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ABSTRACT
Despite the many efforts made in recent years to mitigate
runtime attacks such as stack and heap based buffer over-
flows, these attacks are still a common security concern in to-
day’s computing platforms. Attackers have even found new
ways to enforce runtime attacks including use of a technique
called return-oriented programming. Trusted Computing
provides mechanisms to verify the integrity of all executable
content in an operating system. But they only provide in-
tegrity at load-time and are not able to prevent or detect
runtime attacks. To mitigate return-oriented programming
attacks, we propose new runtime integrity monitoring tech-
niques that use tracking instrumentation of program binaries
based on taint analysis and dynamic tracing. We also de-
scribe how these techniques can be employed in a dynamic
integrity measurement architecture (DynIMA). In this way
we fill the gap between static load-time and dynamic run-
time attestation and, in particular, extend trusted comput-
ing techniques to effectively defend against return-oriented
programming attacks.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; H.4
[Information Systems Applications]: Miscellaneous

General Terms
Measurement, Security

Keywords
return-oriented programming, integrity monitoring, attesta-
tion systems

1. INTRODUCTION
Distributed computing and worldwide business transac-

tions over open networks, such as the Internet, increasingly
demand for secure communication and secure operation due
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to rising online fraud [13] and software attacks [30]. While
cryptographic techniques protect data communication satis-
factorily in a pragmatic view, the security of the endpoints
and their underlying software components suffer from ex-
ploitation of different vulnerabilities. Some of these vul-
nerabilities are due to the complexity and architectural con-
straints of the underlying execution environment (CPU hard-
ware and commodity operating systems), some are due to
poor software development practices and lack of software
security in applications. In this context, the integrity of sys-
tem software and applications is a fundamental requirement
and necessary consequence in order to ensure trust in the
computing infrastructure.

Trusted Computing as proposed by the Trusted Comput-
ing Group (TCG) offers a technology that is able to verify
the integrity of executable content through remote attesta-
tion. This procedure allows a verifier to check the integrity
of a remote system by verifying integrity measurement val-
ues digitally signed by a trusted hardware component called
Trusted Platform Module (TPM) [35]. Several operating
system extensions [22, 29] already support the TPM as un-
derlying security module. However, such attestation mech-
anisms provide only integrity verification at load-time but
not at run-time: An attacker can change the flow of execu-
tion of a program, e.g., via buffer overflow attacks [2] that
are despite numerous countermeasures still a great security
concern in software systems today.

In particular, new runtime attacks were found based on
so called return-oriented programming [5, 31]. These attacks
do not need to inject new code, but instead use code that
already exists in the process’s memory. Existing protection
mechanisms such as marking the stack as non-executable
[24] cannot detect this class of attacks because only instruc-
tions are executed that reside in valid code pages. More-
over, the new attacks generalize the original return-into-libc
attack [32] by allowing the attacker arbitrary computation
without calling any functions. In a traditional return-into-
libc attack an attacker could execute only straight-line code
without using branching, and could only invoke functions
that reside in libc. In the new attacks, an attacker over-
writes the stack with return addresses that point to existing
code fragments in the program or system libraries.

The existing TCG attestation method cannot reflect such
malicious changes during runtime since it takes static in-
tegrity measurements at load-time. Recent works try to
fill the gap between load-time and runtime attestation by
monitoring (dynamic) properties of programs [16, 12] or by
enforcing information flow policies that allow low integrity
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data to flow only to high integrity processes [14]. However,
these approaches require either the source code of applica-
tions to be monitored or are restricted to special runtime
environments. To the best of our knowledge, none of these
approaches can detect or prevent attacks that are based on
return-oriented programming, which we consider a major
threat in practical computing environments.

We propose a dynamic integrity measurement technique
that is able to detect this new class of attacks. Our solution
extends existing load-time measurement with a novel dy-
namic integrity monitoring using code rewriting techniques.
In this paper, we present the current work-in-progress of our
dynamic integrity measurement architecture (DynIMA). In
particular, our contributions are the following:

• We propose a general design for a dynamic integrity
measurement architecture (Section 3). The main idea
is to instrument the code of programs before loading
them to include runtime checks. These checks monitor
changes during runtime in the data segment, in par-
ticular on the stack in order to detect attacks such as
return-oriented programming.

• We explore two promising rewriting techniques to in-
tegrate in our integrity measurement architecture as
tracking instrumentation (Section 4): taint tracking
and dynamic tracing.

2. BACKGROUND AND PROBLEM

2.1 Trusted Computing Concepts
The Trusted Computing Group (TCG), an industrial ini-

tiative towards the realization of Trusted Computing, has
specified security extensions for commodity computing plat-
forms. The core TCG specification is the Trusted Platform
Module (TPM) [35], a hardware security module embedded
in computer mainboards. The TPM provides some crypto-
graphic functions and protected storage for small data such
as cryptographic keys.

The TPM supports a trusted boot process by allowing
to record measurements of the hardware configuration and
software stack during the boot process. Measurements are
taken at load-time of the software components (using cryp-
tographic hashing of binaries). These measurements are se-
curely stored in specific TPM registers called Platform Con-
figuration Registers (PCRs). Based on these PCR values,
the TPM provides the sealing functionality, i.e., binding en-
crypted data to the recorded configuration, and attestation,
i.e., reporting the system state to a (remote) party by pre-
senting the PCR values digitally signed by the TPM.

2.2 Return-Oriented Programming Attacks
Runtime attacks can change the process behavior and they

are not reflected in the attestation of load-time integrity
measurement. A traditional vulnerability of programs is the
buffer overflow on the stack [2]. An attacker overwrites the
saved return address of a function on the stack such that it
points to injected code, which the attacker also places on the
stack. Subsequent instructions are executed on the stack,
which is now interpreted as code and not data. Marking the
stack as non-executable [24] prevents such code injection
attacks. Modern processors from AMD and Intel provide a
non-executable bit for each memory page, which operating
systems can set for data pages.

In contrast, in return-oriented programming (ROP) at-
tacks [5, 31, 32], the attacker overwrites the stack with ad-
dresses that point to already existing code. Addresses that
are mainly used point to the standard C library (libc) be-
cause it is linked into most Unix programs. But other li-
braries or parts of the program may serve as target addresses
as well.

Instead of calling a function, ROP carefully sets return ad-
dresses on the stack to the middle of instruction sequences
(gadgets) that end with a return instruction. After exe-
cuting the instructions of the gadget, the return takes the
next address from the stack where execution continues, and
increments the stack pointer. Hence, by carefully crafting
the data that overwrites the stack, an attacker can point to
existing code sequences. The stack pointer effectively deter-
mines the program control flow then and acts like an instruc-
tion pointer. This attack completely circumvents protection
methods based on non-executable data pages.

Buchanan et al. [5] have shown that this attack can be
generalized from x86 to RISC processor architectures. They
even showed that it is possible to build a high-level lan-
guage and a compiler based on those gadgets, which enables
attackers to easily construct the stack to include return ad-
dresses which result in the execution of arbitrary behavior
within a vulnerable process.

The authors of [5] briefly mention some strategies to be
worth to explore as possible mitigating techniques for ROP
attacks. However, they state that“any ’Trusted Computing’
technology using cryptographic attestation” cannot detect
ROP attacks. The reason is that such attestation covers
only load-time integrity measurements. Therefore, we want
to extend the TCG based integrity measurement and at-
testation techniques to include runtime checks. We aim at
proving that trusted computing, with certain extensions, can
be adopted to detect return-oriented programming attacks.

3. ARCHITECTURE FOR DYNAMIC
INTEGRITY MEASUREMENT

To explain the main concept of our dynamic integrity mea-
surement architecture (DynIMA), we consider a simple pro-
cess model. A process consists of code and data. Code is the
static part of the program binary, whereas the data contains
runtime variables and, in particular, the stack, which holds
function arguments and return addresses of function calls.

The general idea of DynIMA is to combine load-time in-
tegrity measurement with dynamic tracking techniques. A
program’s code will be instrumented with tracking code that
will perform integrity-related runtime checks. To realize this
idea, we propose to change the usual program loader of the
operating system. It should not only include static integrity
measurement facility (as in IMA [29]), but also a new com-
ponent that rewrites the code of programs to be loaded to
include special tracking code that monitors dynamic events
of the program and maintains tracking data. Tracking code
will be generically instrumented to program binaries because
we aim to track common patterns of ROP attacks and not
program-specific behavior. Hence, we do not require the
source code of programs to be monitored by DynIMA.

Program loading.
The sequence of loading a program in DynIMA works as

follows: When a program is going to be loaded, the loader
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measures the static binary of the program and a tracking in-
strumentation component rewrites the code to include track-
ing code. The process of the program is then started and
the tracking code stores tracking data in the data segment.
The tracking code will dynamically update tracking data as
tracking events occur. The tracking events are pre-defined
for all program binaries.1 For instance, based on the mea-
surement of the binary, a different event pattern and track-
ing code could be applied. Which pattern and tracking code
has to be applied is defined in a tracking policy of DynIMA.
The components of the loader and the tracking instrumen-
tation are contained within the Process Integrity Manager
(PIM). In contrast to a program monitor such as [12], PIM
instruments the program (and other parts of the operating
system) with tracking code, which results in a distributed
monitor. Parts of the monitoring are performed in PIM and
the operating system, and parts are performed within the
program’s process. Figure 1 shows the DynIMA architec-
ture.

Figure 1: Architecture of DynIMA

Attestation.
We assume the TCB (including, BIOS, bootloader, oper-

ating system, and PIM) to be measured statically at boot
time and recorded in the PCRs of the TPM. Any other pro-
gram is loaded and measured by the PIM, similar to static
measurement as done in IMA [29] (in fact we use IMA for
the static part). The result of the static measurement and
the dynamic tracking is stored on a per-process basis within
the PIM. Hence, an attestation procedure is composed of
the following steps:

1. A verifier requests attestation of a certain program.

2. PIM requests a PCR quote from the TPM to attest to
the TCB (including the PIM).

3. PIM digitally signs the measurement and current track-
ing data of the program which attestation is requested.

1DynIMA could be extended that tracking events also con-
tain individual, program-specific events. However, this
would require knowledge on details of each program and
probably require the source code. This is out of scope of
this paper since we aim to detect ROP attacks, which are a
general problem.

4. PIM sends the quoted PCRs (signed by the TPM) and
the dynamic measurement of the program (signed by
PIM) to the verifier.

5. The verifier verifies the presented data and decides fur-
ther steps according to the result.

4. TRACKING INSTRUMENTATION
In this section we briefly explore two possible code instru-

mentation techniques that could be applied as our tracking
instrumentation in DynIMA. The integration and implemen-
tation of these techniques in our architecture is currently
work-in-progress.

4.1 Using Taint Tracking
As one possible countermeasure to prevent attacks that

are based on buffer overflows and return-oriented program-
ming we consider dynamic taint analysis. Dynamic taint
analysis marks any untrusted data as tainted, tracks the
propagation of tainted data during program execution, and
alerts or terminates the program if tainted data is misused.
Misuse of tainted data is, for instance, using tainted data as
a pointer, since most buffer overflow attacks are based on
changing return addresses and function pointers.

To design a dynamic integrity measurement architecture,
we propose a combination of trusted computing and taint
tracking to achieve both load-time and run-time integrity.
The design we propose is depicted in Figure 2.

Attestation Verifier

Sealing

block started
from symbol

Code

BSS

Heap

Stack

Data

Emulation environment with Taint
Tracking System (e.g. DYTAN)

Taint System

IMA

Figure 2: DynIMA with taint tracking

On the left side of Figure 2, we see a usual Unix process
that is running in an emulation environment that contains
a taint tracking system as plug-in. Only the Code (or Text)
segment is protected by IMA at load-time. In addition, dy-
namic taint analysis monitors data flow integrity. The static
results from IMA and the dynamic results from taint track-
ing are both collected by PIM. If the taint tracking detects
an integrity violation, the program will be marked as tainted
and PIM records this accordingly. Hence, a verifier can check
through dynamic attestation (see above) whether the system
has been compromised at run-time. Moreover, the verifier
must be able to verify that the taint tracking system is run-
ning on the verified system for the application he wants to
verify. Besides, the taint tracking system should be based
on binary instrumentation. Otherwise, some libraries have
to be excluded from the taint analysis since the source code
of libraries is not always available or they are written in
assembly language.
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Tools that enforce dynamic taint analysis are usually im-
plemented in Binary Instrumentation Frameworks (DBIs).
Therefore we implemented a tool that tries to detect ROP
attacks by counting any instruction between two return in-
structions in the PIN framework [20]. Since instruction se-
quences used in ROP attacks range from two to five instruc-
tions [31], we increment a counter if the instructions between
two returns are less or equal than five. Further, because the
small instruction sequences are all chained consecutively to-
gether to form a gadget, our pintool reports a ROP attack if
three of these small instruction sequences were executed one
after another. As a first test, we deployed a test program
that exploits a buffer overflow vulnerability in a program
and runs a ROP attack. Our pintool was able to detect the
attack because of the small instruction sequences executed
in the ROP attack. These are promising results, and in fu-
ture work we have to identify the appropriate parameters for
detecting return-oriented programming in general in order
to distinguish a gadget call from ordinary short instruction
sequences.

4.2 Using Dynamic Tracing
While taint tracking requires to instrument the program

before execution, dynamic tracing techniques exist that al-
low to instrument code on-the-fly. DTrace [6] is a dynamic
instrumentation framework for tracing kernel and processes
operation in production systems. It uses code rewriting tech-
niques to dynamically instrument both pre-defined probe
points in the kernel but also arbitrary user process instruc-
tions. If probes are not activated, there is no tracing code in-
strumented in the processes or kernel. This allows dynamic
instrumentation of running systems without restarting the
processes under observation.

Using a dynamic tracing mechanism such as DTrace would
improve the flexibility of our design since tracing can be
switched on and off as needed. Moreover, we expect a perfor-
mance gain because when tracing is switched off, no tracing
code will be actually executed.

DTrace was also examined how it can be used for re-
verse engineering tasks [34]. To overcome the constraints
of the D language provided by DTrace, the authors use a
combination of DTrace and the object-oriented program-
ming language Ruby. The framework they propose is called
RE:DTrace and is distributed with scripts that are able to
detect stack and heap based buffer overflow attacks. We
have to investigate if it is possible to use their work and
their ideas to extend RE:DTrace in a way to detect ROP
attacks.

We are currently investigating DTrace as another means
to detect ROP attacks. Therefore, we instrument the libc
library and try to detect whether functions are called from
the beginning or in the middle of instruction sequence. The
latter would indicate a gadget call of a ROP attack.

To track all entries and returns to and from libc, we de-
veloped the following script in the D language:

1. pid$target:libc::entry {activate[probefunc]++;}

2. pid$target:libc::return /activate[probefunc]==0 /
{printf("Return of %s without entry!",probefunc);}

3. pid$target:libc::return /activate[probefunc]!=0 /
{activate[probefunc]--;}

The array activate[probefunc] is initialized with null and
holds for every function in libc a counter value, whereas

a value greater than null means that the function is cur-
rently being executed. Therefore the first rule increments
the counter in the case the function is called. The third
rule decrements the counter if the function returns ordinary
to its caller. However, the probes for the second rule will
fire before rule three is applied if the counter value is set
to null, which means that DTrace has not registered an en-
try to this function although a return from this function is
issued. This could be an indication for a gadget call in a
ROP attack. As we enabled these probes for some ordinary
programs we found out that there are some functions (e.g.
memmove and memcopy) were the second rule fires although
no ROP attack occurred. Our ongoing work includes sepa-
rating these functions in order to reduce the number of false
positives.

5. RELATED WORK
In the literature, there are several works regarding load-

time integrity checks. For example, secure boot mecha-
nisms [3] and trusted computing enhanced Linux kernel mod-
ules like Enforcer [21] perform integrity checks of the loaded
operating system and other modules. The Integrity Mea-
surement Architecture (IMA) [29] for Linux uses a TPM
to record measurements of any dynamic executable content
at load-time from the BIOS all the way up to the appli-
cation layer. While the TCG attestation method is based
on hashes of program binaries, several improvements have
been proposed in the literature to overcome some inherent
drawbacks, such as lack of flexibility for program updates
or privacy concerns on reporting the exact platform config-
uration [26, 28, 15, 17, 21]. They mainly use certificates
or abstract properties instead of binary hashes. However,
all those approaches are still based on load-time integrity
measurement, and are not capable of detecting (malicious)
changes in the measured programs during their runtime.

In addition to load-time measurement, there are also ap-
proaches to extend attestation with runtime integrity mea-
surement techniques. Semantic remote attestation [12] ex-
ploits security properties of programming languages, e.g.,
type-safety, which allow for certain properties of runtime
attestation. However, it requires a trusted language-specific
environment. In contrast, we target runtime attestation of
arbitrary program binaries independent of their program-
ming language. PRIMA [14] extends simple load-time in-
tegrity measurement with information flow integrity. High
integrity processes have to have an input filtering interface,
or they are not allowed to access low integrity data. How-
ever, to the best of our knowledge PRIMA is not able to
prevent ROP attacks. Runtime monitors for the Linux ker-
nel have been proposed [19, 25] that analyze and inspect
dynamic structures of the kernel memory. They periodically
check function pointers [25], or verify dynamic data struc-
tures [19], which is also performed in response to system
events. These approaches are useful to protect the operat-
ing system kernel, but do not target ROP attacks on user
programs. Hence, they are complementary to our work.

The closest work to our architecture is ReDAS [16], a
similar framework for dynamic attestation with runtime in-
tegrity monitoring of programs. Their approach differs to
ours in two main aspects: (i) ReDAS requires the source
code of each program to perform an analysis of dynamic
properties before execution, and (ii) ReDAS cannot detect
return-oriented programming attacks in general because it
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monitors applications on the granularity of system calls.
But ROP attacks can change program behavior without any
function calls by exploiting code fragments in the middle of
functions [5]. In contrast, we aim to detect any ROP at-
tack by monitoring ROP-specific dynamic behavior, which
is generic for all programs, and we do not require the source
code of applications.

Several architectures and tools for dynamic taint analysis
were proposed and developed in the past years. On the one
hand, software-based systems were deployed, whereas some
are based on binary instrumentation [8, 9, 23, 27] and others
are compiler-based [1, 7, 18, 36]. On the other hand, several
hardware-based solutions were presented [10, 11, 33] that
reduce overhead associated with software-based solutions,
but require hardware extensions. We use these techniques,
in particular binary instrumentation, in DynIMA in order
to detect ROP attacks.

The authors of [4] describe in their position paper, which
inspired much of our work, how tracing techniques such as
DTrace could be used to complement load-time integrity
measurement with runtime policy enforcement. In their vi-
sion software developers should define application-specific
events of their programs as policy. In contrast, we aim at
defining common events that are tracked for all programs
in order to detect runtime changes, namely return-oriented
programming attacks.

6. CONCLUSIONS AND FUTURE WORK
We have described how trusted computing concepts can

be extended with tracking instrumentation in order to bridge
the gap between static load-time and dynamic runtime in-
tegrity measurement. The DynIMA framework we propose
is to the best of our knowledge the first framework that
provides both load-time and runtime integrity for program
binaries without knowledge of their source code and even un-
der the presence of attacks that are based on return-oriented
programming.

Future work has do address some open questions, e.g., the
design of the operating system loader: Should every pro-
gram run with PIM or is it possible to exclude some pro-
grams from instrumentation to achieve better performance?
We have to take into consideration that instrumentation,
especially in the case of taint analysis, can highly impact
the performance of the overall system. Further, we have to
find meaningful values to integrate in the existing integrity
measurement to include the tracking results in remote at-
testation procedures. Moreover, should we measure the pro-
gram binaries before or after applying the code rewriting
that includes the dynamic tracking? Does it have any mean-
ingful implications in doing either way? We believe not if
we assume the code rewriting as a trusted and determinis-
tic process. However, on different platforms different code
rewriting implementations could result in different measure-
ments afterwards, resulting in unknown values to a verifier
during attestation. We also have to take into consideration
that code rewriting changes the process image and can hin-
der the execution of evaluated and certified programs. One
approach to overcome this obstacle is to certify the rewriting
techniques. The combination of the certified program and
the certified rewriting technique then allows usual execution
of the program. We will explore these and other issues in our
ongoing work to complete DynIMA to fill the gap between
load-time and runtime integrity measurement.
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