
Recitation 18: Databases

MIT - 6.033

Spring 2022

Henry Corrigan -Gibbs

[Based on Sam Madden's 2007 lecture notes]

Plan
logistics

* DBS & Transactions
*DP pres grades out

*Durability next week

* Concurrent access * DB hands on out 4/14
* No lecture 4/18 forpµ⇒☐a[

Database
- Collection of tables (rows, Cds)
- High-level language (SQL)
for reading /writing students
data in tables

[name ID course -
- -
-

If you haven't yet
used it

, you will
-be surprised

& delighted? piece of
data

- Client can group together a sequence of
actions into a transaction

BEGIN TRANSACTION

A- SO

}In reality , use SQL .

B- A

13=13+1

COMMIT /ABORT

- All that the DB system cares about is

the reads & writes .

Two things to worry about

1. Crashes /Durability
↳ Want committed data to

persist on dish

Irion -volatile " storage)

2. Concurrent access to data

↳ Want each transaction to

appear to execute in sequence*(sort of)

Durability
simplest implementation

DBMS

§ €0,13B ☐A¥ g.so /
n
← ← - - - - -

- -
-

113=10 f
÷

Pen : Performance?
RAM read : 100ns
Disk seek: 10,000,000ns

lqmq.iq
crash !

Aggressive impl
DBMS

0
(later0

cache/ .
-

-8=-5
-

+1=50

µ£← buffer pool
1-1=50

13=10

-

Write - ahead log (Very common /useful idea!)
A- so DBMS

☒
13=10 Buster
→ pool *" ""

t.gs
"

⇒ |
"" §B-- 1013=10

A-So

- Write changes as log
entry before commit -

Dish

-Why better ?

(a) Writes are large & sequential
(b) Repeated access to saw obj doesn't

touch disk

Aster crash
, inspect by

→

"

Undo
"

uncommitted partial tons
→
" Redo " committed txns

To undo
,
need to store old &

new value of each record .

[Similar ideas show
up in other contexts . . .

Recovery log
- REDO actions from by BEGIN I

BEGIN Tz↳ Disk now
instate 1-1=50 Cold :*) - T,

as before crash. BEGIN Tj
C- 20 Cold :o) - Ta

- UNDO aborted txns 13=10 Cold :o) -3
COMMIT T

,↳ Find first such one
,

ABORT Tz
roll back

In groups, walk through this recovery
process .

What happens if you crash during recovery ?

Log can grow LARGE

↳ Checkpoints to speed up recovery.

Concurrent access

-Two different transactions should ideally appearto execute serially (conflict serializability)

Abal =
'

Read (A)
Abal - = 50

Write /A
, Abal)

Abal -_ Read (A)
Bbal Read (B)
Print /Abalt Bbnl)

Bbal - Read (B)
Bbnl + = 50

Write /B. Bbc1)

- Most common technique : Locking

↳ Covered in lecture .

- Two - phase locking

→ Each data item has lock

I
- Growing : Ach all looks needed→

Infixed order ?
ow. deadlock

.

Do stuff
II. Shrinking : Release all looks

Locking

why are we not done ? Performance !

If you
txn sums value of all rows in

a table
, you

will prevent any other action
on table for a while .

↳ Must hold locks on all table rows

↳ Action of locking & unlocking can be

costly .

How to address this?

↳ Discuss in

groups

Two ideas :

I. Coarse-grained locks (hierarchical)
↳ Reduce # of locks you need to

acquire

2. lock less
.

↳ Release locks early to increase amt

of concurrency

Hierarchical Locking

L L Students

an

m""'-Li ↳ ↳ - !~⇐T÷..""All
↳ 4.

'
- - - - - ;

Can lock/unlock entire region at once.

↳Typically a

"

page
"

of values

"

Intent locks
"

Gee paper) allow extra
concurrency

Relaxed Isolation

Postgres DB uses
"

read committed
"

by default

↳Txn sees valves of writes committed b}
other txns

BEGIN
Aval = Road (A) \[Write (Bio)Aval = Read (A) ←

could return disf vols

COMMIT

→ Useful b/c allows releasing read locks early

Wrap up

Two challenges :

- Recovering from failures
- Doing many things at oneae

Both are easy if you don't care

about performance .

If you
do
,

- - - . trade-offs?_?

