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3D imaging devices, such as stereo and time-of-flight (ToF) cameras, measure
distances to the observed points and generate a depth image where each pixel
represents a distance to the corresponding location. The depth image can be
converted into a 3D point cloud using simple linear operations. This spatial
information provides detailed understanding of the environment and is currently
employed in a wide range of applications such as human motion capture [1].
However, its distinct characteristics from conventional color images necessitate
different approaches to efficiently extract useful information. This paper describes
a low-power vision processor for processing such 3D image data. The processor
achieves high energy-efficiency through a parallelized reconfigurable architecture
and hardware-oriented algorithmic optimizations. The processor will be used as
a part of a navigation device for the visually impaired (Fig. 24.1.1). This handheld
or body-worn device is designed to detect safe areas and obstacles and provide
feedback to a user. We employ a ToF camera as the main sensor in this system
since it has a small form factor and requires relatively low computational
complexity [2]. 

The point cloud (converted in software from the raw depth image) is first
reoriented based on the pitch and roll angles of the camera, as measured by an
inertia measurement unit (IMU) in real time. We then apply a dynamic frame-
skipping algorithm, which significantly reduces power consumption by skipping
processing of frames that are sufficiently similar to the previous frame. The frame-
skipping algorithm divides the entire frame into multiple blocks and calculates
the average depth of each block. If the number of blocks with significant depth
changes does not exceed a threshold value, the processor skips all further
processing of this frame and generates a frame skip signal. The frame skip signal
can be used as feedback to control the frame rate of the ToF camera itself. The
proposed algorithm was measured to reduce the number of frames processed by
69% in test cases of navigating through an indoor environment with variable
paces.

The obstacle detection algorithm we employ is based on plane categorization. In
indoor environments, artificial objects generally possess one or more perceptible
planes and we utilize this property to detect obstacles. The main processing stage
calculates the surface normal at each point in the cloud [3] and classifies each
point as horizontal, vertical or intermediate. Post-processing filters and sub-
samples this annotated cloud to reduce noise of the 3D imaging sensor. The
processor then applies a plane segmentation algorithm based on region growing
which groups similar neighboring points. From the extracted planes, we can
differentiate the ground plane at a specific height, which is considered safe for
the user to walk on, from other obstacles. The plane segmentation data can also
provide information for other applications such as identifying regions of interest
for object recognition. Finally, the processor calculates the distance to the closest
obstacle in several different directions and sends it as a feedback so that the user
can sense the environment and navigate avoiding obstacles without a cane. 

The architecture of the processor is detailed in Fig. 24.1.2. It consists of 2 memory
banks totaling 163kB; one each for the first 2 processing stages and post-
processing. The design has a shared datapath, which is reconfigured to
accommodate different parts of the processing flow with minimal hardware
overhead and energy consumption. The datapath includes multiple arithmetic unit
banks for parallel 16b ADD, SUB, MULT and DIV operations, which provide
enough throughput to process input data streams in real time. In addition, the
block floating-point blocks play a key role in mapping long operands onto the
given fixed-point datapath by dynamically changing data scale without significant
accuracy degradation. These blocks observe a set of operands and move the
binary point location appropriately so that 16 MSBs excluding sign extension are
preserved in the largest value. Figure 24.1.3 shows the datapath configuration for
the surface normal calculation and plane classification portions of the main
processing. The colored blocks are the arithmetic blocks in the datapath. Some
of the blocks are not required to be active on every cycle and hence are time-
shared (colored yellow).

Since the surface normal calculation is one of the computation bottlenecks, we
further parallelized it to process 2 locations simultaneously. However, the size of

the calculation window changes based on the actual input data, making memory
access patterns unpredictable and causing stalls due to memory access conflict.
To address this, we implemented an out-of-order processing architecture shown
in Fig. 24.1.4. The integral image block is divided into two banks storing even and
odd rows. The width of the calculation window wk at each calculation point yk
determines which bank the datapath needs to access. The processor puts read
addresses into one of two address FIFOs accordingly. Since each FIFO has a
dedicated access to the corresponding integral image memory bank, two points
can be processed at a time in out-of-order fashion unless one of the FIFOs
becomes empty, which occurs infrequently when the number of even and odd
memory accesses are similar on average. The proposed architecture increases
throughput by 11% in simulation compared to in-order parallelization. This
technique can also be directly applied to other algorithms that require extensive
accesses to integral image memory such as SURF and Haar-like features [4, 5]. 

The annotated cloud is subsequently filtered and sub-sampled to reduce noise of
the input cloud. The processor groups adjacent points that belong to the same
plane type into larger planes using region growing based on [6]. The original
algorithm launches search processes at arbitrary seed points and expands the
current region by comparing with neighboring points in any direction. This incurs
multiple comparisons especially for the points near the borders of different
regions, and hence it requires excessive memory access operations and increases
computation time. The arbitrary memory access pattern also impedes improving
hardware efficiency further with a tailored architecture. Therefore, we developed
a single-pass region-growing scheme depicted in Fig. 24.1.5. Instead of selecting
among stored seeds, it starts at the top left point of the cloud and continues to
the right pixel in the same row. Each point is only compared with the top and left
points and merged to an existing region if they have similar properties such as
normal vector. Note that two connected regions may not be merged until
processing reaches a specific location (e.g. region #1 and #5). We store the list
of connected regions in a separate table so that they can ultimately be merged
into a single plane. This scheme ensures that all of the points are accessed only
twice throughout the search process and provides the additional possibility of
hardware optimization due to fixed memory-access pattern, while producing
exactly same results as the original algorithm. In simulation, the proposed
algorithm reduces both computation time and memory accesses by 30%.

The vision processor was fabricated in 40nm CMOS process. It consumes 8mW
at 0.6V, 50MHz while processing a 30fps input stream. Figure 24.1.6 shows a
prototype of the complete navigation device consisting of ToF camera, IMU, ARM
processor, and the fabricated vision processor. It successfully detects obstacles
and calculates safe distances in multiple directions while correcting for the camera
position based on the posture data from the IMU. The processor achieves more
than 2 orders of magnitude better energy efficiency than a 1.7GHz quad-core ARM
Cortex-A9 processor. The largest energy savings result from the dedicated
architecture, and additional savings result from the architecture optimization
techniques such as out-of-order pipelining.
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Figure 24.1.1: Overview of a navigation device for the visually impaired. The
device is designed as a body wearable or handheld system which can replace
a conventional cane.

Figure 24.1.2: Architecture of the processor chip, showing the shared datapath
that can accommodate all required computations with minimal reconfiguration
and provide high throughput through parallelization.

Figure 24.1.3: The shared datapath shown configured for surface normal and
plane classification operations. Blue and yellow colored arithmetic blocks
represent reconfigured elements of the shared datapath, where the yellow
colored blocks are time-shared between two operations.

Figure 24.1.5: Comparisons between conventional and proposed single-pass
region growing algorithms. A fixed search pattern in the single-pass algorithm
removes unnecessary pixel comparisons and hence reduces both the number
of memory accesses and the computation time by 30% in simulation.

Figure 24.1.6: A navigation device using the fabricated processor is
demonstrated. Measurement results show that the processor successfully
detect obstacles (walls) on both sides in a long corridor and consequently
generate longer safe distances toward free space in front.

Figure 24.1.4: The out-of-order surface normal computation scheme is shown.
Since the width of processing window varies arbitrarily, read addresses of the
integral image memory are selectively pushed into one of two FIFOs.
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Figure 24.1.7: Die micrograph and a performance summary table for the
processor.
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