 
provides a means of investigating how language 
comprehension is affected by the activation of concepts in 
working memory. 
 
Keywords: reading; word predictability; latent semantic 
analysis; Landscape model. 

Introduction 
It has been well-established that skilled language users are 

sensitive to linguistic characteristics such as frequency and 
predictability (Rayner, 1998; 2009). Rayner and Well (1996; 
see also Ehrlich & Rayner, 1981) found that the 
predictability of target words had a strong influence on eye 
movements during reading. In their experiment, subjects 
fixated unpredictable target words longer than either highly 
or moderately predictable target words; highly predictable 
words were also skipped more often than moderately 
predictable or unpredictable target words.  

Accordingly, in the E-Z Reader model (Pollatsek, Reichle, 
& Rayner, 2006; Reichle, Pollatsek, Fisher, & Rayner, 
1998; Reichle, Rayner, & Pollatsek, 1999; 2003), word 
predictability within a given sentence context is considered 
in both first stage processing (i.e., L1, including 
identification of orthographic form and a familiarity check) 
and second stage processing (i.e., L2, including 
identification of phonological/semantic form and 

completion of lexical access). The model also maintains that 
the predictability effect is stronger in L2 than in L1. 

Estimates of word predictability are typically derived from 
a modified cloze task procedure (Taylor, 1953) in which 
subjects are asked to guess the identity of a word when 
given the prior sentence context. Most reading studies 
utilize the cloze task to establish or confirm word 
predictability manipulations.  These experiments use target 
words that differ substantially in cloze value (the probability 
with which subjects select the word), often with 
probabilities of .70 to .90 for highly predictable words and 
less than .10 for “low” predictability words. As an 
alternative to necessarily subjective cloze responses, several 
computational methods have been successfully utilized to 
approximate degrees of contextual constraint and predict the 
influence on eye movements during reading; including, 
transitional probabilities (McDonald & Shillcock, 2003; but 
see Frisson, Rayner, & Pickering, 2005), surprisal (Boston, 
Hale, Kliegl, Patil, & Vasishth, 2008; Levy, 2008), 
conditional co-occurrence probability (Ong & Kliegl, 2008). 
Additionally, Latent Semantic Analysis (LSA) (Landauer & 
Dumais, 1997) was used by Pynte, New, and Kennedy 
(2008) as well as Wang, Chen, Ko, Pomplun, and Rayner 
(2010), who reported that eye movement behavior during 
first-pass reading on content words could be predicted using 
LSA. McDonald and Shillcock (2003) and Wang et al. 
(2010) used the transitional probability (corpus-based 
statistical likelihood of encountering a word given the 
preceding or subsequent word) to categorize predictability 
conditions; both proposed that predictability effects could be 
accounted for using only the content word preceding a 
target.  One limitation of these objective measures could be 
that prior context, before the immediately preceding lexical 
item, may affect processing of a word in many instances.  
Wang et al. (2010) also used all content words in the 
preceding sentence context to compute contextual constraint 
for targets using the standard weighting from LSA.  
However, without a clearer understanding of working 
memory constraints during comprehension it is difficult to 
make predictions about the number of lexical-semantic 



concepts that can be active simultaneously and exert an 
appreciable influence on the processing of upcoming words.  

The predictability of a given word can, in large part, be 
conceptualized as the degree to which the semantic concept 
represented by the word is associated with the preceding 
context.  By treating incoming lexical items as semantic 
concepts that interactively influence working memory 
processes, prior context for a word can be represented as 
inputs which influence the activation of associated concepts 
and have the potential to facilitate or inhibit the processing 
of upcoming words.  As a result, the higher the activation of 
a concept when it is encountered, the more processing of the 
concept is facilitated.  Importantly, individuals can allocate 
their processing attention to only a finite number of 
linguistic items at a given moment.  Thus, any model of 
language processing and working memory must set limits to 
the number of lexical-semantic concepts that can be 
simultaneously active and exert an appreciable influence on 
the processing of upcoming lexical inputs.     

A Connectionist Model for 
Sentence Reading 

 
This study proposes a computational model to monitor the 

activations of concepts in working memory. The 
computation of concept activation is derived from a 
connectionist model (the Landscape model, see van den 
Broek, 2010).  The current model does not have distributed 
semantic representations; rather, words are represented as 
localized semantic "concepts" with weighted connections to 
a network of additional concepts.  The semantic connections 
among concepts in the simulation are computed using LSA 
cosine values based on the default 300 dimension semantic 
space, “general reading up to 1st year college”, available at 
the LSA@CU Boulder website (http://lsa.colorado.edu/). 
LSA represents word meaning and computes associations 
by applying a linear algebra method, singular value 
decomposition (SVD), to a large corpus of text (see 
Landauer & Dumais, 1997).  

The Landscape model is a connectionist approach to 
instantiating comprehension using psychologically plausible 
algorithms that can potentially be used to model several 
aspects of text comprehension (see van den Broek, 2010; 
Tzeng, van den Broek, Kendeou, & Lee, 2005). The 
architecture of the conventional Landscape model assumes 
that as a reader proceeds through a text in reading cycles 
(with each cycle roughly corresponding to the reading of a 
new sentence), concepts fluctuate in activation as a function 
of four sources of information: the current processing cycle, 
the preceding cycle, the current episodic text representation, 
and reader’s background knowledge. With the reading of 
each cycle, particular concepts are activated and added as 
nodes to the episodic memory representation of the text. If a 
concept is already part of the text representation and is 
reactivated, its trace is strengthened. Furthermore, co-
activation of concepts leads to the establishment (or 

strengthening) of connections between those concepts. The 
resulting network representation influences subsequent 
activation patterns. This phenomenon is called the cohort 
effect. These cyclical and dynamically fluctuating 
activations lead to the gradual emergence of an episodic 
memory representation and discourse model of the text in 
which textual propositions and inferences are connected via 
semantic relations (such as causal and referential links). 
Thus, the model captures the fluctuations of concepts during 
reading (Linderholm, Virtue, Tzeng, & van den Broek, 
2004), as well as readers’ memory representation of text 
(Tzeng, 2007). As such, this model has prescribed 
mechanisms that can link the iterative and reciprocal 
relations between fluctuations of activations and the 
episodic text representation. However, there are necessary 
differences with regard to how readers generate and update 
active discourse representations for the comprehension of an 
individual sentence, compared to the processing of a longer 
narrative or expository text.  For the comprehension of an 
individual sentence, a reader must primarily rely on 
establishing connections between relevant concepts in 
working memory and pre-existing long-term semantic 
representations. For a longer text, on the other hand, readers 
are often able to take advantage of more extensive and 
detailed context and presumably a more enriched discourse 
model.  Thus, the current computational approach adapts the 
Landscape Model to a connectionist framework more 
suitable for capturing sentence reading.  Moreover, the 
current model utilizes LSA in order to represent pre-existing 
connections between semantic representations stored in 
long-term memory (i.e., background or world knowledge).   

In the current model, as with the Landscape model, text 
inputs are represented by an input matrix and each is 
indexed as a Mention (concepts being read from the text). 
The conventional Landscape model also defines other 
sources of activation including Referential (for building 
referential coherence), Causal, and Enabling (for the causal 
explanation of the current statement), but those activations 
are as of yet, not implemented here. The input matrix for 
example sentence: “The knight uses his sword to fight the 
dragon” is shown in Table 1.   

 
Table 1: Input matrix for the Knight example. 

 
cycle knight Use sword fight Dragon 

1 1 0 0 0 0 
2 0 1 0 0 0 
3 0 0 1 0 0 
4 0 0 0 1 0 
5 0 0 0 0 1 

 
Initially, the sentence is segmented into component 

concepts: “knight”, “use”, “sword”, “fight”, and “dragon”; 
as, currently, only content words are considered as concepts. 
The model assumes that each word is processed 
sequentially. In each cycle, the concept of Mention receives 



1 unit of activation. In addition to the sequential activation 
of concepts, the influence of semantic knowledge and pre-
existing lexical associations between concepts is established 
using LSA corpus-learned associations.  Table 2 presents 
the connection matrix for the example sentence.  The values 
are always between -1 and 1, but are rarely below 0 because 
of LSA’s high-dimensional space.  

 
Table 2: Connection matrix for the example. 

 
. knight use sword fight dragon 

knight  1 .01 .64 .15 .28 
use  .01 1 .03 -.02 .06 
sword  .64 .03 1 .20 .40 
fight  .15 -.20 .20 1 .13 
dragon .28 .06 .40 .13 1 

 
 The activation values for each concept are represented in 

an m x n activation matrix, where m represents the number 
of concepts in the sentence and n represents the number of 
cycles. Each column in the matrix thus represents the status 
of each concept. The activation matrix takes each column of 
the input matrix as raw input and processes it row by row. 
In our model, the activation during the current reading cycle 
is defined by Equation (1):  
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iA  is the activation of concept i during the current 

cycle. Starting from the summation (Σ) term in Equation (1), 
for all activated concepts in the previous reading cycle, each 
activation value is multiplied by a transformation function σ 
of connection strength (Sij) and by the cohort activation 
parameter δ. Sij is the strength of the relation from concept j 
to i. For the current cycle, cycle

iinput  is the activation of concept 
i in the input matrix. The sum of the net inputs for these m 
concepts is multiplied by the transformation function σ of 
connection strength (Sij).  
    The conventional Landscape model uses a sigmoid 
function as the transformation function σ to control the 
possible linear growth of spreading of activation and limit 
the effect of cohort activation to those strongly related to the 
concept. Since Sij is usually between 0 and 1, a linear 
function with absolute value is used in this study. The value 
of the cohort activation parameter, δ, directly determines the 
amount of cohort activation and can be used to mimic 
individual differences in spreading of activation. Our model 
assumes that for any concept, its cohort activation can never 
exceed its input activation. For this reason the model will 
take the larger of the input and cohort activation values, and 
Mention is the maximum activation a concept can receive. 
Furthermore, there is a system parameter Activation 
Threshold; any activation below that threshold is set to zero.  

The working memory constraint is implemented by a 
parameter WMC (Working Memory Capacity). When the 

actual sum of activation exceeds the value of WMC, the 
activation of each concept is scaled down using Equation (2): 
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For the example sentence, the activation matrix is shown 
in Figure 1. For the 1st cycle the activation of “knight” is 1, 
from the Mention input. There is no cohort effect for the 
first reading cycle since no previous cycle exists. The 
activations for “use”, “sword”, “fight”, and “dragon” are 
established by multiplying their connections, .01, .64, .15, 
and .28 respectively, and the input of “knight” (1). The 
activation of “use” does not reach the threshold (set to 0.1) 
and as a result receives an activation of 0. For the 2nd cycle 
when “use” is being processed, the activation of each 
concept is calculated according to Equation (1). Figure 1 
illustrates that the activation of “dragon” increases from 
cycle 1 to cycle 4 because of relatively strong connections 
to “knight”, “use”, “sword”, and “fight.” Conversely, the 
activation of “use” decreases from cycle 2 to 5 because its 
connections to “sword”, “fight”, and “dragon” are relatively 
weak (less than .06).  
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Figure 1: The “landscape” of the activation matrix for the 
Knight example. 

 
    The conventional Landscape model updates the 
connection strengths in its episodic memory using a learning 
algorithm in order to adjust active discourse representations 
for the comprehension of a longer text. In this study, we 
assume that the background knowledge (represented by in 
the connection matrix) is not altered during sentence reading. 
    In summary, by assuming (a) the words in a sentence are 
read and processed sequentially, and (b) long-term memory 
representations (i.e., background knowledge) are not altered 
during sentence reading, we propose a computational model 
of sentence reading which takes advantage of an existing 



discourse comprehension model that is designed to take into 
account contextual effects. The proposed model allows us to 
examine several factors that affect sentence comprehension; 
namely, (1) semantic concept activation in working 
memory, (2) background knowledge, and (3) working 
memory capacity.  To assess the model’s ability to 
investigate linguistic processing we will compare its 
performance to the conventional cloze task. 
 

Reanalysis of Previous Data 
 

The key objective for this implementation is to 
disambiguate high from low semantic constraint in sentence 
contexts. Another objective of this implementation is to 
demonstrate that the Landscape (LS) model surpasses 
previously utilized methods as an alternative to the cloze 
task. In order to demonstrate that the proposed 
computational model is a more suitable metric of contextual 
constraint than previous computational measures, (i.e., 
Wang et al., 2010), we re-analyzed the materials from 
Gollan, Slattery, Goldenberg, Van Assche, Duyck, and 
Rayner (2011), in which predictable or unpredictable target 
word conditions were confirmed by a norming cloze task. 
We estimated predictability of a target word by (1) the 
previous content word, (2) all words in prior context, and 
(3) the estimates of the proposed connectionist model in this 
study. The question being: can our model outperform other 
predictors in differentiating high- and low-constraint 
contexts and produce higher by-item correlation to cloze 
values. 
    Participants. Twenty undergraduate students at the 
University of California, San Diego, participated. All 
participants were native speakers of English. 

Materials. There were 90 target words; all target words 
were embedded in either a high-constraint (HC) or low-
constraint (LC) sentence. For example, “the hockey  player  
moved  on the ice on his             ” (S1) was considered HC 
while “The little  girl  was  very  happy  when  she  
unwrapped  her  brand  new              ” (S2) was LC for the 
target “skates”. For the cloze task target words in HC 
context were generated 87% of the time, whereas the ones in 
LC context were generated less than 3% of the time. 
    Procedure. Participants were presented with the 
sentences up to the target words, and asked to provide one-
word continuations for each sentence. 
    Analysis. The first estimate of predictability for each 
target word was derived by one previous content word 
(PreCont) of each target, e.g., the previous content word of 
S1 is “ice,” while the one of S2 is “new.” The second 
approach computed the LSA cosine value using all words in 
the previous context (AllW). The final estimate was derived 
from Landscape model of sentence processing described 
above in the previous section (LS). We manually segmented 
the sentence into concepts and removed function words such 
as “a”, “the”, “in”, etc., for instance, “hockey / player / 
moved / ice” for S1. The parameters of our model were set 

as following:  δ = .7, Mention = 1, Activation Threshold = .1, 
and WMC = 7. The averages and standard deviations of 
Cloze, PreCont, AllW, and LS for HC and LC are described 
in Table 4.  
 
Table 4. The averages and standard deviations (in 
parentheses) of Cloze, PreCont, AllW, and LS for HC and 
LC conditions. 
     
 Cloze PreCont AllW LS 
HC .87 (.13) .17 (.16) .21 (.16) .66 (.29) 
LC .03 (.03) .05 (.11) .04 (.07) .13 (.20) 
 

Results 
 
As shown in Figure 2, an operating characteristic (ROC) 
analysis demonstrates that the area under the curves (AUC) 
of Cloze, PreCont, AllW, and LS are 1, .70, .87, .91, 
respectively. The LS model obtains a higher AUC than 
AllW or PreCont. Furthermore, a correlation analysis 
demonstrates that the Pearson correlations between Cloze 
and PreCont, AllW, and LS are .39, .56, and .70, 
respectively.  
 

 
 

Figure 2: ROC curves for Cloze, PreCont, AllW, and LS. 
 
    The results suggest that the LS model can simulate much 
of the linguistic processing subjects perform when 
producing cloze responses (and presumably during normal 
reading). It is important to note that levels of activation 
expressed by the model are not intended to predict exact 
cloze probabilities, but to successfully differentiate highly 
constrained and unconstrained sentence contexts as well as 
the conventionally used cloze task.  The LS model also 



demonstrates superiority over objective measures that utilize 
only the prior content word or LSA connections between 
content words exclusively. 

Discussion 
 

The current implementation of the model has 
demonstrated that it is an effective measure of contextual 
constraint in that it differentiates high and low-constraint 
sentence contexts better than previously employed 
alternatives to the cloze task.  Furthermore, model 
activations for target words correlate with cloze responses 
more highly than previous computational methods of 
measuring contextual constraint.  We believe this is an 
initial step toward the ultimate objective of representing 
both the fluctuating activation of lexical-semantic concepts 
in working memory during online sentence processing and 
how the processing of upcoming words can be influenced by 
prior context. The next logical step is to employ the LS 
Model as a metric of processing difficulty that can be 
compared to the behavioral record and used to generate 
predictions about eye movements during reading. It has 
been aptly demonstrated that reading times on words are 
influenced by the preceding linguistic context (Rayner, 
1998; 2009).  Moreover, discourse-mediated spreading 
activation across lexical-semantic representations has been 
proposed as an appreciable source of predictability effects 
during reading (Morris, 1994; Pynte et al., 2008; Traxler, 
Foss, Seely, Kaup, & Morris, 2000). Thus, modeling the 
process whereby linguistic inputs activate concepts in long-
term memory and continuously influence working memory 
operations during sentence comprehension is an important 
endeavor in psycholinguistics.          

As shown by the comparison to standard cloze responses, 
the current model can be used to reliably derive 
predictability of word n given the preceding context.  The 
model generates a specific level of activation for word n, 
assuming that each word in the preceding context has been 
identified and associated concepts have been engaged in 
working memory.  As demonstrated above, this predicted 
level of activation correlates to cloze probabilities for a 
target word (n). 

Critically, when using the LS model, in many cases the 
level of activation for word n will provide a more 
psychologically realistic measure of word processing 
difficulty when compared to cloze proportions, especially in 
neutral or unconstrained contexts. For instance, referencing 
cloze scores alone, there is no distinction between words 
that are plausible, yet not highly-predictable, and those that 
are completely implausible or anomalous given the 
preceding sentence context.  In fact, it is quite feasible for 
plausible target words in unconstrained sentence frames to 
receive cloze probabilities at or around zero; however, low 
cloze probabilities are not necessarily indicative of potential 
processing difficulty.  The manner in which the cloze task is 
conventionally used produces binary measures (to the extent 
that non-target responses are ignored).  In this way, the 

current computational model may produce a more accurate 
representation than cloze scores with regard to indexing 
online word processing difficulty. As such, in the future we 
will assess the LS Model’s goodness-of-fit to reading times 
and other eye movement data.  

By modifying the framework of the conventional 
Landscape model to reduce the size of text segments being 
processed during a reading cycle and situating activated 
concepts within limited working memory resources, we 
have attempted a psychologically plausible computational 
model of semantic effects on sentence comprehension. 
Crucially, the fluctuating activation of within sentence 
concepts is not determined merely by summing its 
cumulative activation across all preceding words; rather, the 
interactive and co-dependent influence of the prior sequence 
of words determines the extent to which the prior sentence 
context results in activation for a particular semantic 
concept (and its corresponding lexical representation).  

The model is also a useful tool for investigating the 
number of semantic entities that are generally active in 
working memory, as well as the upper limits for the number 
of lexical-semantic items simultaneously activated. 
Computationally examination of working memory 
limitations during reading could provide insight into what 
linguistic constructions are likely to elicit processing 
difficulty, result in longer fixation times, and lead to inter-
word regressions during sentence reading. Model outputs 
can also be used to inform inferences as to which concepts 
are likely to maintain relatively high levels of activation in 
working memory. 

While among the most sophisticated computational 
frameworks in the field of cognitive science, current models 
of eye movement control during reading do not focus on 
how prior words render specific words predictable.  The 
more well-developed models of oculomotor behavior and 
language comprehension represent the predictability of a 
given word in a sentence using only its cloze probability 
(Engbert, Nuthmann, Richter & Kliegl, 2005; Reichle et al., 
1998; 2003).  Our model successfully attempts to represent 
the cognitive processes that are sensitive to semantic 
constraint.  Future implementations of the LS model will be 
capable of more thoroughly examining aspects of language 
processing and eye movement behavior. The connection 
matrix in the LS model can operationalize a variety of 
linguistic characteristics stored explicitly, or otherwise 
represented, in long-term memory.  Semantically-based 
connection weights can be modified to accommodate 
mediation by lexical and sub-lexical frequency 
characteristics. In addition, the connection matrix could be 
modified to capture morphological, orthographic, and 
phonological similarity between lexical items.  As of now, 
the LS model is a computational alternative to the cloze that 
is sensitive to both strong and subtle changes in contextual 
semantic constraint.  Ultimately, the model will be 
expanded in an effort to achieve more comprehensive 
measurement of lexical-semantic predictability as it affects 
reading behavior. 
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