
Defeating Code Reuse Attacks with Minimal Tagged

Architecture

by

Samuel Fingeret

B.S., Massachusetts Institute of Technology (2014)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 16, 2015

Certified by. .
Prof. Howard Shrobe

Principal Research Scientist MIT CSAIL.
Thesis Supervisor

Accepted by .
Prof. Christopher Terman

Chairman, Masters of Engineering Thesis Committee

2

Defeating Code Reuse Attacks with Minimal Tagged

Architecture

by

Samuel Fingeret

Submitted to the Department of Electrical Engineering and Computer Science
on September 16, 2015, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

In this thesis, we argue that software-based defenses to code reuse attacks are fun-
damentally flawed. With code pointer integrity as a case study, we show that a
secure and efficient software-based defense to code reuse attacks is impossible and
thus motivate the case for hardware approaches. We then propose our tagged ar-
chitecture system Taxi (Tagged C) as a practical defense against code reuse attacks
which minimally modifies existing hardware components. We also propose strong
defense policies which aim to guarantee security while minimizing tag memory usage.
Our Taxi prototype, a modified RISC-V ISA simulator, demonstrates that we can
defeat code reuse attacks with high compatibility and low memory overhead.

Thesis Supervisor: Prof. Howard Shrobe
Title: Principal Research Scientist MIT CSAIL.

3

4

Acknowledgments

My sincerest thanks to my advisor Howard Shrobe for his insight and guidance as

well as my lab partner Julián González for his knowledge and for keeping me on track

throughout the past year. I am also grateful to Isaac Evans, Ulziibayar Otgonbaatar,

Tiffany Tang and especially Stelios Sidiroglou-Douskos and Hamed Okhravi for their

research discussions and feedback. Without them, this work would not be possible.

This work is sponsored by the Office of Naval Research under the award N00014-

14-1-0006, entitled Defeating Code Reuse Attacks Using Minimal Hardware Modifi-

cations. Opinions, interpretations, conclusions and recommendations are those of the

author and do not reflect official policy or the position of the Office of Naval Research

or the United States Government.

5

6

Contents

1 Introduction 15

2 Background 19

2.1 Code Reuse Attacks . 19

2.1.1 Buffer Overflows . 19

2.1.2 Use After Free . 20

2.1.3 Code Injection . 20

2.1.4 Return-to-libc . 21

2.1.5 Return Oriented Programming 21

2.1.6 Variations of Return Oriented Programming 22

2.1.7 Address Space Layout Randomization 22

2.1.8 Side-Channel Attacks . 23

2.2 Defenses to Code Reuse Attacks . 24

2.2.1 Code Diversification . 24

2.2.2 Memory Safety . 25

2.2.3 Heuristic Defenses . 26

2.2.4 Control Flow Integrity . 26

2.2.5 Code Pointer Integrity . 28

3 Evaluating Code Pointer Integrity 29

3.1 Code Pointer Integrity . 29

3.1.1 Static Analysis . 29

3.1.2 Instrumentation . 30

7

3.1.3 Safe Region Isolation . 31

3.2 Attack Methodology . 32

3.2.1 Overview . 32

3.2.2 Timing Side-Channel Attack 33

3.2.3 Virtual Memory Layout . 35

3.2.4 Finding the Safe Region . 36

3.2.5 Finding the Safe Region with Crashes 38

3.2.6 Finding the Base Address of libc 39

3.2.7 Finding the Base Address of libc with Crashes 42

3.2.8 ROP Attack . 42

3.3 Discussion . 43

4 Tagged Architectures 45

4.1 Design . 46

4.1.1 Computation Model . 46

4.1.2 Example Policy . 47

4.1.3 Ideal Policy . 47

4.2 Our Approach . 48

4.2.1 Extending Memory . 48

4.2.2 Tag Retrieval . 49

4.2.3 Tag Computation . 50

4.3 Previous Work . 51

4.3.1 HardBound . 51

4.3.2 CHERI . 52

4.3.3 PUMP . 53

5 Taxi: A Minimal Secure Tagged Architecture 55

5.1 RISC-V Architecture . 55

5.1.1 Tag Extension . 56

5.1.2 Arithmetic Instructions . 56

5.1.3 Memory Instructions . 57

8

5.1.4 Jump Instructions . 58

5.1.5 Tag Instructions . 59

5.2 Implemented Policies . 60

5.2.1 Basic Return Address Policy 60

5.2.2 No Return Copy Policy . 62

5.2.3 No Partial Copy Policy . 63

5.2.4 Blacklist No Partial Copy Policy 64

5.3 Policies Requiring Compiler Support 66

5.3.1 Function Pointer Policy . 66

5.3.2 Read-Only Function Pointer Policy 67

5.3.3 Universal Pointer Policy . 68

5.4 Summary . 68

6 Evaluating Taxi 71

6.1 Prototype Components . 71

6.1.1 ISA Simulator . 71

6.1.2 Cross Compiler . 71

6.1.3 Linux . 72

6.1.4 Cache Simulator . 72

6.1.5 Test Suite . 72

6.1.6 Debugging . 73

6.1.7 Libspike . 74

6.1.8 Memory Tracing . 74

6.2 Policy Evaluation . 76

6.2.1 Methodology . 76

6.2.2 Security . 76

6.2.3 Return Address Policy . 77

6.2.4 No Return Copy Policy . 79

6.2.5 No Partial Copy Policy . 81

6.2.6 Blacklist No Partial Copy Policy 81

9

6.2.7 Conclusion . 84

6.3 Cache Evaluation . 84

6.3.1 Methodology . 84

6.3.2 Results . 85

7 Future Work 91

10

List of Figures

2-1 Stack layout of a return to libc attack. 21

2-2 A timing attack loop. 24

3-1 CPI safe region transformation. 30

3-2 Timing attack loop in nginx_http_parse.c. 33

3-3 Nginx timing measurements. 34

3-4 Virtual memory layout of a CPI-protected application. 35

3-5 CPI attack strategies. 38

4-1 Tagged Architecture Buffer Overflow. 47

4-2 Tagged architecture memory layouts. 49

4-3 Tagged architecture cache hierarchy. 50

4-4 Tag processing unit. 51

4-5 Comparison of Hardware-Based Defenses. 52

5-1 Taxi Tagged Word Structure. 56

5-2 Taxi Tag Memory Initialization. 56

5-3 Taxi Add Instruction. 57

5-4 Taxi Load/Store Instructions. 58

5-5 Return Address Policy Jump and Link Instruction. 61

5-6 Example Replay Attack Gadget. 62

5-7 Data Tag Propagation for Store Byte Instruction. 65

6-1 Trap Debug Mode. 73

6-2 Memory Tracing Node Structure. 75

11

6-3 Signal Handling Violation of Call-Return Discipline. 78

6-4 Longjmp Modifications. 80

6-5 Packed Struct Test Case. 83

6-6 Mean Tag Cache Overhead. 86

6-7 Tag Cache Overhead Comparison. 86

12

List of Tables

5.1 RISC-V Jump Instruction Conventions. 59

5.2 Return Address Tag Bit Propagation. 60

5.3 Data Tag Bit Propagation. 65

6.1 Overflow Test Summary. 76

6.2 Tag Cache Overhead Part 1. 88

6.3 Tag Cache Overhead Part 2. 89

13

14

Chapter 1

Introduction

Although buffer overflow vulnerabilities have been exploited for over twenty years

[34] and can lead to remote code execution, modern mitigation techniques remain

ineffective due to the rise of code reuse attacks such as return oriented programming

[41]. These attacks chain together previously existing code in the form of gadgets

which can be combined to execute a malicious payload, allowing attackers to bypass

defenses such as write xor execute which prevent injection of new code [49].

The problem of defense then reduces to distinguishing intended code behavior from

malicious code behavior, which is a much more difficult problem than distinguishing

code loaded in at program startup from code loaded during program execution. We

must also do this efficiently: C is primarily used for its low-level performance benefits,

so defenses with high overhead are impractical.

Unfortunately, existing software-based defenses are bypassable with the exception

of full memory safety [31], though memory safety requires prohibitively high perfor-

mance and memory overhead. Defense techniques have tried enforcing restrictions

on gadgets [33] [36] [19], but the gadget space is diverse [5] [37] and malicious pay-

loads still exist even with these constraints [6] [38] [14]. Code diversification defenses

randomize code locations in the executable so that attackers cannot locate desired

gadgets [46] [24] [52] [35] [23], but disclosure vulnerabilities and side-channel attacks

render code diversification ineffective [4] [40]. Finally, defenses which enforce static

constraints on control flow [2] [56] [55] [30] [12] [47] are believed to be too permissive

15

in order to maintain compatibility with existing code, so exploits are still possible

[21].

A promising defense known as Code Pointer Integrity or CPI attempts to enforce

memory safety on only code pointers [27]. Because code pointers account for a small

fraction of all pointers in an application, CPI’s overhead is significantly less than that

of full memory safety. However, implementing CPI is difficult because data pointer

corruption is allowed under this defense, so an attacker could corrupt any addressin

memory, including CPI’s internal state. On 64-bit systems, CPI protects its internal

state using information hiding through randomization, which we show to be ineffective

[17]. The failure of CPI to protect its internal state suggests a fundamental flaw in

software-based defenses in that efficient protection of defense metadata is difficult.

We thus turn to hardware-based defenses to improve efficiency and security of

code reuse defenses. In particular, we look at tagged architectures, or systems which

attach a small amount of metadata, called a tag, to every word of memory. Tagged

architectures are believed to be both secure and efficient [15] [16] [9], but memory

overhead and lack of compatibility prevent tagged architectures from being adopted.

We design our own tagged architecture system called Taxi (short for tagged C) with

the goal of minimizing the number of tag bits and minimizing modifications to existing

hardware components. We choose the open-source RISC-V architecture as our base

platform [54].

To prevent code reuse attacks, Taxi adds a tag bit to every word of memory

and this bit is used to mark code pointers. Taxi initializes and propagates tags

transparently, so even an attacker with control over an application’s memory cannot

forge tags and divert control flow through code pointer corruption. Although Taxi

is still in the ISA simulator stage, our prototype is capable of executing real-world

programs inside a cross-compiled Linux kernel and this allows us to verify security

guarantees as well as compatibility with existing code.

We now describe the contributions of this thesis. In chapter 2 we present a brief

analysis of previous software-based defenses as well as known methods for bypassing

them. In chapter 3 we demonstrate an attack against CPI’s use of randomization

16

to hide code pointers and demonstrate that randomization is insufficient to protect

internal defense state. In chapter 4 we introduce our tagged architecture model and

compare our ideal implementation to previous tagged architecture defenses. In chap-

ter 5 we describe the design and implementation of Taxi in our RISC-V ISA simulator

and in chapter 6 we evaluate Taxi on real-world programs with the conclusion that a

hardware-based implementation of Taxi is practical and secure. In chapter 6 we also

provide insight into problematic code patterns which make tagged architecture imple-

mentations more difficult. In chapter 7 we conclude and discuss future improvements

to Taxi.

17

18

Chapter 2

Background

2.1 Code Reuse Attacks

2.1.1 Buffer Overflows

A buffer overflow, or spatial memory violation, occurs when a program attempts to

write data past the bounds of a buffer due to a programming bug, causing adjacent

data to be overwritten. Frequently, this buffer lies on the stack, so the overwritten

data consists of local variables, return addresses, and register values from previous

stack frames, thus changing the behavior of the program in unintended ways. This

usually leads to a crash, but when exploited by an attacker, the input is crafted such

that a return address or local function pointer is overwritten by a value chosen by

the attacker, allowing the attacker to control which code gets executed [34].

Return addresses, function pointers, and other pointers which point to a code ad-

dress are the main targets of an overflow because they allow the attacker to directly

redirect control flow, and we refer to these as code pointers. Even if such a vulner-

ability is on the heap rather than on the stack, the attacker can still modify nearby

variables and maintenance pointers used by the memory allocator, and this is also

enough to let the attacker write malicious data anywhere in memory [13].

Modern compilers attempt to mitigate stack overflows by adding random canary

values to the stack between local variables and return addresses. These stack canaries

19

have their value checked on return, so if an attacker tries to overflow into a return

address, the canary will be overwritten as well and the overflow will be detected

[10]. This defense can be bypassed with a memory disclosure vulnerability that leaks

the canary value or by overflowing into a function pointer local variable rather than

a return address. The defense can also be bypassed by overflowing an exception

handling structure on the stack, since an incorrect canary value causes an exception

which will then be handled by code at a location of the attacker’s choice [44].

2.1.2 Use After Free

A use after free occurs when a program attempts to use memory after it has been

freed, also due to a programming bug. If an attacker can modify the data using the

freed pointer, then once the freed memory is reallocated, the attacker will be able

to overwrite the new structure and again cause unexpected behavior. A recent ex-

ploit using this technique allocates a variable size array using the freed memory and

uses the dangling pointer to corrupt the length field, thus creating a buffer overflow

and allowing the exploit to proceed as above [45]. Because this type of vulnerabil-

ity is caused by faulty timing rather than out of bounds, we refer to use after free

vulnerabilities as temporal memory violations.

2.1.3 Code Injection

The simplest method to obtain arbitrary code execution from a buffer overflow attack

is code injection. In this attack, the attacker fills the buffer with machine code

instructions, known as shellcode, and redirects the instruction pointer to execute the

provided shellcode [34]. This led to modern systems enforcing that pages are never

both writable and executable, a defense known as write xor execute (W ⊕ X) or data

execution prevention (DEP), and this has effectively defeated code injection attacks

[49].

20

Figure 2-1: Stack layout of a return to libc attack.

2.1.4 Return-to-libc

Unfortunately, this defense is not sufficient because the attacker can still gain control

of the stack and cause malicious behavior by executing only previously existing code;

this class of attacks is called code reuse attacks. Usually, libc is targeted because

of its varied access to system calls and its common inclusion in C programs. In a

return-to-libc attack, an attacker overwrites the return address with the entry point of

a function in libc such as system and additionally takes advantage of the calling

convention where arguments are passed on the stack. This allows the attacker to

execute the system function with an argument such as "/bin/sh", giving the

attacker a remote shell and leading to arbitrary code execution without code injection

[48]. We provide an example stack layout in Figure 2-1.

2.1.5 Return Oriented Programming

In return oriented programming (ROP), the reused code is at the individual instruc-

tion granularity rather than that of entire functions [41]. This type of attack chains

together short sequences of instructions followed by a return instruction, called gad-

gets, by corrupting the stack with multiple return addresses consisting of the entry

points of each gadget. Thus, a return oriented programming exploit can be thought

21

of as a program with these gadgets as basic instructions, and the stack pointer as-

sumes the role of the instruction pointer. For example, if we have the gadget pop

ebx; ret;, then an attacker can use this gadget to place an arbitrary value into the

register ebx since the attacker has full control over the stack, and when this gadget

is combined with the gadget mov eax, ebx;, then the attacker obtains full control

over register eax as well.

It has been shown that return oriented programming is Turing complete using the

gadgets provided in libc and many other common libraries [41]. In practice, only

a single function call is enough to cause malicious behavior, and often in practical

attacks the main target is the function mprotect, which allows the attacker to

remove (W ⊕ X) protection on injected code [39] [43].

2.1.6 Variations of Return Oriented Programming

Many variations of return oriented programming exist which use different gadget

spaces than the original technique or are exploited differently, allowing them to by-

pass defenses against standard ROP. Jump oriented programming (JOP) uses gadgets

that end in an indirect jump instruction rather than a return instruction and has been

shown to be Turing complete as well [5]. Sigreturn oriented programming (SROP)

requires only a single gadget corresponding to the end of the signal handing function,

as this function restores a user context using data supplied by an attacker. Finally,

counterfeit object-oriented programming (COOP) uses C++ virtual functions as gad-

gets and chains them by constructing an array of objects with carefully chosen vtable

pointers [37].

2.1.7 Address Space Layout Randomization

Address space layout randomization (ASLR) randomizes the virtual addresses of the

stack, heap, and code regions when loading an application. This makes it significantly

more difficult for an attacker to reuse code because they cannot redirect the instruc-

tion pointer to the desired gadget addresses, often causing the program to crash. This

22

version of ASLR is implemented on modern systems and is necessary for any attack

to bypass, though finer-grained implementations exist to provide additional security

[46].

Unfortunately, this type of defense is bypassable if the gadget addresses can be

leaked to the attacker. In standard ASLR, a single leaked address will reveal the

randomized offset for the entire region, allowing an attacker to infer the locations

of any desired gadget [3]. The simplest way to obtain such an address is a memory

disclosure vulnerability such as a buffer overread, where a program reads data past

the end of the buffer and discloses unintended information; one such example of this

type of vulnerability is the recent Heartbleed bug [22].

2.1.8 Side-Channel Attacks

It is possible to convert buffer overflow vulnerabilities into disclosure vulnerabilities

through side-channel attacks, where the attacker can infer information about the

program without directly receiving it. Side-channel attacks can be classified into two

types: fault analysis and timing [40]. In fault analysis attacks, information about the

program’s memory is disclosed by observing whether the program crashes.

One attack technique, Blind ROP [4], overwrites data on the stack one byte at

a time and can infer that a byte is unimportant or unchanged if no crash occurs,

so the value of all important bytes can be found. Once the return address is found

on the stack, memory can be scanned by redirecting the return address and again

observing the program’s behavior. In this type of attack, it is necessary that the

program restarts after a crash with the same randomized state, but this is often the

case with applications such as web servers.

Another method to infer a byte’s value is through timing: if the program contains

a loop whose number of iterations corresponds to a dereferenced pointer, then an

attacker can overflow the pointer and estimate the byte stored at that address by

measuring the program’s execution time, since the loop will execute more times if the

byte has a larger value [40]. We have an example of such a loop in Figure 2-2. This

type of attack requires the loop to have a measurable execution time and in general

23

Figure 2-2: A timing attack loop.

1 int n = 0;
2 while(n < *ptr) {
3 // loop body
4 n++;
5 }

will require more samples to reduce random variation, but is harder to detect because

no crash occurs.

2.2 Defenses to Code Reuse Attacks

We now evaluate previously proposed defenses to code reuse attacks with respect to

provided security and overhead. We say that a defense provides high security if no

known attacks exist, medium security if attacks exist but require specific conditions

for the attacker, and low security if any exploit can be modified to bypass the defense.

2.2.1 Code Diversification

Code diversification defenses randomly scramble the code so that it is more difficult

for the attacker to find useful gadget locations. These defenses can range from scram-

bling basic blocks to randomizing individual instructions, and this is implemented

through code rewriting at the compilation stage rather than determining a random

value at runtime [24] [52] [35] [23]. Similar to ASLR, code diversification defenses are

vulnerable to memory disclosure vulnerabilities, though an arbitrary read vulnera-

bility is required rather than a single address leak because of the additional entropy.

These defenses are also vulnerable to side-channel attacks because this allows buffer

overflow vulnerabilities to be converted into disclosure vulnerabilities [40].

24

2.2.2 Memory Safety

Memory safety defenses prevent the memory violation vulnerabilities from occurring

in the first place. There are two types of memory safety: spatial memory safety which

prevents out-of-bounds accesses and temporal memory safety which prevents use after

free accesses. Typically, spatial memory safety is implemented by storing base and

bounds information for every memory allocation and these bounds are checked on

every pointer dereference and updated when the pointer is updated. For temporal

memory safety, every memory allocation must also store a unique identifier so that if

the memory is freed and then reallocated to a different pointer, the identifier for that

memory will change and this can be checked on dereference.

The best current implementation of memory safety is SoftBound + CETS, which

uses a modified LLVM compiler to rewrite the source code to add the updates and

checks [31] [32]. This implementation is one of the strongest defenses against code-

reuse attacks, with the authors providing a Coq proof of security, and no bypasses

currently exist. Unfortunately, this defense has a very high memory and runtime

overhead because of the large metadata structure per pointer; the runtime overhead

can be as high as 300%. This implementation is not currently used because C is

typically used for low-level performance optimization; higher-level languages with

built-in memory safety can be used instead if performance is not an issue.

We note that the authors have also proposed HardBound, a hardware-based im-

plementation of spatial memory safety [15]. By adding specialized hardware to store

and check base and bounds structures, the runtime overhead was reduced to slightly

over 20%, though the memory overhead can still be as high as 200% in some cases.

It is possible that the runtime overhead can be reduced further with a to-be-released

extension by Intel, known as Memory Protection Extension (MPX), which adds sup-

port for bounds registers, bounds tables, and fast instructions which interact with

these [25].

25

2.2.3 Heuristic Defenses

Heuristic-based defenses attempt to identify some aspect of normal program execution

that is not present in typical ROP attacks and then add checks to ensure that this

property is satisfied. The kBouncer [36] and ROPecker [8] defenses use the fact that

the most useful gadgets tend to be short and that normal programs don’t have as few

instructions between calls and returns. They enforce this by using the Last Branch

Record (LBR), which stores a history of the last 16 control flow transfers taken, and

they enforce that the number of gadget-like transfers does not exceed some threshold.

While these defenses have very low overhead and do not require recompilation,

they have been shown to be bypassable because the gadget space is still quite large.

An attacker can flush the history of short gadgets by chaining long gadgets that do

not alter the ROP program’s state [6] [38] [14].

Another defense, ROPGuard, enforces that the stack pointer always points to the

expected stack memory region and that this region can never become executable [19].

This part of ROPGuard is easy to bypass with an arbitrary write vulnerability and

even the original authors mention that an attacker aware of ROPGuard can easily

defeat it.

2.2.4 Control Flow Integrity

Control flow integrity (CFI) defenses enforce that control flow transfers like calls and

returns always go to valid locations. If a function can only be called from a fixed set

of locations, then that function must return to the instruction immediately following

one of those call instructions [2]. In this way we can construct the control flow graph

(CFG) of a program with the basic blocks of the program as nodes and add a directed

edge from block A to block B if it is possible to transfer control flow from A to B.

The problem of constructing the exact CFG of a program is computationally

difficult because indirect function calls can go anywhere in the program, so knowledge

of the set of possible function pointer values is required. As a result, implementations

of control flow integrity often utilize approximations of the CFG and allow control

26

flow transfers that are not intended, and these extra edges often lead to a bypass.

The Data Structure Analysis (DSA) algorithm is the best scalable implementation

of CFG construction [29] and we believe that even the graphs constructed by this

algorithm may be too permissive. However, this defense can be made very efficient,

with runtime overhead of at most 8.7% in the Forward Edge CFI implementation

[47].

One technique which often augments CFI defenses is the shadow stack. Whenever

a return address is pushed onto the stack, a copy of that return addresses is pushed

onto a shadow stack somewhere else in memory, so if the original is ever corrupted

then this can be detected on return [12]. The use of a shadow stack completely

prevents all return oriented programming attacks, but other code pointers such as

function pointers are not protected at all and thus this defense is vulnerable to the

JOP and COOP variations of ROP [5] [37]. In addition, implementations of this

defense are vulnerable to attacks which can corrupt the shadow stack structure in

memory. The shadow stack does not generalize to other code pointer types because

return addresses are never modified once they are stored onto the stack, unlike other

code pointers, and it is difficult to determine whether a code pointer modification is

intended.

In the most coarse-grained implementations of CFI, valid return addresses only

need to follow a call instruction and call instructions must target the beginning of

a function. The Compact Control Flow Integrity and Randomization (CCFIR) [55]

and Control Flow Integrity for COTS Binaries (BinCFI) [56] defenses enforce both of

these properties while ROPGuard [19] and kBouncer [36] enforce only the first. These

constraints do reduce the gadget space for an attacker, but it has been shown that

enough call-preceded gadgets still exist to make attacks possible [21] [38] [14]. The G-

Free defense rewrites the code so that an attacker can only transfer control to function

entry points [33], but this does not stop even return-to-libc attacks and arbitrary

computation can still be obtained through the COOP attack [37]. In addition, G-

Free attempts to enforce this by storing the return addresses xor a random key, so

any memory disclosure will likely leak enough information such that an attacker will

27

be able to guess the random key.

The Cryptographically Enforced Control Flow Integrity (CCFI) defense attempts

to protect all code pointers from corruption by storing an authentication code through

encryption with a random key [30]. The key is stored in a secure register not used

in the code, so unless an attacker can guess the key, the attacker cannot forge the

authentication codes. This defense is not practical however because the encryption

method used is only 1 round of AES, and this can be easily broken if an encrypted

address is leaked. If more rounds of AES are used, the defense will become more

secure but will then have too high of an overhead to be useful.

2.2.5 Code Pointer Integrity

Code Pointer Integrity (CPI) is a recent compiler-based defense which enforces mem-

ory safety only on code pointers [27]. Because code pointers only make up a small

percentage of all pointers in a program, this reduces the overhead which makes mem-

ory safety defenses impractical. To protect the code pointers from being modified by

non-code pointers, all code pointers are moved to a separate region of memory called

the safe region.

CPI also offers safe stack and Code Pointer Separation (CPS) versions of CPI

which increase efficiency at the cost of security. The safe stack implementation only

separates code pointers stored on the stack to a new stack and the CPS implementa-

tion moves only code pointers to the safe region and does not enforce bounds checks.

Both safe stack and CPS are protected from traditional buffer overflows of non-

code pointers on the stack because the code pointers are separated in a different

region of memory and CPS is also protected from traditional overflows on the heap.

However, neither defense protects against the case where a code pointer overflows

into another code pointer and neither defense protects pointers to code pointers from

overflows, as in the COOP attack [37]. CPI is not vulnerable to this type of attack but

we will show that CPI is still vulnerable [17]. We perform a more detailed evaluation

of CPI in chapter 3.

28

Chapter 3

Evaluating Code Pointer Integrity

In the previous chapter we summarized proposed defenses to code reuse attacks as

well as their provided security guarantees and overhead. In this chapter, we take a

closer look at the Code Pointer Integrity defense and present the result that relying on

randomness to protect defense metadata is flawed [17]. We first describe the design

and implementation of CPI and then demonstrate an attack against CPI’s use of

randomness to hide code pointers.

3.1 Code Pointer Integrity

Recall that CPI aims to protect code pointers by moving them to a separate region

of memory, known as the safe region, and enforcing memory safety on this region

only [27]. In order to do this, CPI first performs a static analysis to identify which

pointers should be moved into the safe region, inserts code to perform bounds checks

and access the safe region, and protects the safe region from being accessed by data

pointers.

3.1.1 Static Analysis

CPI implements an LLVM pass which recursively identifies sensitive pointers as fol-

lows: all code pointers are sensitive and all pointers which may point to a sensitive

29

Figure 3-1: CPI safe region transformation.

pointer are sensitive. Pointers to sensitive pointers include pointers to structs which

have a sensitive pointer as a component.

It is difficult to identify all code pointers in a program, so CPI tries to be con-

servative when guessing whether a pointer is a code pointer. In addition to function

pointers, CPI also considers all char* and void* pointers as sensitive because these

tend to be used as generic pointer types that function pointers can be cast from.

3.1.2 Instrumentation

Once the set of sensitive pointers is identified, their values are moved to the safe

region and the old address is replaced by a unique identifier into the safe region.

Figure 3-1 demonstrates this transformation: the true address of the function pointer

process_user is moved to the safe region and the old pointer now contains its

index into the safe region. CPI also stores the base and bounds for every pointer in

the safe region in order to enforce memory safety.

If an attacker attempts to corrupt the offset and potentially overflow a differ-

ent code pointer, CPI will detect this because every sensitive pointer dereference is

checked against the base and bounds, so no pointer in the safe region can overflow

30

another pointer in the safe region. Currently, CPI only stores spatial memory safety

metadata, but the structure can be easily updated to contain a unique identifier for

each code pointer allocation to provide temporal memory safety as well.

CPI implements three types of safe region for mapping the identifier of a sensitive

pointer to its location in the safe region. In the simple table implementation, CPI

uses the key as a direct offset into the safe region. The lookup table implementation

is similar, but it uses the key as an offset into an auxiliary table which then identifies

the offset in the safe region. Finally, the hash table implements a hash map from key

to sensitive pointer. The simple table implementation uses significantly more virtual

memory space than the other two, but it is less expensive to maintain and requires

fewer memory accesses to access sensitive pointers. We primarily evaluate the simple

table implementation because it provides the best performance but show how our

attack can be adapted to the other implementations as well.

3.1.3 Safe Region Isolation

On 32-bit systems, CPI relies on segmentation to isolate the safe region from other

pointers. The safe region is in a different segment from the rest of the application

and is thus inaccessible from non-code pointers. Segmentation is no longer supported

on 64-bit systems, so CPI randomizes the base of the safe region. Because the virtual

address space is so large, CPI assumes that an attacker would crash many times

while trying to find the safe region due to referencing unmapped memory. While

these crashes would cause the exploit to be detected, we will show that it is not

necessarily the case that crashing is necessary to locate the safe region. In the next

section, we show that CPI is vulnerable to side-channel disclosure attacks on 64-bit

systems that allow an attacker to locate the safe region and bypass CPI.

31

3.2 Attack Methodology

3.2.1 Overview

Recall that CPI only protects code pointers from overflows; data pointer overflow

vulnerabilities are still possible. If an attacker is able to determine the base address

of the safe region, the attacker is then able to use a data pointer vulnerability to

modify code pointers and bypass CPI.

In this section, we show that we are able to leak the safe region’s address through

fault analysis and timing side-channel attacks using a data pointer vulnerability. We

also demonstrate a proof-of-concept exploit against the Nginx web server compiled

with CPI and show that we are able to bypass CPI in 9 hours without any crashes and

in 6 seconds with 13 crashes. We note that the original prototype of CPI released did

not actually implement randomization and instead was mapped to a fixed address so

we modified CPI to use a randomized mmap instead in order to attack the strongest

implementation.

In order to bypass CPI, our attack proceeds in three phases. First, we must

launch a timing side-channel attack by overflowing a data pointer which points to a

value correlated to execution time. In our proof-of-concept exploit, the byte pointed

to controls the number of iterations of a loop in the code. By overwriting the data

pointer with an arbitrary address, we are able to leak information about any byte in

memory. We must then calibrate the timing side-channel attack by gathering timing

data. We do this by gathering a large number of response times for byte value 0 and

byte value 255 and from these two values we can interpolate to estimate the value of

any byte.

Second, we use the timing attack to scan memory for the beginning of the safe

region. In this step we take advantage of the virtual memory layout of the target

program and are able to guarantee a starting address for the scan that does not

crash. We can then safely scan for the beginning of the safe region without crashing

or we can scan more quickly at the cost of risking crashes. We use the timing attack

to identify known signatures of bytes that allow us to determine our offset in the safe

32

Figure 3-2: Timing attack loop in nginx_http_parse.c.

for (i = 0; i < headers->nelts; i++)
...

region.

Finally, once we have identified the base of the safe region, we are then able to

find the true address of any code pointer in the safe region. We then overwrite a

function pointer to the beginning of a ROP chain and overwrite its base and bounds

information so that CPI does not detect the memory violation.

3.2.2 Timing Side-Channel Attack

In order to launch a timing side-channel attack, we first require a data pointer vulner-

ability because CPI does not enforce memory safety bounds checks on these pointers.

We can then overflow into a pointer used in a loop as in the following block of code.

We see that the loop will iterate *ptr times, so if ptr points to a larger byte then

the loop will take more time to execute. If the loop has a significant performance

cost, then an attacker can measure this difference and estimate any byte in memory

by overflowing ptr with any desired address. Figure 3-2 is the loop used by our at-

tack: the pointer headers is dereferenced after adding a fixed offset, so the number

of iterations in the loop satisfies our requirements for the timing attack.

We model the program’s execution time as follows: we have a base execution

time 𝑇𝑏𝑎𝑠𝑒 which corresponds to the execution time of the program not counting the

loop, we have the time per loop iteration 𝑇𝑙𝑜𝑜𝑝, and we have a random term 𝜖 which

corresponds to the random variance in the response time and has mean 0. If the byte

value is 𝑥, then we obtain the following equation for the response time 𝑇 :

𝑇 = 𝑇𝑏𝑎𝑠𝑒 + 𝑇𝑙𝑜𝑜𝑝 · 𝑥+ 𝜖.

In order to reduce 𝜖 compared to the other terms, we only take the fastest 1% of

samples, as recommended in [11]. We then sum over all 𝑛 samples left, obtaining

33

Figure 3-3: Nginx timing measurements.

0 20 40 60 80 100
Sample Number

0

200

400

600

800

1000

1200

1400

1600

1800
Cu

m
m

ul
at

iv
e

Di
ffe

re
nt

ia
l D

el
ay

 (m
s) byte0

byte50
byte100
byte150
byte200
byte250

∑︁
𝑖

𝑇𝑖 = 𝑛 (𝑇𝑏𝑎𝑠𝑒 + 𝑇𝑙𝑜𝑜𝑝 · 𝑥) +
∑︁
𝑖

𝜖𝑖.

As 𝑛 gets large, the RHS is dominated by the first term, so we can drop the error

term. If we take samples at a byte where we know 𝑥 = 0, then we can solve for 𝑇𝑏𝑎𝑠𝑒

and obtain

𝑇𝑏𝑎𝑠𝑒 =
1

𝑛

∑︁
𝑖

𝑇𝑖.

We can then take samples at a known byte where 𝑥 = 255 and solve for 𝑇𝑙𝑜𝑜𝑝,

obtaining

𝑇𝑙𝑜𝑜𝑝 =
1

255

(︃
1

𝑛

∑︁
𝑖

𝑇𝑖 − 𝑇𝑏𝑎𝑠𝑒

)︃
.

While any nonzero value of 𝑥 would be sufficient, we choose 𝑥 = 255 to maximize

the cumulative delay relative to the error term as this is the maximum byte value,

so we are able to obtain the most accurate estimate possible. Figure 3-3 shows our

cumulative delay timing measurements which demonstrate dependence on byte value.

34

Figure 3-4: Virtual memory layout of a CPI-protected application.

stack
higher memory addresses

lower memory addresses

stack gap (at least 128MB)

max mmap_base

random mmap_base

linked libraries

min mmap_base =
max-2^28*PAGE_SIZE

min mmap_base -
size of linked libraries

max mmap_base - 2^42 -
size of linked libraries

safe region
2^42 bytes always allocated

dynamically loaded
libraries,

any heap allocations
backed by mmap

end of mmap region

More details regarding the timing attack and choice of parameters can be found

in [40]. For the subsequent parts of the attack, we abstract this timing attack as a

method for estimating the value of any byte in memory with some error threshold.

We note that executing the timing attack was the most difficult part of the proof-

of-concept exploit because it is difficult to get an accurate estimate when the loop’s

execution time is small.

3.2.3 Virtual Memory Layout

Once we have calibrated the timing attack, we will use it to determine the base address

of the safe region. To do this, we must first analyze the virtual memory layout of the

program and determine exactly how the safe region is mapped into memory.

The safe region is initialized very early in the program and is mapped into vir-

tual memory through anonymous mmap immediately after the linked libraries are

mapped in. Figure 3-4 shows the high address virtual memory layout for a program

compiled with CPI on a 64-bit machine. We see that the largest possible mmap

35

base immediately follows the stack gap, and a randomized offset is subtracted from

this 𝑚𝑎𝑥_𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 due to ASLR to obtain the true 𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒. This is where

mmap begins allocating virtual addresses and does so contiguously, growing down-

wards. Within the mmap region starting at 𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒, the linked libraries are

loaded first with the CPI safe region immediately following.

Note that the memory between the stack and 𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 is not mapped and

will cause a crash if dereferenced. In addition, each of the linked libraries loaded in

allocates a 2MB library gap between the text and data segments. This gap has no

read or write permissions and will cause a crash if dereferenced, so the library region

is not entirely safe to dereference if we wish to avoid a crash.

3.2.4 Finding the Safe Region

The libraries loaded in are the same on many systems and we assume that the at-

tacker knows this layout in advance with the exception of the randomized offset which

determines 𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 using the equation

𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 = 𝑚𝑎𝑥_𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒− 𝑎𝑠𝑙𝑟_𝑜𝑓𝑓𝑠𝑒𝑡.

The ASLR offset is measured in pages and has an entropy of 228 in most Linux

implementations, so with a standard page size of 212 bytes, the maximum possible

𝑎𝑠𝑙𝑟_𝑜𝑓𝑓𝑠𝑒𝑡 is 240 bytes. In the simple table implementation, the safe region has

a size of 242 bytes which is larger than the maximum possible offset, so the address

𝑚𝑎𝑥_𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 − 240 − 𝑙𝑖𝑛𝑘𝑒𝑑_𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠_𝑠𝑖𝑧𝑒 is guaranteed to be mapped and

point to the safe region. However, the safe region is sparse and is mostly filled with

zeros from the anonymous mmap initialization, so if we read a random byte from the

safe region we will likely obtain no useful information about the offset.

We can however orient ourselves if we can read bytes from the linked library

region, as the code segments are the same on many systems and contain unique byte

sequences for identification. If we can obtain the offset of one of the libraries, this

allows us to compute the ASLR offset and thus obtain the base address of the safe

36

region.

We can thus perform the following attack to reach the linked library region: start-

ing at the known safe address 𝑚𝑎𝑥_𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒−240− 𝑙𝑖𝑛𝑘𝑒𝑑_𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠_𝑠𝑖𝑧𝑒, scan

bytes going upwards until we reach the linked library region. While this attack will

not crash, we will need to scan 1
2
· 240 = 239 bytes in expectation, and this is way too

slow.

We can optimize this attack by noting that mmap is page-aligned, so rather than

scanning individual bytes we can scan by multiples of the page size. In fact, we can

do better than this because we don’t necessarily need to scan the last page in the

linked library region: any page will do, so we can scan by multiples of the linked

library region size. Unfortunately, with this strategy we may crash if we deference

one of the library gaps and there are some zero pages in the data segments, so this

strategy doesn’t quite work and the best we can do is by multiples of the size of the

last segment loaded, which is the libc code segment. The size of this segment is

approximately 221 bytes, so our expected number of page scans is now 239

221
= 218,

which is still slow, but will finish in a reasonable amount of time.

To determine whether a page belongs to the safe region or libc, we can carefully

choose a small set of byte offsets to scan relative to the page base and sum their

estimations. We have analyzed the individual pages in the libc code segment and

determined that at least one of the bytes at offsets (1248, 2176) is nonzero for every

page in libc, so if the sum of estimations is nonzero then we have found a page in

libc. The minimum possible sum of the bytes at these two offsets is 8, which is quite

small, so we may obtain a false negative due to estimation error if we are unlucky

enough to scan this page. It is better to instead use the triple (704, 2912, 4000) which

has minimum sum 56, since this makes it easier for the timing attack estimation to

distinguish a libc page from a safe region page and not as many samples are required

per byte to obtain enough accuracy. A false positive merely slows down our attack

because we can detect this by scanning more bytes but a false negative would be

disastrous. In this case, we would mistakenly identify the libc page as a safe region

page and skip over this segment, causing a dereference of the libc library gap.

37

Figure 3-5: CPI attack strategies.

4th page scan

5th page scan

…

…

libc

safe region

First dereference loc.
1st page scan

Si
ze

 L

2nd page scan

3rd page scan

Nth page scan
libc found!

…

L

L

L

L

L

4th page scan

5th page scan

First dereference loc.
1st page scan

2nd page scan

3rd page scan

Kth page scan
 libc found!

…

MMAP base

…

Crash!

Crash!

…

libc

safe region

MMAP base

Non-crashing scan strategy Crashing scan strategy

3.2.5 Finding the Safe Region with Crashes

We can reduce the number of page scans required to locate libc if we allow the

attacker to crash some small number of times. Typically in web servers if a crash oc-

curs then the parent process will restart the server without rerandomizing its address

space. We can take advantage of this because if we guess that libc is located at

address 𝑥, a crash tells us that our guess 𝑥 is too high while no crash yields that 𝑥

is too low, so we can perform a binary search. A naive binary search does not quite

work, however, because it is possible for a guess to not crash if we guess a mapped

address in the linked library region above the libc code segment.

To handle this case, we note that all of the other mapped library regions are

very close to libc, so even if we do not locate libc exactly, we can find an address

which is very close. When we execute the naive binary search, we always maintain the

invariant that our high address causes a crash while our low address does not cause a

crash. Figure 3-5 demonstrates the difference between the non-crashing strategy and

the crashing strategy.

38

If we let 𝑎𝑑𝑑𝑟𝑚𝑎𝑥 be the high address of the binary search interval and 𝑎𝑑𝑑𝑟𝑚𝑖𝑛

be the low address, then it is guaranteed that 𝑎𝑑𝑑𝑟𝑚𝑖𝑛 − 𝑙𝑖𝑛𝑘𝑒𝑑_𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠_𝑠𝑖𝑧𝑒 is

inside the safe region and its distance from the upper boundary of the safe region

is at most 𝑎𝑑𝑑𝑟𝑚𝑎𝑥 − 𝑎𝑑𝑑𝑟𝑚𝑖𝑛 + 𝑙𝑖𝑛𝑘𝑒𝑑_𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠_𝑠𝑖𝑧𝑒. We can thus run the binary

search until it is the case that 𝑎𝑑𝑑𝑟𝑚𝑎𝑥 − 𝑎𝑑𝑑𝑟𝑚𝑖𝑛 ≤ 𝑙𝑖𝑛𝑘𝑒𝑑_𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠_𝑠𝑖𝑧𝑒 and then

use the scanning strategy from the previous section beginning at address 𝑎𝑑𝑑𝑟𝑚𝑖𝑛 −

𝑙𝑖𝑛𝑘𝑒𝑑_𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠_𝑠𝑖𝑧𝑒. We also note that this scanning strategy can be done purely

with fault analysis instead of the above timing method by scanning pages until a

crash occurs.

In the binary search phase, we need to reduce a region of 240 bytes to a region

of 𝑙𝑖𝑛𝑘𝑒𝑑_𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠_𝑠𝑖𝑧𝑒 ≈ 8 · 𝑙𝑖𝑏𝑐_𝑠𝑖𝑧𝑒 ≈ 224 bytes. It follows that the number of

binary search guesses required is log 240

224
= 16, and in expectation 1/2 of these will

crash, for a total of 8 crashes in expectation. Afterwards, we scan from 𝑎𝑑𝑑𝑟𝑚𝑖𝑛 −

𝑙𝑖𝑛𝑘𝑒𝑑_𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠_𝑠𝑖𝑧𝑒 which is guaranteed to be at most distance

𝑎𝑑𝑑𝑟𝑚𝑎𝑥 − 𝑎𝑑𝑑𝑟𝑚𝑖𝑛 + 𝑙𝑖𝑛𝑘𝑒𝑑_𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠_𝑠𝑖𝑧𝑒 ≤ 16 · 𝑙𝑖𝑏𝑐_𝑠𝑖𝑧𝑒

from the upper boundary of the safe region, so at most 16 more page scans are

required, and these are guaranteed to not crash. In the proof-of-concept exploit, this

stage of the attack required 12 crashes.

We note that midpoint binary search is not necessarily optimal for minimizing the

number of crashes and provide a full analysis in [17].

3.2.6 Finding the Base Address of libc

Regardless of which strategy we used to scan for libc, we now have the address of a

random page within libc and we need to determine the base address of libc while

minimizing the number of bytes on the page that we will need to estimate. In the

original attack as in [40], the library being leaked was randomized to the byte level,

so the best the attacker could do was to scan a continuous sequence of bytes starting

at the known address, but we can do better here because the library has only been

39

translated as a whole and because we are guaranteed that the randomized offset is

page-aligned. The goal of this part of the attack is to identify a unique signature of

bytes on the page that allows us to distinguish it from all of the other pages of libc

in the presence of estimation error. Because we need greater accuracy in this part of

the attack compared to checking if a page contains nonzero bytes, significantly many

more samples are needed per byte in the timing attack, so it is important to scan as

few as possible.

To handle estimation error, we will use the Hamming distance metric. Formally,

if we use the timing attack to estimate the bytes at offsets 𝑜1, 𝑜2, ..., 𝑜𝑘 relative to the

page base, then we obtain a length 𝑘 vector 𝑥 of estimates. We compare this vector

to the reference vectors 𝑟1, 𝑟2, ..., 𝑟𝑁 , where 𝑟𝑖 is the length 𝑘 vector constructed from

the bytes at the same offsets using page 𝑖 of libc and 𝑁 is the number of pages in

libc. We say that page 𝑖 is a potential match if 𝑑𝑖𝑠𝑡(𝑟𝑖, 𝑥) ≤ 𝐷, for some distance

threshold parameter 𝐷. We wish to minimize 𝑘 such that at most one of the 𝑟𝑖 is a

match. If none of the 𝑟𝑖 match, then we have identified a false positive.

In our analysis of libc, we found that 𝑁 = 443 and that the minimal Hamming

distance between any two pages is 121, thus the maximal threshold 𝐷 that will guar-

antee at most one match is 121−1
2

= 60. In our proof-of-concept exploit, we found that

𝐷 = 50 was sufficient to handle any estimation error.

We now propose a greedy algorithm for determining choice of offsets. It is likely

NP-hard to determine the optimal choice of offsets but we can still show that even in

the worst case we will not need to scan many bytes. At each step of the algorithm,

we maintain a set of candidate reference pages 𝑅 which match all of the estimates we

have seen so far. In order to determine which offset should be selected next, we pick

the offset which maximizes the number of candidate pages we can eliminate from 𝑅

when we obtain the worst possible estimate. Once we have chosen an offset, we use

the timing attack to obtain an estimate at that offset and eliminate all pages in 𝑅

that do not match at that offset. We provide pseudocode below:

function Count_Elims(𝑜𝑓𝑓𝑠𝑒𝑡, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)

𝑠𝑐𝑜𝑟𝑒← 0

40

for all 𝑝𝑎𝑔𝑒 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do

if |𝑝𝑎𝑔𝑒[𝑜𝑓𝑓𝑠𝑒𝑡]− 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒| > 𝐷 then

𝑠𝑐𝑜𝑟𝑒← 𝑠𝑐𝑜𝑟𝑒+ 1

end if

end for

return 𝑠𝑐𝑜𝑟𝑒

end function

function Next_Offset(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)

return argmax𝑜𝑓𝑓𝑠𝑒𝑡min𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒Count_Elims(𝑜𝑓𝑓𝑠𝑒𝑡, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)

end function

function Find_Libc

𝑅← {𝑝𝑎𝑔𝑒1, 𝑝𝑎𝑔𝑒2, ..., 𝑝𝑎𝑔𝑒𝑁}

while |R| > 1 do

𝑜𝑓𝑓𝑠𝑒𝑡← Next_Offset(𝑅)

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒← Timing_Attack(𝑜𝑓𝑓𝑠𝑒𝑡)

for all 𝑝𝑎𝑔𝑒 ∈ 𝑅 do

if |𝑝𝑎𝑔𝑒[𝑜𝑓𝑓𝑠𝑒𝑡]− 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒| > 𝐷 then

𝑅← 𝑅− {𝑝𝑎𝑔𝑒}

end if

end for

end while

return 𝑅

end function

To evaluate how many offsets we will need in the worst case, we would like to be

able to test this algorithm with all possible sequences of estimates. We would however

obtain a branching factor of 256 at each offset which quickly becomes infeasible to

compute, so we apply approximations and get a slightly looser upper bound.

To reduce the branching factor, we choose a pivot 𝑏 and distinguish between only

41

2 cases: either the estimate is at most 𝑏 or it is greater than 𝑏. If we let 𝑅1 be the

set of pages in 𝑅 that have byte value at most 𝑏 +𝐷 and 𝑅2 be the set of pages in

𝑅 that have byte value at least 𝑏 + 1 − 𝐷, then no matter what we obtain as our

estimate, the new candidate set will be a subset of either 𝑅1 or 𝑅2. It follows that if

the worst case for 𝑅1 takes at most 𝑛1 offsets and the worst case for 𝑅2 takes at most

𝑛2 offsets, then the worst case for 𝑅 will take at most 1 + max(𝑛1, 𝑛2) offsets. This

lets us recurse on 𝑅1, 𝑅2 and obtain an upper bound on the number of offsets we will

need to check. In our analysis we chose 𝑏 to minimize max(|𝑅1|, |𝑅2|), similar to the

greedy algorithm.

Using this method, we proved that for 𝐷 = 50, at most 13 estimates will be

required to uniquely identify the page regardless of what values for the estimates we

obtain.

3.2.7 Finding the Base Address of libc with Crashes

If we allow crashes, then this problem becomes extremely trivial with a fault-analysis

attack. Starting at our address in libc, we simply scan one page at a time until

we obtain an address 𝑥 such that 𝑥 does not crash but 𝑥 + 𝑃𝐴𝐺𝐸_𝑆𝐼𝑍𝐸 does.

It follows that 𝑥 must belong to the last page in libc, so we can obtain the base

address of libc by subtracting off the known size of libc. This method requires

exactly 1 crash and was used in the proof-of-concept exploit due to greatly speeding

up the attack. Note that although there may be many page scans that do not crash,

we only need one sample per address because there is no variance compared to the

timing attack.

3.2.8 ROP Attack

Once we have determined the offset of libc, this allows us to compute the random-

ized mmap offset due to ASLR and this yields the base address of the safe region. At

this point we have effectively bypassed CPI: we have completely determined CPI’s

hidden state for hiding the location of function pointers, so we can now determine

42

the new address of any function pointer in the program. We can thus overwrite a

data pointer to point to a function pointer’s address in the safe region and corrupt it

to point to a ROP chain as well as corrupting the bounds structure so that CPI does

not detect the corruption with a bounds check.

3.3 Discussion

While the version of CPI we attacked has several implementation flaws, they are

difficult to patch and we believe that CPI’s use of randomness to hide secrets in

memory is fundamentally insecure.

One exploitable aspect of CPI was the use of contiguous mmap which ended up

placing the safe region next to libc. Even if a non-contiguous mmap is used which

places the safe region at a random address in the full address space, there still is

not enough entropy and an attacker can brute force the location. In 64-bit systems,

while there are 48 bits of address space, approximately only 46 are available for use.

With a mapped region of size 242, the probability that an attacker guesses an address

in the safe region is 242

246
= 1/16, so if the program does not rerandomize its address

space, at most 16 guesses will be required to find an address in the safe region. We

can then apply the binary search strategy to locate the edge of the safe region and

obtain its base address, again bypassing CPI. We also note that non-contiguous mmap

is discouraged in the official documentation: “The availability of a specific address

range cannot be guaranteed, in general [1].”

To mitigate the brute force attack, we might try to use a smaller safe region size,

as in the hash table implementation. We found that CPI required up to 233 bytes for

the hash table on the SPEC benchmarks, thus requiring at most 246

233
= 213 crashes to

locate the safe region. This is still a weak security guarantee and we note that this

number is close to the number of crashes required in the Blind ROP attack [4].

We can also consider an implementation of CPI that does not use a contiguous

safe region, as in the lookup table. In this implementation, the safe region is broken

up into subtables with a single master table which maps key to subtable index, and

43

each of these tables is mapped to a different region of memory. The total size of

all subtables will need to be at least 233 bytes to contain all sensitive pointers, so

even in this case we can still leak a subtable address. Even if we do not know which

pointers this subtable corresponds to, we can corrupt all of the pointers in this region

to point to the ROP chain, similar to a heap spraying attack. We also note that this

implementation of CPI does not work in the prototype and would likely introduce

significant overhead due to the two-level lookup and lack of locality.

We note that since we have published our attack, the CPI team has updated their

prototype with a Software Fault Isolation [51] based implementation [28]. This version

of CPI no longer uses randomness to protect the safe region from other pointers and

is thus not vulnerable to this attack.

44

Chapter 4

Tagged Architectures

The fundamental cause of code reuse attacks is that systems are unable to distinguish

legitimate code pointers from attacker-corrupted ones, and the diversity of ROP-

style attacks strongly suggests that an attacker-controlled code pointer is sufficient to

obtain remote code execution. We thus believe that code reuse defenses should focus

on protecting code pointers rather than mitigate potential exploits at a later stage.

Ideally, we would like to be able to add a check on every pointer dereference to ensure

that overflows do not occur in the first place, but as we have seen with SoftBound

[31] the overhead is too high. However, if even one data pointer is unprotected, it can

be used in an overflow, so we must assume that the attacker will be able to write to

arbitrary memory.

CPI proposed the idea to instrument integrity metadata for only code pointers.

The metadata would not be updated if a code pointer is corrupted and we would only

have to check the metadata on code pointer dereferences, which occur significantly

less frequently [27].

Unfortunately, current software-based defenses are unable to protect regions of

memory containing defense metadata without significant overhead. If we do not

add a check on every pointer dereference, then an attacker with an arbitrary write

vulnerability can corrupt both the code pointer and the metadata, as in our attack

on CPI [17], and thus bypass the integrity check.

In order to solve this problem, we propose modifying the hardware by adding tags

45

to every word of memory. These tags can be used to maintain information about

the corresponding memory and can be protected from an attacker by making the

tag memory unaddressable, so they cannot be corrupted. The tags can be updated

in parallel with normal program execution, thus we can update and check tags with

little overhead.

In this chapter, we first propose a secure method for verifying integrity of code

pointers using a tagged architecture. We then compare to previous hardware-based

defenses with the conclusion that our method is able to provide comparable security

guarantees while significantly reducing memory overhead and increasing compatibility

by reusing existing hardware.

4.1 Design

4.1.1 Computation Model

In standard computation, we can abstract every instruction as a mapping. The

inputs of this mapping consist of the input registers, the current program counter,

and possibly a word of memory. The outputs consist of the value for the destination

register or destination word of memory, the new program counter, and possibly a trap

signal. For example, an addition instruction would define the output register value

to be the sum of the two input register values.

In tagged architecture computation, the inputs now consist of tagged words with

data and tag components rather than standard words. We thus define two mappings

for every instruction: one for the data components, and one for the tag components.

The data component mapping is the same as in standard computation, but the tag

component mapping can vary based on what constraints are being enforced. We can

think of this model as computing on the data component normally while updating

information about the tags simultaneously. We refer to the tag component mapping

as a policy.

46

Figure 4-1: Tagged Architecture Buffer Overflow.

4.1.2 Example Policy

Suppose that we have two types of tags: a return address (RA) tag which marks the

associated word as a return address and a raw data tag for everything else. The only

way to create a return address tag is from the call instruction, and the return address

pushed onto the stack by the hardware will be marked with the RA tag. On a return

instruction, the tag is checked and if the RA tag is not present the program will trap.

In the case where the return address may need to be moved to a different address,

the RA tag will be propagated on load and store instructions but all arithmetic will

result in a raw data tag.

With this policy, if an attacker is able to corrupt memory from a buffer overflow,

the injected ROP program will contain only raw data tags, as illustrated in Figure

4-1. On a return instruction, because the RA tag is not present, a trap will occur

and the attacker will not be able to modify the control flow of the program.

4.1.3 Ideal Policy

Of course, it is not sufficient to protect only return addresses, and we must protect

other code pointer types as well. Our ideal policy would provide two more tag types for

function pointers and jump targets and check them on calls and jumps, respectively.

We can propagate these tags similarly to return addresses except that we allow limited

pointer arithmetic rules as follows: addition or subtraction of a code pointer and data

yields a code pointer, but other types of arithmetic would clear the code pointer bit.

47

With this policy, it would be impossible for an attacker to forge a code pointer of any

kind.

In fact, we can consider an even stronger policy which provides a tag bit for all

pointers, not just code pointers, thus preventing all pointers from being forged. This

would prevent attacks which corrupt pointers to code pointers such as the COOP

attack [37] and make it impossible for an attacker to modify arbitrary memory, since

the attacker would not be able to corrupt a pointer to point to the desired location

to be overwritten. While it is still possible for an attacker to corrupt data local to an

overflow, code reuse attacks are entirely prevented.

The advantage of these two policies over previous schemes is that both policies

require very few tag bits per word. Thus, our approach not only has a very low

memory overhead but also pays a smaller performance cost in caching tags due to the

larger ratio of cache line size to tag size.

Unfortunately, both policies require compiler support because the hardware can-

not initialize the correct tags, and compiler support is currently beyond the scope of

our project. In the compilation stage, the information regarding which words cor-

respond to pointers is lost, so both of these policies are more difficult to implement

than the initial return address policy.

4.2 Our Approach

We now show how we can implement our tagged architecture model by reusing existing

hardware components with low overhead.

4.2.1 Extending Memory

The simplest way to add tags to memory is to extend the word size. In this approach,

the word size is incremented by the tag size and the tags are stored alongside the

original value. For example, if we wish to extend a 64-bit word with an 8-bit tag, we

extend the word size to 72 bits and treat the first 64 bits as the value with the last 8

bits as the tag. With this method, it is easy to perform operations on both the word

48

Figure 4-2: Tagged architecture memory layouts.

and tag simultaneously because they are adjacent in memory.

Unfortunately, this method is not practical because too many components would

need to be changed to support the extended word size. We can mitigate this by

instead allocating a region of shadow memory to store the tags while extending only

the register word size. When a word is accessed from memory a second access for

the tag becomes necessary, so this approach is not as efficient as extending the word

size, though we will show how this can be mitigated with caching. The tag memory

still has the original word size with each word containing several tags, so we do not

have to extend the word size for the entire system and can reuse existing components.

Figure 4-2 demonstrates the two memory layouts for a 64-bit word augmented with

an 8-bit tag.

4.2.2 Tag Retrieval

In a shadow memory architecture, a naive implementation requires an extra memory

access to retrieve tags. To mitigate this, we implement word-extended L1 and L2

caches and in addition introduce a tag cache as a miss handler for the L2 cache. With

this cache architecture, an L1 or L2 cache hit would not require an extra memory

access. Figure 4-3 illustrates our changes to the cache hierarchy.

If we miss in both L1 and L2 caches, we will need to go to main memory and the

49

Figure 4-3: Tagged architecture cache hierarchy.

extra access is significantly slower, but we can sometimes avoid it with the tag cache.

The tag cache only contains tags, so with a 64-bit word and an 8-bit tag, a cache

line will contain a factor of 8 more tags than the other caches for the same amount

of memory. Unfortunately, regardless of whatever cache hierarchy we use, we cannot

avoid paying the cost of an extra memory access for compulsory misses, and we fully

evaluate the cache overhead in section 6.3.

4.2.3 Tag Computation

To perform computations on the tags efficiently, we extend the register file to add

tags and augment the ALU with a tag processing unit, which we illustrate in Figure

4-4. If the ALU takes input registers 𝑟1, 𝑟2, and potentially a value from memory

𝑚, the tag unit in parallel takes as input tag of 𝑟1, tag of 𝑟2, and maybe the tag on

𝑚 and it computes an output tag for either the destination register or destination

word of memory. The tag unit in addition may output a trap signal when a security

violation is detected.

With this model, because the tag unit computation is done in parallel with the

ALU, the overhead of computing the new tag is small. In addition, all tag unit

computation is completely independent of the ALU, so this model will be compatible

with existing binaries and there is no need for the tags to be addressable from memory,

50

Figure 4-4: Tag processing unit.

A
L
U

Data

Tag Tag
Unit

Register File
Operand 1

Operand 2

Instruction
PC

Tag 1
Tag 2

Result Data

Result Tag

Trap Signal
Handler Address

Instruction

so even with powerful memory vulnerabilities an attacker cannot directly corrupt the

tags.

4.3 Previous Work

We now examine alternate hardware-based defenses against code reuse attacks and

compare to our proposed policy. We evaluate each defense with respect to two metrics:

memory overhead and compatibility, as all defenses presented here are believed to be

secure. Figure 4-5 summarizes our comparison.

4.3.1 HardBound

The HardBound defense aims to enforce spatial memory safety using base and bounds

pointer structures [15]. In this defense, every word of memory has a 1-bit tag which

determines whether that word is a pointer. In addition, words that have this bit

set also include base and bounds in a separate tag. This defense uses shadow tag

space to store the tags with an L1 tag cache separate from both instruction and data.

The tag updates are instrumented through compiler support which adds setbounds

instructions and the checks are done purely in hardware.

51

Figure 4-5: Comparison of Hardware-Based Defenses.

This policy does provide slightly stronger security guarantees than our policy due

to all overflows being prevented. However, the memory overhead for this policy is very

significant, requiring almost 200 percent extra user pages on one test case. This policy

is compatible with existing source code and does reuse existing hardware components,

though lack of compatibility with binaries not compiled with the HardBound compiler

is a slight downside.

4.3.2 CHERI

The Capability Hardware Enhanced RISC Instructions (CHERI) architecture is very

similar to HardBound [9]. CHERI tags words of memory with 256-bit capability

structures rather than base and bounds and uses the same 1-bit tag to mark which

words have a corresponding capability. These capabilities enforce spatial and tem-

poral memory safety in addition to finer grained control policies. While CHERI

enforces stronger guarantees than HardBound, it suffers from the same compatibility

and memory overhead issues.

One of the contributions of [9] is to classify idioms in C which cause issues for static

52

analysis such as storing pointers in ints or performing bitwise masking operations on

pointers. These idioms are problematic for any tagging scheme which attempts to

enforce type constraints.

4.3.3 PUMP

The Programmable Unit for Metadata Processing (PUMP) is very similar to our

tagged architecture modifications in that both systems implement a method for en-

forcing custom tag policies [16]. The PUMP architecture augments every word with

a 64-bit tag to support policies with an arbitrary number of tag bits, as tags can

represent pointers to larger tag structures. A significant advantage of the PUMP ar-

chitecture is that policies are programmed in software but enforced at the hardware

level, allowing for customization.

Unfortunately, the PUMP has both high memory overhead and low compatibility.

The 64-bit tag extension for every word of memory makes reusing existing hardware

difficult and will likely impact cache performance as well if a shadow memory scheme

is used. This tag also doubles the word size and thus incurs a large memory overhead

of at least 100 percent, though the memory overhead may be larger if more than 64

tag bits are needed. We note that the PUMP architecture does do very well in terms

of runtime overhead, with a 10 percent runtime overhead claim, so the idea of using

a tagged architecture to enforce security is indeed possible to do efficiently.

53

54

Chapter 5

Taxi: A Minimal Secure Tagged

Architecture

We now describe Taxi, our tagged architecture prototype on which we can evaluate

our security policies. Taxi, tagged C, is a modified instruction set simulator for the

open-source RISC-V architecture [54] which we have extended to support tags. In this

chapter we primarily discuss our policies for implementing security and we evaluate

them on our prototype in the next chapter.

5.1 RISC-V Architecture

We have chosen to extend the RISC-V architecture because it is open-source and

because both software and hardware implementations are available, though RISC-V

is still in its early stages [54]. In RISC-V, the instructions are 32-bit fixed-length, so

a misaligned instruction pointer will not create unintended instructions. In addition,

RISC-V is a reduced instruction set architecture, making it easier to modify and

evaluate.

RISC-V provides an ISA simulator named spike [53], and this the primary com-

ponent of Taxi. In addition, RISC-V provides a port of the Linux kernel and versions

of both the gcc and llvm compilers, and we have modified these as well. Our full

source code is available at https://github.com/riscv-mit [18].

55

https://github.com/riscv-mit

Figure 5-1: Taxi Tagged Word Structure.

1 typedef uint64_t reg_t;
2 typedef uint8_t tag_t;
3 #define MEM_TO_TAG_RATIO (sizeof(reg_t) / sizeof(tag_t))
4

5 typedef struct {
6 reg_t val;
7 tag_t tag;
8 } tagged_reg_t;

Figure 5-2: Taxi Tag Memory Initialization.

1 mem = (char*) malloc(memsz);
2

3 tagsz = memsz / MEM_TO_TAG_RATIO;
4 tagmem = (char*) malloc(tagsz);
5 memset(tagmem, TAG_DEFAULT, tagsz);

5.1.1 Tag Extension

With a word length of 64 bits, we decided to implement an 8-bit tag because we

wanted to be conservative with how many tag bits we would need and because this

simplifies the implementation, as a byte is the smallest addressable unit of memory.

To store the tags, we add a shadow memory region which simulates physical memory

separate from the original memory region. This is illustrated in Figures 5-1 and 5-2,

respectively. The shadow memory region is currently not addressable through virtual

memory: we have considered adding mapping them to read-only virtual pages to

give the operating system more control over the tags, but this may lead to aliasing

concerns and we prefer the simpler implementation.

5.1.2 Arithmetic Instructions

To simulate the tag unit extension to the processor, we have implemented a set of

macros that determine how tags are propagated for each instruction. For example,

Figure 5-3 demonstrates our modified add instruction. We see that the new value

for the destination register RD is the sum of the two input register value states RS1

56

Figure 5-3: Taxi Add Instruction.

1 WRITE_RD_AND_TAG(RS1 + RS2, TAG_ADD(TAG_S1, TAG_S2));

and RS2 and we see that the new tag is determined by applying the TAG_ADD macro

to the two input register tag states TAG_S1 and TAG_S2. For instructions that

use encoded immediate values rather than a second input register, we also define

corresponding macros, such as TAG_ADD_IMMEDIATE(TAG_S1).

We can thus define different policies by applying different definitions of these tag

propagation macros. In tagpolicy.h, we have grouped these macro definitions and

separated them with #ifdef.

We have found it convenient to distinguish between three types of arithmetic in-

structions: add/subtract instructions, bitwise logic instructions, and other arithmetic

instructions. This is because instructions in the same group tend to be used simi-

larly with respect to pointer arithmetic: it is common to add numbers to pointers

and occasionally construct pointers from bitwise logic, but it is very rare to multiply

pointers by constants. For instructions that take an immediate, we almost always

just preserve the tag because the instruction only has a single input tag. This is

also important because RISC-V does not provide a separate mov instruction to copy

values from one register to another, and this is implemented as addi rd, rs1, 0.

5.1.3 Memory Instructions

RISC-V provides only two classes of instructions that interact with main memory:

load and store, and there are separate instructions to load/store a byte, halfword (2

bytes), word (4 bytes), and double word (8 bytes). We have found the instructions

that store less than 8 bytes to be problematic in our tagged architecture, since we

implement one tag per 8 bytes of memory. Our initial implementation rewrites the

tag for the full 8 bytes with the register’s tag in this case, though we allow for policies

to apply transformations to the tag first.

Figure 5-4 illustrates our modifications to the mmu interface for the load dou-

57

Figure 5-4: Taxi Load/Store Instructions.

1 tagged_reg_t load_tagged_uint64(reg_t addr) {
2 tagged_reg_t r;
3 void* paddr = translate(addr);
4 r.val = *(uint64_t*) paddr;
5 void* tagaddr = paddr_to_tagaddr(paddr);
6 r.tag = *(tag_t*) tagaddr;
7 return r;
8 }
9

10 void store_tagged_uint64(reg_t addr, uint64_t val, tag_t tag) {
11 tagged_reg_t r;
12 void* paddr = translate(addr);
13 *(uint64_t*) paddr = val;
14 void* tagaddr = paddr_to_tagaddr(paddr);
15 *(tag_t*) tagaddr = tag;
16 }
17

18 void* paddr_to_tagaddr(void* paddr) {
19 uint64_t offset = ((uint64_t) paddr - (uint64_t) mem);
20 return (void*) ((uint64_t) tagmem + offset / MEM_TO_TAG_RATIO);
21 }

bleword and store doubleword instructions, though the functions are very similar for

the other type sizes. We first translate the virtual address to a physical one and

load/store the corresponding register value. After, we map the physical word address

to its corresponding tag address in tag memory and load/store the corresponding tag.

5.1.4 Jump Instructions

RISC-V provides two jump instructions: jump and link (jal), and jump and link

register (jalr). These instruction first place the next program counter in the desti-

nation register and then jump to a target address. In jal, the target address is the

sum of the current PC and an immediate, while in jalr, the target address is read

from the input register RS1. We can consider jump and link to be similar to a call

instruction, but with the return address placed in a specified register rather than on

the stack.

58

For these jump instructions, the destination register value always propagates from

the program counter, so we define a special constant TAG_PC and set the tag of the

destination register to be this constant.

It is often convenient to distinguish between jumps, returns, and calls, and we can

do this because of how the compiler conventionally outputs instructions for each case.

In the case of a jump or return, the current PC will not need to be saved. Thus, the

destination register will always be r0 which is a special RISC-V register that always

equals 0. RISC-V also defines a dedicated return address register ra which stores

the return address, so in the case of a call the link register will be equal to ra. To

distinguish between a jump and a return, only the return will have the target register

be equal to ra. We summarize these conventions in Table 5.1, where rx represents

any of the other registers and addr represents an address constant.

Table 5.1: RISC-V Jump Instruction Conventions.

x86 Instruction RISC-V Equivalent

jmp addr jal r0, addr
jmp rx jalr r0, rx
ret jalr r0, ra

call addr jal ra, addr
call rx jalr ra, rx

5.1.5 Tag Instructions

We additionally add two new instructions to RISC-V to complete the tag support.

The tagenforce imm instruction is used to turn tag enforcement mode on or off.

The instruction contains a single immediate and sets a special processor flag to that

value, and we use that processor flag to determine whether to trap or not when a tag

violation is detected.

We also add a settag rd, imm instruction which sets the tag of the destination

register to an immediate. It is occasionally necessary to set the tag on a certain

register due to exceptions in the policy or due to policies which need tags set from

the compiler.

59

We have considered adding a gettag rd, r1 which sets the value of the desti-

nation register to the tag of the input register. This instruction would allow for the

compiler to enforce tag constraints and may have useful debugging capabilities, but

we have not yet found this instruction to be necessary.

5.2 Implemented Policies

5.2.1 Basic Return Address Policy

The goal of this policy is to prevent attackers from modifying return addresses. We

use a single bit, which we will call the return address or RA bit, and this bit is equal

to 1 if the corresponding word is a return address and 0 otherwise. Initially, all of

memory has the RA bit cleared, and the only way to obtain a set RA bit is from the

jump and link instruction. The bit is copied on move, load, and store instructions,

but is cleared on any arithmetic instructions, and this is summarized in Table 5.2.

Table 5.2: Return Address Tag Bit Propagation.

Instruction Class Example Destination Register Tag

Jump and link jalr rd, r1 tag(rd) = 1
Arithmetic add rd, r1, r2 tag(rd) = 0

Move addi rd, r1, 0 tag(rd) = tag(r1)
Load ld rd, [r1] tag(rd) = tag([r1])
Store sd [r1], r2 tag([r1]) = tag(r2)

When we encounter a return, we check if the bit is equal to 1 and trap if tag

enforcement is on and this is not the case. Figure 5-5 illustrates our changes to the

jump and link register instruction. Line 2 checks that tag enforcement is on, line 3

checks if the RA bit is not set, and line 4 checks if this is a return by checking the

register containing the address to jump to. Note that we also only trap if we are

not in supervisor mode, since the kernel tends to frequently break the call/return

discipline.

With this policy, it is impossible for an attacker to use traditional exploits which

overflow a return address. Because the attacker-supplied values will not be traced

60

Figure 5-5: Return Address Policy Jump and Link Instruction.

1 reg_t oldpc = npc;
2 if (TAG_ENFORCE_ON &&
3 (!(TAG_S1 & TAG_PC)) &&
4 (insn.rs1() == RA) &&
5 (!IS_SUPERVISOR)) {
6 TAG_TRAP();
7 }
8 set_pc((RS1 + insn.i_imm()) & ~reg_t(1));
9 WRITE_RD_AND_TAG(oldpc, TAG_PC);

back to a PC tag, the overflow store will clear the return address tag bit, so a trap

will occur if tag enforcement is on.

This policy does have several important holes due to the fact that only return

addresses are protected. Of course, an attacker can still corrupt a function pointer

or jump address, but this policy is vulnerable to replay attacks through data pointer

corruption. Consider the program in Figure 5-6 which contains an attack mecha-

nism initially presented in [7]. If buf1 and buf2 are stored in registers, then when

vuln_fn() is called, an attacker can corrupt the saved stack context and modify the

two pointers to point to arbitrary locations in memory. When we get to the strncpy

call, the attacker can move data in memory to arbitrary locations. We refer to such

a vulnerability as an arbitrary copy vulnerability.

With such a vulnerability, an attacker can corrupt a return address by copying a

return address from a different location, since this would preserve the RA tag. Even

worse, an attacker can create arbitrary return addresses as follows: first, overflow the

return address to the desired value. Next, find a return address in memory that still

has the RA tag and has a byte that matches with the corrupted value just written.

Finally, copy only that byte into the corrupted return address. After the first step,

the value is chosen by the attacker with a cleared RA tag. The third step however

restores the RA tag without changing the other bytes of the fake return address. Our

next policies address these holes.

61

Figure 5-6: Example Replay Attack Gadget.

1 char* buf1;
2 char* buf2;
3 ...
4 vuln_fn();
5 ...
6 strncpy(buf1, buf2, buflen);

5.2.2 No Return Copy Policy

We first address the capability of the attacker to copy other return addresses in

memory by enforcing that there is only one copy of a given return address at a time.

This policy obeys the same rules as the basic return address policy, but additional

changes are necessary. On arithmetic and move instructions, in addition to the rules

for the destination register as in the previous policy, we also clear the RA bit on

all input registers. On store instructions, we also clear the RA tag on the register

being stored, and load instructions similarly clear the RA tag on the memory location

loaded from.

This policy fixes the replay attack vulnerability from the previous policy since the

only return addresses available for copying from are the ones yet to be used: these

must be callers of the current context and the most an attacker can do is return early.

However, this policy does not obey the restrictions set in our tagged architecture

model described in Chapter 4. This policy modifies the tags on input registers and

on memory locations loaded from, though at least the extra memory access is not too

expensive due to the tag already being in cache.

This policy is also riskier because it makes several assumptions regarding well-

behaved programs. This policy assumes that a return address will never need to be

loaded from memory unless it is being used to return to. This policy also assumes

that every return address will need to be used only once. While these assumptions

are not true in general, we have found that in practice false positive traps from this

policy can be mitigated because we can enumerate all locations in library code where

they occur. We investigate this in Section 6.2 where we evaluate the policies on real

62

programs.

We note that our original version of this policy cleared the RA bit on the desti-

nation register tag if it is not the return address register ra. In this version of the

policy, all copy vulnerabilities would be useless because the RA bit would be cleared

on the load. Unfortunately, we found that this version of the policy caused too many

spurious traps because there were legitimate cases where return addresses needed to

be moved to other locations.

5.2.3 No Partial Copy Policy

We now address the capability of the attacker to only copy a single byte of a return

address to change the tag on any word in memory without altering the value. In this

policy, we start with the rules outlined in the basic return address policy, not the

no return copy policy. We additionally add the rule that whenever we store a byte,

halfword, or word, we clear the RA bit on the stored tag. It is necessary even in the

word case to clear the tag: the high 32 bits of many code addresses are likely the

same, giving the attacker freedom to choose the lower 32 bits.

With this modification in place, only 8-byte copies of return addresses are possible,

so an attacker would have to copy the full value in order to get a valid RA tag. On

its own, this policy would only allow copying of other return addresses in memory,

which is arguably secure enough, but we can obtain additional security by combining

this policy with the no return copy policy to guarantee integrity of return addresses.

We note that this policy is necessary only because our system only implements

one tag per 8 bytes of memory, and it would take too many bits for every byte to have

its own tag. However, even if this was the case and we enforced that all 8 bytes of a

return address had the RA tag, some variant of this policy would still be necessary

because an attacker may be able to create a new return address by copying valid

bytes one at a time.

63

5.2.4 Blacklist No Partial Copy Policy

Up until now, all policies have only protected return addresses, and we would like to

be able to protect other code pointers as well. Unfortunately, in this architecture,

it is not clear how the initial tags for other code pointer types should be initialized

without compiler support; many function pointers for example begin as indistinguish-

able constants in the executable. It is thus very difficult for the hardware alone to

determine which words of memory are intended function pointers without help from

the compiler, but perhaps we can try a different approach and find words of memory

that cannot be code pointers: namely those that result from partial store instructions.

The primary assumption made by this policy is that when we encounter a byte,

halfword, or word store instruction, the memory stored to cannot contain an 8-byte

value and thus cannot be interpreted as a 64-bit address. This policy introduces a

new tag bit which we call the data bit, and this bit is used to mark a word of memory

as not a pointer of any kind. Initially, all of memory will not have this bit set. When

we encounter a load, store, or jump instruction, we check that the address does not

have the data bit set and trap otherwise.

Figure 5-7 illustrates our changes to the store byte instruction where we store

register r2 to an address determined by register r1. First, we check if r1 has the

data bit set and trap if this is the case, since in this case r1 would not be considered

a valid address. Next, because we are only storing a single byte, we set the data bit

on the tag and store it to memory.

We have found it necessary to occasionally suspend adding data tags due to single-

byte pointer copy loops, which we describe further in the next chapter. To allow for

this we add an additional processor bit DATA_ENFORCE_ON which is set by default

and only set the data tag if this bit is active. This bit is set and cleared using the

tagenforce instruction.

With regard to tag propagation, the data bit is unique in that it indicates a lack

of privilege, so it may be more useful to consider how a cleared data bit propagates.

If the data bit is not present, this indicates that we do not know if the corresponding

64

Figure 5-7: Data Tag Propagation for Store Byte Instruction.

1 reg_t tag = TAG_S2;
2 reg_t addr = RS1 + insn.s_imm();
3

4 if (TAG_ENFORCE_ON &&
5 ((TAG_S1 & TAG_DATA)) &&
6 (!IS_SUPERVISOR)) {
7 TAG_TRAP();
8 }
9

10 if(!DATA_ENFORCE_ON)
11 tag = TAG_DATA;
12 MMU.store_tagged_uint8(addr, RS2, tag);

word is a pointer or data value and we must guess conservatively so that we do not

cause spurious traps. We summarize the tag propagation rules for this policy in Table

5.3.

Table 5.3: Data Tag Bit Propagation.

Instruction Class Example Destination Register Tag

Add Arith add rd, r1, r2 tag(rd) = tag(r1) & tag(r2)
Logic Arith or rd, r1, r2 tag(rd) = tag(r1) & tag(r2)
Other Arith mul rd, r1, r2 tag(rd) = tag(r1) | tag(r2)

Immediate Arith addi rd, r1, 1 tag(rd) = tag(r1)
Move addi rd, r1, 0 tag(rd) = tag(r1)
Load ld rd, [r1] tag(rd) = tag([r1])

Full Store sd [r1], r2 tag([r1]) = tag(r2)
Partial Store sb [r1], r2 tag([r1]) = 1
Jump and link jalr rd, r1 tag(rd) = 0

For add/subtract arithmetic instructions, in pointer arithmetic the sum of a

pointer and data value is considered a pointer, so we must clear the tag on the

destination register if one of the input registers has a cleared data tag. For bitwise

logic arithmetic instructions, although it is not common, we must again be conserva-

tive and clear the tag on the destination register if one of the input registers has a

cleared data tag.

For other arithmetic instructions such as multiply or divide, however, we cannot

65

obtain a pointer if one of the input registers has a data bit set, so in this case we

would set the data bit on the destination register.

For arithmetic instructions that take an immediate, the instruction length is 32

bits, so the immediate cannot be interpreted as a 64-bit address and we simply prop-

agate the tag on the input register. We also copy the tag to the destination in the

case of move, load, and store instructions. Jump and link instructions clear the data

tag on the destination register.

It is difficult to evaluate the exact amount of security obtained by this policy

because we are blacklisting words of memory, and this is generally a weaker approach

than whitelisting as in the return address policy. However, one important aspect of

this policy is that it guards against buffer overflow vulnerabilities involving attacker-

supplied strings. All bytes in strings are marked with the data tag, so it is impossible

for an attacker to corrupt any type of code pointer. In fact, the attacker cannot even

use copy vulnerabilities because non-code pointers are protected as well.

Of course, because this policy is the most broad, it is more susceptible to spurious

traps. There are cases where pointers are copied or constructed one byte at a time,

but this number of instances where this occurs is limited and we discuss this further

in section 6.2 where we test this policy on real-world programs.

5.3 Policies Requiring Compiler Support

We now describe policy ideas we have not yet fully implemented but which can provide

additional security guarantees. The main difficulty in these policies tends to be that

they require compiler support to set up the initial tags, and this requires significantly

more work due to the increased complexity.

5.3.1 Function Pointer Policy

The goal of this policy is to protect function pointers in a manner similar to return

addresses by adding a function pointer (FP) tag bit. When the compiler first loads

a function pointer constant into a register, the compiler can then add a settag

66

instruction to set the FP bit to mark the initial function pointers, and these are

determined through static analysis. The tags can then be propagated using pointer

arithmetic rules similar to those in the blacklist no partial copy policy. On a call

variation of the jump and link instruction, we would enforce that the FP bit is present

and trap otherwise.

We have attempted to implement this policy as an LLVM compiler pass, but our

implementation is currently incomplete due to LLVM losing information about which

constants correspond to function addresses. This policy would also contain the same

replay attack vulnerability as in the return address policy, but the same approach

will not work in this case because function pointer rules cannot be as strict.

An example of a function pointer replay attack is the COOP attack [37] which

overwrites pointers to function pointers. Even if we protect those as well with a

new tag, triply indirect function pointers would still be unprotected, and so on. One

possible solution to this issue is to use a static analysis similar to CPI’s sensitive

pointer analysis and mark those with the function pointer tag, but it is difficult to

determine this set of pointers exactly. It may be the case that protecting only a

specific type of pointer is too difficult and it might just be easier to tag all pointers

instead.

5.3.2 Read-Only Function Pointer Policy

One potential mitigation against function pointer replay attacks is to distinguish be-

tween dynamic function pointers and read-only tables of function pointers in memory.

This policy would introduce an extra bit to mark the second type of function pointer.

This bit would obey the same rules as the function pointer policy except that on a

store instruction, this bit would not be written back to memory. Thus, it would be

impossible for an attacker to use a copy vulnerability to overwrite a dynamic function

pointer with a read-only function pointer value. Again, we would require the compiler

to insert settag instructions to initialize this tag bit.

However, pointers to function pointers are still unprotected and attacks using

function pointers are still possible. In addition, attackers can still use copy vulner-

67

abilities using two dynamic function pointers, but this policy does at least remove

the most useful function pointers from use by an attacker because the only the static

function pointers have known values to the attacker.

5.3.3 Universal Pointer Policy

We can also consider a policy that maintains integrity of all pointers rather than only

return addresses or function pointers by adding a pointer tag bit. This policy would

need to be implemented similarly to the function pointer policy, though the static

analysis would likely be easier. However, this policy would cause significantly more

spurious traps due to strange C pointer idioms, such as those described in [9]. If

this policy could be implemented perfectly, it would provide the strongest security

guarantees by far: an attacker would be limited to corrupting nearby data variables

only and this would stop almost all possible attacks.

5.4 Summary

We have implemented three policies which protect return addresses. The basic return

address policy protects return addresses from overflows but is vulnerable to replay

attacks where an attacker can forge the return address tag by copying from a different

return address in memory. The no return copy policy aims to prevent this by clearing

the return address tag on return addresses loaded from memory, preventing an at-

tacker from reusing an old return address. Similarly, the no partial copy policy clears

tags on byte, halfword, and word store instructions in order to prevent an attacker

from forging a return pointer and then copying only a single byte from a different

return address in order to add the return address tag to the corrupted address.

We have also implemented the no partial copy blacklist policy which is similar to

the no partial copy policy but aims to protect all pointers rather than only return

addresses. This policy goes one step further than clearing the return address tag on

partial store instructions and instead marks that word of memory as not a pointer by

setting the data tag bit. Although we cannot guarantee that this policy protects all

68

pointers, this policy does not require compiler support and thus is compatible with

existing binaries. With compiler support, we would be able to implement policies

which protect function pointers or all pointers in user applications and these would

provide significantly stronger security guarantees than the four we have implemented.

69

70

Chapter 6

Evaluating Taxi

In the previous chapter, we have described our design for Taxi. In this chapter, we

describe our prototype and evaluate policy compatibility and different tag cache sizes

with real-world programs.

6.1 Prototype Components

6.1.1 ISA Simulator

As we briefly mentioned in the last chapter, the primary component of our prototype is

a modified version of spike [53], a RISC-V ISA simulator. For each of the implemented

policies, we have added a build script flag corresponding to that policy which is passed

to the preprocessor and the code specific to that policy is surrounded by #ifdef

blocks. The basic return address policy is always active, and at most one other policy

can be active at a time.

6.1.2 Cross Compiler

Two cross compilers to RISC-V are currently available: gcc and LLVM. At the time

of our testing, gcc is significantly more complete and is our compiler of choice. We

have modified the assembler to add opcodes for the settag and tagenforce in-

structions. We have also modified glibc by adding these instructions to avoid spurious

71

traps, and we discuss this more in Section 7.2.

6.1.3 Linux

RISC-V also provides a port of the Linux kernel which can be cross-compiled and

run inside spike, with the option to take a disk image file as an argument. We have

added an extra hardware trap for tag violation traps and modified Linux to handle

these traps by crashing the program.

We have also created several scripts to facilitate running programs inside the

Linux kernel. Our primary script setup_disk.sh creates a blank disk image and

populates it with the utility binary BusyBox [50]. This script also optionally copies in

a directory passed by argument which contains cross-compiled binaries to test inside

of Linux.

6.1.4 Cache Simulator

Spike includes a cache simulator which simulates a cache hierarchy. Although the

simulated caches are not used in retrieving memory, they are nonetheless valuable for

obtaining benchmarks on cache performance. We have modified the cache hierarchy

to include a tag cache as a miss handler for the L2 cache and added support for

multiple miss handlers so that we can evaluate different tag cache sizes on the same

program execution.

This is implemented in spike through the memtracer API. Memtracer objects are

notified whenever there is an access to memory, essentially duplicating every memory

access.

6.1.5 Test Suite

Our test suite is designed to test for compatibility and prevention of exploits. The

goal of our test suite is to verify that exploits are indeed prevented and to verify

that programs that do not contain exploits execute normally without causing false

tag traps. Unfortunately, we are not able to evaluate the performance overhead of

72

Figure 6-1: Trap Debug Mode.

1 #if TRAP_DEBUG
2 #define TAG_TRAP() monitor()
3 #else
4 #define TAG_TRAP() throw trap_tag_violation()
5 #endif

adding tags because an ISA simulator cannot measure the impact of having hardware

components execute in parallel, but the cache simulator will let us test our overhead

due to additional memory accesses. Recall that tags are not stored in the same region

of physical memory as the rest of the corresponding word, thus requiring an extra

access to main memory if we cannot retrieve the tag from cache.

We have written a number of single-file tests including both traditional exploits

and theoretical exploits such as the replay attack discussed in the previous chapter.

These programs also test signals, exceptions, and the problematic C idioms discussed

in [9]. Our test suite also includes the Trinity system call fuzzer [26] and gcc torture

tests [20]. In order to evaluate Taxi on real-world programs, we include the SPEC

2006 benchmarks [42].

6.1.6 Debugging

Spike includes an interactive mode similar to a gdb monitor which can be accessed by

pressing Ctrl-C during execution, though much of gdb’s tools were initially missing.

In order to compensate, we have since added commands which print large regions of

tagged memory as well as printing disassembled instructions. We have also augmented

the debugger with a simple arithmetic parser which can also parse register names.

In decode.h, we define the preprocessor flag TRAP_DEBUG which enables debug

mode if nonzero. In debug mode, tag traps are replaced with breaks to the debugger

console, which we illustrate in Figure 6-1.

73

6.1.7 Libspike

We have found it useful for programs inside spike to communicate with spike. For

example, a program may want to add a breakpoint to the spike monitor or to trace an

address not known until runtime. We have thus mapped a special page of memory at

the hardcoded virtual address LIBSPIKE_BASE_ADDR and handle accesses of this

page differently in the MMU. Our interface allows programs to call functions in spike

and receive data back through a union structure provided in libspike.h.

6.1.8 Memory Tracing

When debugging traps, often it is not very useful to view the program state when

the trap occurs. This is because we are interested in determining when the tag was

changed to its invalid value, not when the invalid tag was checked. Essentially, we

would like to trace the history of a particular register value and find the instruction

which wrote the bad tag.

We thus have implemented a memory tracing mode capable of maintaining this

history. This mode is disabled by default due to overhead but can be enabled by

passing the -k flag to our ISA simulator. If tracing is enabled, we can view the

history through either the debugging console or through libspike.

Our memory tracing mode is implemented through node structures, illustrated in

Figure 6-2. The basic idea is that whenever a register rd is updated with dependencies

on input registers r1, r2, then we create a new node for rd pointing to the current

nodes for r1, r2. We additionally add metadata concerning the instruction which

caused the update so that we can determine the history of a register by following the

input pointers and reading the node metadata. We not only initialize nodes for each

register: we also initialize one for every word of memory.

In the node structure, the pointers to the input nodes are input1, input2.

We also have insn which contains the instruction which updated rd and pc which

contains the virtual address of insn which can then be looked up in an objdump

output. The dst field describes the register or memory location updated by the

74

Figure 6-2: Memory Tracing Node Structure.

1 typedef struct node_t {
2 node_t *input1, *input2;
3 insn_t insn;
4 uint64_t pc;
5 uint64_t dst;
6 int is_mem;
7 int refc;
8 } node_t;

instruction. It is slightly ambiguous: in the case of a store instruction, it is equal to

the virtual address stored to, and for all other instructions, it is equal to the index of

the destination register.

The is_mem field encodes whether this instruction is a load/store instruction or

not for the purpose of history lookup. In arithmetic instructions such as addition, both

input nodes are considered equal and must be traversed. However, for load and store

instructions, one input register corresponds to the actual value being loaded/stored

and the other input register corresponds to the memory address. Most of the time we

are only interested in the value node rather than the address, though there are some

cases such as table lookup where the history of the address register is more important.

The refc field has nothing to do with the instruction and is there only for the

purposes of cleaning up old nodes by maintaining a reference count. When we update

a node on some register or address in memory, we decrease the reference count of

the previous node. If it reaches zero, we recursively decrease the counts of the input

nodes and clean them if necessary before deallocating the node.

We have implemented several optimizations so that the history does not get too

large. First, we ignore changes to the stack pointer register because they are not

relevant. Second, we ignore nodes if the PC is equal to the PC of one of the input

nodes. This optimization is to deal with loops: the same register often gets updated

several times at the same instruction. Finally, if an instruction only has one input

register and the input is the same as the destination, then we do not consider this a

meaningful change and do not use this node.

75

6.2 Policy Evaluation

6.2.1 Methodology

We now evaluate each of our policies with respect to security and compatibility using

our test suite. For each of our test programs we cross-compile a binary using our

modified version of gcc, create a disk image containing the binary, and run the binary

inside of the Linux kernel running in spike.

We would like to be able to run applications inside of Taxi without having to

change their source code and without causing false traps. We have found that outside

of the gcc torture tests, it is very rare for application code to directly cause traps.

Rather, the application code tends to call common library functions which then cause

traps, and after patching the libraries, the traps disappear.

6.2.2 Security

We evaluate a policy’s security by looking at which exploits the policy prevents. Our

test suite covers return address overflows (RA_OVERFLOW), function pointer overflows

(FP_OVERFLOW), return address replay attacks which copy the whole return address

(RA_REPLAY), partial return address replay attacks which attempt to change only

the tag (RA_PARTIAL_REPLAY), and data pointer overflows (PTR_OVERFLOW). We

summarize our security results in Table 6.1

Table 6.1: Overflow Test Summary.

Policy RA RA_REPLAY RA_PARTIAL FP PTR

Basic Return Address Trap No Trap No Trap No Trap No Trap
No Return Copy Trap Trap No Trap No Trap No Trap
No Partial Copy Trap No Trap Trap No Trap No Trap

Blacklist Trap* Trap* Trap* Trap* Trap*

76

Blacklist No Partial Copy Policy

For this policy, whether a trap occurs is dependent on the type of overflow. If the

attacker data is copied into the buffer in 8-byte words, then no trap will occur, but if

the copy is done 1 byte at a time at any stage, then the data tag will be applied and

a trap will occur. In order to test which types of overflows will cause traps, we have

written a test program which attempts to overflow a function pointer using various

library functions.

In particular, we have tested a 1-byte for loop as well as memcpy, memmove,

strcpy, strncpy, strcat, strncat, gets, and read using a file as input. We

overflow a buffer whose size is a multiple of 8 with a string whose size is also a multiple

of 8 to ensure that 8-byte copying is used if the optimization is present.

We have found that of these, only memcpy, memmove, and read did not cause

a trap from the overflow. Of these, the first two are not supposed to clear tags

because they are often called on structures containing function pointers, so this result

is expected. What this means is that if an attacker-supplied string is ever passed

through one of the other functions tested here, then the entire string will be marked

as data and thus unusable in an exploit.

Unfortunately, our system does not currently support network sockets, so we were

unable to test whether data read from the network would have the data tag. If this is

the case, then web servers such as Apache and Nginx would be impossible to exploit

remotely.

6.2.3 Return Address Policy

The return address policy is the most compatible: it enforces relatively lenient con-

straints on only return addresses and return addresses are relatively untouched by

application code. As long as the call/return discipline is followed and return addresses

are not modified, this policy will not trap. After applying the two modifications below

to handle exceptions to the call/return discipline, this policy did not trap on any of

our test programs.

77

Figure 6-3: Signal Handling Violation of Call-Return Discipline.

Signal Handling

When a signal is generated, the user context must be saved so that program execution

can continue after the signal handler returns. The issue occurs when the user context

is restored: the signal handler returns to trampoline code which restores the user

context rather than returning to user code directly. The return to trampoline code

is a new return address generated from the signal handler and thus is missing the

return address tag, as illustrated in Figure 6-3.

To fix this, we modified the signal handler in the Linux kernel by adding the

return address bit to the return address register immediately before returning. This

is implemented through the instruction settag ra, 1.

We note that this instruction does not introduce a vulnerability because the return

address that gains the return address tag is provided by the kernel, which we trust.

78

C++ Exceptions

C++ exceptions are implemented by pushing the address of the exception handler

onto the stack and then returning to it. Because the return address was not created

from a jump and link instruction, a tag trap occurs.

We prevented the trap by modifying the exception code to set the return address

tag on the return address register before returning into the exception handler. We

would have liked to implement this by modifying the libgcc source code, but this

turned out to be too difficult because libgcc is a dependency of our cross compiler.

We resolved this issue by manually patching the libgcc_s.so.1 binary.

6.2.4 No Return Copy Policy

Recall that this policy augments the return address policy by enforcing that only

one copy of the return address tag can exist at a time. With this constraint, replay

attacks which copy return addresses should no longer work, and we have verified this

in Taxi by constructing our own test exploit which traps under this policy but not

the basic return address policy. Compatibility issues arise from this policy when a

return address needs to be used multiple times or when a return address is loaded

from memory in unrelated code.

After patching the issues below, this policy did not trap on any of our test pro-

grams except for the file pr47237.c in the gcc torture tests. This program tests

the gcc __builtin_apply macro which provides a different interface for calling

functions. The implementation of this macro scans the stack and loads the return

address of main, which strips the tag on the stack copy and causes a trap when main

returns.

Setjmp/Longjmp

The C standard library provides the functions setjmp and longjmp as primitives for

implementing mechanisms which bypass the call/return discipline, such as exception

handlers. In setjmp, the current register context is stored in a jmp_buf object.

79

Figure 6-4: Longjmp Modifications.

1 ENTRY (__longjmp)
2 REG_L ra, 0*SZREG(a0)
3 REG_L s0, 0*SZREG(a0)
4 settag s0, 1
5 REG_S s0, 0*SZREG(a0)

This context can then be restored through a call to longjmp, so it is as if the call

to longjmp jumps to the instruction immediately after setjmp.

One component of the jmp_buf object is the return address of setjmp. In the

initial call to setjmp, we need both the return address in the buffer and the return

address on the stack to have the RA tag, but the policy enforces that only one copy

of the tag can exist, so this policy would cause a trap. In addition, it is possible for

a jmp_buf object to be used multiple times in a call to longjmp, and every call

would require a copy of the tag.

The setjmp trap is easy to fix: we simply add a settag instruction which sets

the RA tag on the jmp_buf copy of the return address. This will not introduce any

vulnerabilities because we are only allowing a return address to be used twice rather

than creating a new return address.

The longjmp trap is more difficult however because we must account for the

possibility that an attacker has corrupted the stored return address in the jmp_buf,

so we cannot use settag blindly. After loading the return address from the jmp_buf

into the return address register, we then load another copy of the return address into

a different register, call settag on that register, than store the return address back

into the buffer, as illustrated in Figure 6-4.

If an attacker has corrupted the stored return address, then after the call to

longjmp the corrupted return address will mistakenly have the return address tag

but we will trap on return because the copy in ra will not, so this cannot be ex-

ploited. What we would actually like for this policy is a mechanism for copying tags

or suspending the no return copy policy, but Taxi does not currently support this.

80

Fork

The fork function duplicates a process’s state, including all saved return addresses

in memory. Thus, if the tags are not also duplicated, then one of the two processes

will trap. We prevent this trap by not applying this policy’s rules to the kernel with

the kernel propagating the tags according to the basic return policy rules.

Load/Store Instructions

In load/store instructions, the MMU will cause a page fault if the address being

accessed is invalid in the page map. Our original implementation of this policy cleared

the tag on the inputs before checking that the address was valid. The kernel would

handle these faults by mapping in a new page and then attempt to execute the failed

instruction again, resulting in the loss of the RA tag and causing spurious traps. This

was fixed by first accessing the MMU before clearing the old tag.

6.2.5 No Partial Copy Policy

This policy caused no additional traps, though this is likely dependent on implemen-

tation. For example, we expected memcpy to cause traps due to return addresses

being copied one byte at a time, but due to optimizations, memcpy actually only

copied one byte at a time at the ends of the memory region and copied 8 bytes at

a time whenever possible because this would require fewer instructions. However,

memmove was not implemented the same way, but this was not an issue for return

addresses because none of the code tested passed return addresses to memmove. As

we will see in the next policy, this function does cause traps for other pointer types.

6.2.6 Blacklist No Partial Copy Policy

This policy is significantly more problematic than the previous return address policies

because it attempts to protect all pointers rather than only return addresses. In

addition, the edge cases for this policy exposed weaknesses in our original model that

had not yet caused traps because of the rarity of return addresses.

81

False traps which occur due to this policy are caused when pointers are divided

into bytes and then later recombined. This will likely be an issue for any theoretical

policy, including the function pointer and universal pointer policies, since an attacker

can use a single-byte copy vulnerability to combine a pointer using byte components

of valid pointers. To distinguish valid pointer recombinations, we take the approach

of whitelisting such code by suspending the policy.

With the below modifications to memcpy and memmove, this policy did not cause

false traps on our test suite except for test case 960117-1.c in the gcc torture tests

and test cases 403.gcc, 447.dealii, and 483.xalancbmk in the SPEC 2006

benchmarks. The latter two can be fixed through modification of libstdc++, which

Taxi does not currently support.

Memcpy and Memmove

The functions memcpy and memmove are by far the most problematic for this policy

because they occur frequently in application code and copy pointer structures one byte

at a time. We thus modified these functions by adding a tagenforce instructions

at function entry which suspends the policy, so the data tag is not added to the

copied memory. We also add a second tagenforce instruction at the return of

these functions which re-enables the policy so that the rest of the code is unaffected.

This applies to custom memcpy implementations as well, such as in test case

403.gcc of the SPEC 2006 benchmarks. This application declares an in-place

quicksort function specqsort(base, n, size, compar) which takes as in-

put a base pointer to an array of items to be sorted, the number of items, the size of

each item, and a comparator function pointer to compare them, respectively. When

two items in the array need to be swapped in the sorting algorithm, this is done one

byte at a time in a for loop which executes size times. This applies the data tag,

so if specqsort is called on an array of pointers or even on an array of structs con-

taining pointer components, a spurious trap will occur. This can be fixed by adding

tagenforce instructions in the same way as above.

This problem also occurs in the libstdc++ implementation of bitvectors in

82

Figure 6-5: Packed Struct Test Case.

1 typedef union T_VALS
2 {
3 char *id __attribute__ ((aligned (2), packed)) ;
4 } VALS;
5

6 typedef struct T_VAL
7 {
8 short pos __attribute__ ((aligned (2), packed)) ;
9 VALS vals __attribute__ ((aligned (2), packed)) ;

10 } VAL;

stl_bvector.h when copying iterators and this causes traps in test cases 447.dealii

and 483.xalancbmk of the SPEC 2006 benchmarks. This is not patched because

the framework for modifying libstdc++ has not yet been implemented.

Unaligned Packed Structs

The test case 960117-1.c in the gcc torture tests declares a struct presented in

Figure 6-5. We see that the VAL struct contains two components: a 2-byte short

followed by an 8-byte char pointer. Because this struct is declared to be packed and

aligned to 2-byte boundaries, the pointer is not aligned to an 8-byte boundary and

shares the same 8-byte word as the short, with 2 bytes of the pointer overflowing into

the next 8-byte word.

This is problematic both for this policy and for our original model. The primary

issue here is that a pointer is sharing an 8-byte word with a data variable and thus

is also sharing the tag, so it is impossible to accurately tag this word of memory.

With respect to this policy specifically, when the short is assigned a value, the store

halfword instruction will apply the data tag to the entire word, causing a trap when

the pointer is dereferenced.

Thankfully, these unaligned packed structs are rare in both library and application

code and we have not found any other traps of this nature. While we can mitigate

this issue by adding a tag per byte rather than a tag per 8 bytes, we do not believe

that the extra memory cost is worth the marginal compatibility gain.

83

6.2.7 Conclusion

We conclude that Taxi is indeed able to feasibly run real-world applications with-

out causing false traps and with minimal source code modifications using these four

policies. With all library modifications in place, only the heavily optimized gcc code

caused traps out of all application code in our test suite. Taxi would definitely benefit

from compiler support however. One could imagine a version of RISC-V with a load

data or store data instruction which would remove the ambiguity in this type of copy

loops.

6.3 Cache Evaluation

6.3.1 Methodology

We now evaluate the viability of the shadow memory cache hierarchy initially pre-

sented in Section 4.3. The goal of this section is to fully evaluate the overhead due

to accessing main memory for tags in the presence of word-extended L1, L2 caches

with a dedicated tag cache as an L2 miss handler. Using Taxi’s cache simulator

briefly described in Section 6.1, we can measure the tradeoff between tag cache size

and additional accesses on real-world programs by running Taxi on the SPEC 2006

benchmark programs [42]. All testing was done using the basic return address policy,

though choice of policy is irrelevant.

If we access an address not currently in a cache, then we issue a read access to

the miss handler for that address. On write accesses, we mark the cache line as dirty

and only flush this to the miss handler when the cache line gets evicted, and we refer

to this case as a writeback. If a cache is too small, it is possible that the number of

accesses to its miss handler exceeds the number of accesses to the cache because each

write access will read in a cache line from the miss handler and then write it back on

eviction.

Our cache hierarchy consists of two L1 caches: an instruction cache and a data

cache. Both caches use the L2 cache as a miss handler, and the tag cache is the miss

84

handler for the L2. We set the cache sizes as follows: 8KB (+ 1KB for tags) 4-way

associative L1 and instruction caches with 64-byte block size, 256KB (+ 32KB for

tags) 8-way associative L2 cache with 128-byte block size. We test a tag cache with

4-way associativity and 64-byte cache line size and vary the size to be a power of

two from 8KB to 8MB, for 11 tag cache sizes in total. Cache line eviction is chosen

randomly through a fast xorshift generator.

In order to ensure that we are measuring only the relevant cache statistics, we have

wrapped each test case inside a small program which first resets all caches through

libspike before forking a process which runs the SPEC test case. This ensures that

cache statistics due to unrelated code such as booting up Linux do not interfere.

When the test case process exits, this program prints the cache statistics through

libspike and returns. We exclude benchmarks 434.zeusmp, 453.povray, and

471.omnetpp because they fail to complete.

We define the overhead of a particular test case to be the ratio of (number of tag

cache misses + tag cache writebacks) divided by (number of L2 cache misses + L2

cache writebacks). Here, the numerator describes how many times we access main

memory to store or load a tag while the denominator describes the number of times

we access main memory to store or load a word.

6.3.2 Results

Our full results for tag cache overhead are presented in Tables 6.2 and 6.3 at the end

of this section. We present the average overhead over all SPEC 2006 benchmarks in

Figure 6-6.

As we expect, as the cache size gets large the overhead converges to the percentage

of compulsory misses, but this number is insignificant for most benchmarks. We can

still get significant gains with a tag cache size similar to the 256KB L2 cache size;

with a threshold overhead of 10 percent, only 512KB of tag cache is needed. We note

that these results use a 1-byte tag per 8-byte word while our policies currently use at

most 2 tag bits. With a 2-bit tag per 8-byte word, we could reduce tag cache size by

a factor of 4.

85

Figure 6-6: Mean Tag Cache Overhead.

Figure 6-7: Tag Cache Overhead Comparison.

86

Only benchmarks 410.bwaves and 459.gemsfdtd exceeded 20 percent over-

head with a 512KB cache. For benchmark 459.gemsfdtd, even with an 8MB cache,

we were only able to achieve 16 percent overhead, and this benchmark had one of

the highest L2 miss rates at 35.9 percent. This suggests that mitigating the memory

access overhead for this benchmark is likely impossible due to the large fraction of

compulsory misses.

On the other hand, benchmark 410.bwaves only had an L2 miss rate of 5.4

percent and for this program the ideal tag cache size is 2MB, with overhead 3.5

percent. This benchmark is unusual because of the large tag cache size needed to

achieve a good overhead bound despite the low number of compulsory misses. In

addition, this benchmark had the lowest miss rate with 8KB tag cache by far at 47

percent. We conjecture that this is due to the benchmark performing a numerical

simulation on a 3 dimensional grid. If the entire grid can fit in cache, the number of

evictions is greatly reduced.

Benchmarks 401.bzip2, 433.milc, and 473.astar exhibit a different un-

usual pattern. These three benchmarks exceed 90 percent overhead with an 8KB tag

cache and show very marginal improvement until a threshold tag cache size is reached

which causes the overhead to drop significantly to below 1 percent. This is illustrated

in Figure 6-7 with 401.bzip2 as the representative from this group.

We conclude that storing tags in shadow memory is practical. With a 512KB tag

cache similar in size to the L2 cache, we achieve average overhead of 10 percent and

can do significantly better on certain programs. The tag cache size can be improved

with a smaller number of bits in the tag or with tag compression, though we have yet

to investigate the impact on performance.

87

Table 6.2: Tag Cache Overhead Part 1.

Tag Cache Size

Bench 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB

400.perlbench 89.32 81.06 58.66 32.65 13.47 5.52
401.bzip2 122.80 116.66 103.12 77.26 31.13 1.62
403.gcc 81.53 73.84 56.75 35.17 16.87 7.93
410.bwaves 46.99 40.51 35.27 30.50 26.83 24.12
416.gamess 88.69 80.01 60.11 38.54 21.18 12.75
429.mcf 86.14 79.87 64.67 39.98 18.95 10.10
433.milc 96.36 92.12 84.24 75.49 62.42 21.16
435.zeusmp 82.89 71.56 43.99 22.25 12.35 7.37
436.cactusadm 82.49 69.07 49.91 32.35 23.12 17.12
437.leslie3d 84.39 70.32 53.99 37.71 20.95 9.19
444.namd 78.28 69.96 51.84 33.55 21.00 13.82
445.gobmk 97.80 89.42 72.70 53.03 35.18 23.59
447.dealii 65.98 60.22 47.18 31.77 20.16 13.86
450.soplex 92.89 83.00 57.99 31.72 17.62 11.00
454.calculix 92.43 82.73 60.10 35.51 20.12 12.60
456.hmmer 91.63 82.47 60.39 37.55 21.51 13.13
458.sjeng 118.14 113.01 102.36 88.78 75.50 65.07
459.gemsfdtd 88.37 80.14 70.13 58.89 44.29 32.91
462.libquantum 90.26 81.88 62.78 41.03 23.96 14.41
464.h264ref 84.63 77.46 62.92 45.03 27.10 7.95
465.tonto 89.50 80.39 52.21 22.78 11.02 6.62
470.lbm 96.55 86.65 63.33 41.76 31.80 22.55
473.astar 133.70 126.45 106.72 69.46 23.25 1.50
481.wrf 79.55 69.84 50.77 31.59 21.21 15.62
482.sphinx3 62.24 56.40 48.02 40.08 34.35 27.99
483.xalancbmk 104.58 96.80 76.13 49.65 26.98 13.18
998.specrand 90.15 81.62 62.56 40.72 23.97 14.75
999.specrand 90.33 81.74 62.56 41.29 24.46 15.16

88

Table 6.3: Tag Cache Overhead Part 2.

Tag Cache Size

Bench 512 KB 1 MB 2 MB 4 MB 8 MB

400.perlbench 2.96 1.76 1.18 0.91 0.82
401.bzip2 0.14 0.03 0.01 0.01 0.00
403.gcc 2.85 0.50 0.28 0.23 0.22
410.bwaves 21.89 16.62 3.45 0.14 0.05
416.gamess 9.17 7.09 5.95 5.50 5.42
429.mcf 5.73 4.35 3.78 3.23 1.38
433.milc 0.20 0.00 0.00 0.00 0.00
435.zeusmp 3.48 1.81 1.30 1.06 0.99
436.cactusadm 12.78 1.20 0.29 0.21 0.19
437.leslie3d 1.55 0.01 0.00 0.00 0.00
444.namd 9.08 5.65 3.37 1.99 1.37
445.gobmk 15.66 7.45 0.38 0.05 0.04
447.dealii 8.59 3.32 1.91 0.60 0.24
450.soplex 7.90 6.59 6.09 5.96 5.87
454.calculix 8.97 7.16 6.47 6.18 6.08
456.hmmer 9.98 8.07 7.33 7.05 7.01
458.sjeng 57.02 49.75 40.96 28.80 12.05
459.gemsfdtd 24.24 20.06 19.17 18.37 16.82
462.libquantum 11.01 9.49 8.68 8.56 8.45
464.h264ref 1.13 0.23 0.08 0.05 0.04
465.tonto 4.84 3.77 3.24 3.03 2.97
470.lbm 14.41 11.06 9.62 9.59 9.28
473.astar 0.03 0.01 0.00 0.00 0.00
481.wrf 11.71 7.46 3.61 1.30 0.69
482.sphinx3 14.29 2.60 0.58 0.33 0.26
483.xalancbmk 5.22 3.43 2.73 2.44 2.41
998.specrand 11.21 9.49 8.79 8.62 8.53
999.specrand 11.39 9.65 8.99 8.59 8.53

89

90

Chapter 7

Future Work

Although Taxi is incomplete, we believe that tagged architectures are a promising de-

fense mechanism against code reuse attacks. While current hardware-based defenses

use too much memory or cannot reuse existing components, Taxi addresses both is-

sues by using only 1 or 2 tag bits and minimally modifying existing processors and

memory. In addition, Taxi provides strong security guarantees against code pointer

corruption that cannot be matched by existing software defenses with the exception

of full memory safety. We have demonstrated that almost all application code can

run inside of Taxi without modification or causing false positive traps and that a

hardware specification version of Taxi is practical under our model.

With compiler support, Taxi would be able to achieve even stronger security

guarantees. Though Taxi supports complex tag propagation schemes, much of the

type information present in source code is lost at the compilation stage and it is

too difficult for the hardware to infer code pointer types on its own. With static

analysis to identify function pointers and other pointer structures, we would be able

to implement the ideal code pointer or universal pointer policies. A compiler which

can distinguish tag copying instructions from tag clearing instructions would also be

very helpful in eliminating compatibility issues in the no return copy and universal

pointer blacklist policies.

One benchmark missing from our evaluation of Taxi is performance overhead due

to tag computation. The full impact of parallelizing the tag unit with the ALU cannot

91

be measured in an ISA simulator and we would like to port our policies to a processor

emulator such as QEMU or a hardware description language such as Bluespec or

Chisel. Due to low overhead in the similar PUMP model [16], we are optimistic that

our model is indeed practical. We have also not yet measured the impact of tag

compression which would add a tradeoff between lower memory overhead at the cost

of performance overhead. Our eventual goal is the development of a processor which

we hope becomes widely adopted as a practical defense against code reuse attacks,

and we believe that Taxi successfully demonstrates the viability of our model.

92

Bibliography

[1] mmap(3): map pages of memory - Linux man page. http://linux.die.
net/man/3/mmap. 2015-07-15.

[2] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In Vijay Atluri, Catherine Meadows, and Ari Juels, editors, ACM
Conference on Computer and Communications Security, pages 340–353. ACM,
2005.

[3] Anonymous. Bypassing Pax ASLR protection. Phrack, 11(59), July 2002.

[4] Andrea Bittau, Adam Belay, Ali Jose Mashtizadeh, David Mazieres, and Dan
Boneh. Hacking blind. In IEEE Symposium on Security and Privacy, pages
227–242. IEEE Computer Society, 2014.

[5] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai Liang. Jump-
oriented programming: a new class of code-reuse attack. In Bruce S. N. Cheung,
Lucas Chi Kwong Hui, Ravi S. Sandhu, and Duncan S. Wong, editors, ASIACCS,
pages 30–40. ACM, 2011.

[6] Nicholas Carlini and David Wagner. Rop is still dangerous: Breaking modern
defenses. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security, pages 385–
399. USENIX Association, 2014.

[7] Shuo Chen, Jun Xu 0003, and Emre Can Sezer. Non-control-data attacks are
realistic threats. In Patrick McDaniel, editor, USENIX Security. USENIX Asso-
ciation, 2005.

[8] Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert H. Deng.
Ropecker: A generic and practical approach for defending against rop attacks.
In NDSS. The Internet Society, 2014.

[9] David Chisnall, Colin Rothwell, Robert N. M. Watson, Jonathan Woodruff,
Munraj Vadera, Simon W. Moore, Michael Roe, Brooks Davis, and Peter G.
Neumann. Beyond the pdp-11: Architectural support for a memory-safe c ab-
stract machine. In ÃŰzcan ÃŰzturk, Kemal Ebcioglu, and Sandhya Dwarkadas,
editors, ASPLOS, pages 117–130. ACM, 2015.

93

http://linux.die.net/man/3/mmap
http://linux.die.net/man/3/mmap

[10] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
Guard: Automatic adaptive detection and prevention of buffer-overflow attacks.
In SEC98, 1998.

[11] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. Opportunities and limits
of remote timing attacks. ACM Trans. Inf. Syst. Secur., 12(3), 2009.

[12] Thurston H. Y. Dang, Petros Maniatis, and David Wagner. The performance
cost of shadow stacks and stack canaries. In Feng Bao, Steven Miller, Jianying
Zhou, and Gail-Joon Ahn, editors, ASIACCS, pages 555–566. ACM, 2015.

[13] Mark Daniel, Jake Honoroff, and Charlie Miller. Engineering heap overflow ex-
ploits with javascript. In Proceedings of the 2nd USENIX Workshop on Offensive
Technologies, 2008.

[14] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose.
Stitching the gadgets: On the ineffectiveness of coarse-grained control-flow in-
tegrity protection. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security,
pages 401–416. USENIX Association, 2014.

[15] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hard-
bound: architectural support for spatial safety of the c programming language.
In Susan J. Eggers and James R. Larus, editors, ASPLOS, pages 103–114. ACM,
2008.

[16] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu Chiricescu,
Jonathan M. Smith, Thomas F. Knight Jr., Benjamin C. Pierce, and André De-
Hon. Architectural support for software-defined metadata processing. In ÃŰzcan
ÃŰzturk, Kemal Ebcioglu, and Sandhya Dwarkadas, editors, ASPLOS, pages
487–502. ACM, 2015.

[17] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany
Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed
Okhravi. Missing the Point(er): On the Effectiveness of Code Pointer Integrity.
In Proceedings of the IEEE Symposium on Security and Privacy (Oakland’15),
May 2015.

[18] Isaac Evans, Samuel Fingeret, and Julian Gonzalez. Risc-v mit project. https:
//github.com/riscv-mit, 2015.

[19] I. Fratric. Runtime prevention of return-oriented programming at-
tacks. http://ropguard.googlecode.com/svn-history/r2/trunk/
doc/ropguard.pdf. 2015-07-14.

[20] Free Software Foundation, Inc. GCC, the GNU Compiler Collection - GNU
Project - Free Software Foundation (FSF). https://gcc.gnu.org/. 2015-
07-30.

94

https://github.com/riscv-mit
https://github.com/riscv-mit
http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf
http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf
https://gcc.gnu.org/

[21] Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. Out
of control: Overcoming control-flow integrity. In IEEE Symposium on Security
and Privacy, pages 575–589. IEEE Computer Society, 2014.

[22] Yongle Hao, Yizhen Jia, Baojiang Cui, Wei Xin, and Dehu Meng. Openssl
heartbleed: Security management of implements of basic protocols. In 3PGCIC,
pages 520–524. IEEE, 2014.

[23] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W. David-
son. Ilr: Where’d my gadgets go? In IEEE Symposium on Security and Privacy,
pages 571–585. IEEE Computer Society, 2012.

[24] Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael
Franz. Profile-guided automated software diversity. In CGO, pages 23:1–23:11.
IEEE Computer Society, 2013.

[25] Intel. Introduction to Intel Memory Protection Extensions | Intel
Developer Zone. https://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions. 2015-
07-14.

[26] Dave Jones. Trinity : A Linux system call fuzzer. http://codemonkey.org.
uk/projects/trinity/. 2015-07-30.

[27] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea,
R. Sekar, and Dawn Song. Code-pointer integrity. In Jason Flinn and Hank
Levy, editors, OSDI, pages 147–163. USENIX Association, 2014.

[28] Volodymyr Kuznetsov, LÃąszlÃş Szekeres, Mathias Payer, George Candea, and
Dawn Song. Poster: Getting The Point (er): On the Feasibility of Attacks on
Code-Pointer Integrity.

[29] Chris Lattner, Andrew Lenharth, and Vikram S. Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world. In Jeanne
Ferrante and Kathryn S. McKinley, editors, PLDI, pages 278–289. ACM, 2007.

[30] Ali Jose Mashtizadeh, Andrea Bittau, David Mazieres, and Dan Boneh. Cryp-
tographically enforced control flow integrity. CoRR, abs/1408.1451, 2014.

[31] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
Softbound: highly compatible and complete spatial memory safety for c. In
Michael Hind and Amer Diwan, editors, PLDI, pages 245–258. ACM, 2009.

[32] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
Cets: compiler enforced temporal safety for c. In Jan Vitek and Doug Lea,
editors, ISMM, pages 31–40. ACM, 2010.

95

https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://codemonkey.org.uk/projects/trinity/
http://codemonkey.org.uk/projects/trinity/

[33] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin
Kirda. G-free: defeating return-oriented programming through gadget-less bina-
ries. In Carrie Gates, Michael Franz, and John P. McDermott, editors, ACSAC,
pages 49–58. ACM, 2010.

[34] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), November
1996.

[35] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smashing
the gadgets: Hindering return-oriented programming using in-place code ran-
domization. In IEEE Symposium on Security and Privacy, pages 601–615. IEEE
Computer Society, 2012.

[36] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Transparent
rop exploit mitigation using indirect branch tracing. In Samuel T. King, editor,
USENIX Security, pages 447–462. USENIX Association, 2013.

[37] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-
Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented programming:
On the difficulty of preventing code reuse attacks in c++ applications. In 36th
IEEE Symposium on Security and Privacy (Oakland), 2015.

[38] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß, Martin Steeg-
manns, Moritz Contag, and Thorsten Holz. Evaluating the effectiveness of cur-
rent anti-rop defenses. In Angelos Stavrou, Herbert Bos, and Georgios Portoka-
lidis, editors, RAID, volume 8688 of Lecture Notes in Computer Science, pages
88–108. Springer, 2014.

[39] Offensive Security. Exploits Database by Offensive Security. https://www.
exploit-db.com/. 2015-07-14.

[40] Jeff Seibert, Hamed Okkhravi, and Eric Söderström. Information leaks without
memory disclosures: Remote side channel attacks on diversified code. In Gail-
Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM Conference on Computer
and Communications Security, pages 54–65. ACM, 2014.

[41] Hovav Shacham. The geometry of innocent flesh on the bone: return-into-libc
without function calls (on the x86). In Peng Ning, Sabrina De Capitani di Vimer-
cati, and Paul F. Syverson, editors, ACM Conference on Computer and Com-
munications Security, pages 552–561. ACM, 2007.

[42] Standard Performance Evaluation Corporation. SPEC CPU 2006. https:
//www.spec.org/cpu2006/. 2015-07-30.

[43] Corelan Team. Corelan ROPdb. https://www.corelan.be/index.php/
security/corelan-ropdb/. 2015-07-14.

[44] Corelan Team. Exploit writing tutorial part 3 : SEH Based Exploits.

96

https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://www.corelan.be/index.php/security/corelan-ropdb/
https://www.corelan.be/index.php/security/corelan-ropdb/

[45] Corelan Team. Exploiting CVE-2015-0311: A Use-After-Free in Adobe Flash
Player | Core Security Blog.

[46] PaX Team. Pax aslr (address space layout randomization). http://pax.
grsecurity.net/docs/aslr.txt. 2015-07-14.

[47] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar Er-
lingsson, Luis Lozano, and Geoff Pike. Enforcing forward-edge control-flow in-
tegrity in gcc & llvm. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security,
pages 941–955. USENIX Association, 2014.

[48] Minh Tran, Mark Etheridge, Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh,
and Peng Ning. On the expressiveness of return-into-libc attacks. In Robin
Sommer, Davide Balzarotti, and Gregor Maier, editors, RAID, volume 6961 of
Lecture Notes in Computer Science, pages 121–141. Springer, 2011.

[49] Arjan van de Ven. New security enhancements in red hat enterprise linux v. 3,
update 3. Raleigh, North Carolina, USA: Red Hat, 2004. 2015-07-14.

[50] Denys Vlasenko. Busybox. http://www.busybox.net/, 2015.

[51] Robert Wahbe, Steven Lucco, Thomas Anderson, and Susan Graham. Efficient
software-based fault isolation. In Proceedings of the Symposium of Operating
System Principles, 1993.

[52] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary
stirring: self-randomizing instruction addresses of legacy x86 binary code. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM Conference on
Computer and Communications Security, pages 157–168. ACM, 2012.

[53] Andrew Waterman and Yunsup Lee. Risc-v isa simulator. https://github.
com/riscv/riscv-isa-sim, 2014.

[54] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovic. The
risc-v instruction set manual, volume i: User-level isa, version 2.0. Technical Re-
port UCB/EECS-2014-54, EECS Department, University of California, Berkeley,
May 2014.

[55] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. Practical control flow integrity and random-
ization for binary executables. In IEEE Symposium on Security and Privacy,
pages 559–573. IEEE Computer Society, 2013.

[56] Mingwei Zhang and R. Sekar. Control flow integrity for cots binaries. In
Samuel T. King, editor, USENIX Security, pages 337–352. USENIX Associa-
tion, 2013.

97

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://www.busybox.net/
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim

	Introduction
	Background
	Code Reuse Attacks
	Buffer Overflows
	Use After Free
	Code Injection
	Return-to-libc
	Return Oriented Programming
	Variations of Return Oriented Programming
	Address Space Layout Randomization
	Side-Channel Attacks

	Defenses to Code Reuse Attacks
	Code Diversification
	Memory Safety
	Heuristic Defenses
	Control Flow Integrity
	Code Pointer Integrity

	Evaluating Code Pointer Integrity
	Code Pointer Integrity
	Static Analysis
	Instrumentation
	Safe Region Isolation

	Attack Methodology
	Overview
	Timing Side-Channel Attack
	Virtual Memory Layout
	Finding the Safe Region
	Finding the Safe Region with Crashes
	Finding the Base Address of libc
	Finding the Base Address of libc with Crashes
	ROP Attack

	Discussion

	Tagged Architectures
	Design
	Computation Model
	Example Policy
	Ideal Policy

	Our Approach
	Extending Memory
	Tag Retrieval
	Tag Computation

	Previous Work
	HardBound
	CHERI
	PUMP

	Taxi: A Minimal Secure Tagged Architecture
	RISC-V Architecture
	Tag Extension
	Arithmetic Instructions
	Memory Instructions
	Jump Instructions
	Tag Instructions

	Implemented Policies
	Basic Return Address Policy
	No Return Copy Policy
	No Partial Copy Policy
	Blacklist No Partial Copy Policy

	Policies Requiring Compiler Support
	Function Pointer Policy
	Read-Only Function Pointer Policy
	Universal Pointer Policy

	Summary

	Evaluating Taxi
	Prototype Components
	ISA Simulator
	Cross Compiler
	Linux
	Cache Simulator
	Test Suite
	Debugging
	Libspike
	Memory Tracing

	Policy Evaluation
	Methodology
	Security
	Return Address Policy
	No Return Copy Policy
	No Partial Copy Policy
	Blacklist No Partial Copy Policy
	Conclusion

	Cache Evaluation
	Methodology
	Results

	Future Work

