
Mitigating Code-Reuse Attacks with

Control-Flow LockingControl-Flow Locking

Tyler Bletsch, Xuxian Jiang, Vince Freeh

Dec. 9, 2011

Introduction

•Computer systems run complicated software,

which is vulnerable

– We keep finding new vulnerabilities

– Vulnerabilities are routinely exploited

2

Attack techniques

•Exploit a software vul. to redirect control flow

– Buffer overflow, format string bug, etc.

– Code injection attacksCode injection attacksCode injection attacksCode injection attacks

•Upload malicious machine code

3

•Upload malicious machine code

•Prevented by W^X

– Code reuse attacksCode reuse attacksCode reuse attacksCode reuse attacks

•Engage in malicious control flow

Background on code-reuse attacks

•We assume the attacker can

– Put a payload into W^X-protected memory

– Exploit a bug to overwrite some control data

(return address, function pointer, etc.)

– Altered control data will redirect control flow

4

– Altered control data will redirect control flow

Background on code-reuse attacks

•Return-into-libc attack

– Execute entire libc functions

– Attacker may:

•Use system/exec to run a shell

•Use mprotect/mmap to disable W^X
Return address

Arg 1

Arg 2

…

Saved Base Ptr

system

“/bin/bash”

NULL

…

5

•Use mprotect/mmap to disable W^X

– Straight-line code only

•General assumption
Buffer

Saved Base Ptr

Stack grows
downward

Buffer overflow

Background on code-reuse attacks

•How to get arbitrary computation?
ReturnReturnReturnReturn----oriented programming (ROP)oriented programming (ROP)oriented programming (ROP)oriented programming (ROP)

•Chains together gadgetsgadgetsgadgetsgadgets: tiny snippets of code
ending in ret

6

ending in ret

•Achieves Turing completeness

•Demonstrated on x86, SPARC, ARM, z80, ...

– Including on a deployed voting machine,
which has a non-modifiable ROM

– Remote exploit on Apple Quicktime1

1 http://threatpost.com/en_us/blogs/new-remote-flaw-apple-quicktime-bypasses-aslr-and-dep-083010

Defenses against ROP

•ROP attacks rely on the stack in a unique way

•Researchers built defenses based on this:

– ROPdefender[1] and others: maintain a shadow stack

– DROP[2] and DynIMA[3]: detect high frequency rets

– Returnless[4]: Systematically eliminate all rets

7

– Returnless : Systematically eliminate all rets

•Problem: codeProblem: codeProblem: codeProblem: code----reuse attacks need not be reuse attacks need not be reuse attacks need not be reuse attacks need not be
limited to the stack and limited to the stack and limited to the stack and limited to the stack and ret !!!!

– JumpJumpJumpJump----oriented programmingoriented programmingoriented programmingoriented programming[13]: a way to be Turing
complete with just jmp .

Can we do better?

•What is the core problem behind code-reuse

attacks?

– Using control data in memory to allow jumps to

literally anywhereanywhereanywhereanywhere

•Solution: Constrain attacker choices, move

8

•Solution: Constrain attacker choices, move

towards finer and finer control flow integrity

Can we do better?

• Earlier work

– Program shepherdingProgram shepherdingProgram shepherdingProgram shepherding[7][7][7][7]: instrumentationinstrumentationinstrumentationinstrumentation-based,

up to 7x overhead

– Control flow integrityControl flow integrityControl flow integrityControl flow integrity[8][8][8][8] (CFI)(CFI)(CFI)(CFI)

• Before each transfer, eagerlyeagerlyeagerlyeagerly check target for a special token inline

with code

Very expensive

Still too expensive

9

with code

• Relatively high overhead (up to 46%)

•We propose a more efficient mechanism

– Validation performed lazilylazilylazilylazily instead of eagerly

– Mutex-inspired “locking” mechanism

Control flow locking (CFL)

Can we do better?

•UnintendedUnintendedUnintendedUnintended code

– Eliminate it or prevent its execution globally

– Use a sandboxing technique based on alignment
•Introduced by McCamant, et al. [10]

•Developed further in Google Native Client[11]

• IntendedIntendedIntendedIntended code

10

• IntendedIntendedIntendedIntended code

Preventing unintended code

• Impose three changes on compiled code:
1. No instruction may cross an n-byte boundary

2. All indirect control flow transfers must target an

n-byte boundary

3. All targets for indirect control flow transfers must be

aligned to an n-byte boundary

11

aligned to an n-byte boundary

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10(1)

0 1 2 3 4 5 6 7 8 9 10(2)

0 1 2 3 4 5 6 7 8 9 10(3)

n Target

ret

ret with alignment enforcement

Can we do better?

•UnintendedUnintendedUnintendedUnintended code

– Prevent its execution globally

– Use a sandboxing technique based on alignment
•Introduced by McCamant, et al. [10]

•Developed further in Google Native Client[11]

• IntendedIntendedIntendedIntended code

12

• IntendedIntendedIntendedIntended code

– Insert security code at intended control flow
transfers
•Indirect jmp and call ; all ret instructions

Handling intended code

• Start with a simple version: SingleSingleSingleSingle----bit CFLbit CFLbit CFLbit CFL
– Before a transfer, insert a "locklocklocklock":

if (k != 0) abort();

k = 1;

– Before a "valid target", insert an "unlockunlockunlockunlock":
k = 0;

13

Valid target:
� Labels in assembly code that are indirectly callable
� Return sites: locations directly after a call

Effect of single-bit CFL

(insns) ; ret(insns) ; ret (insns) ; ret

14

k=0k=1

Improving single-bit CFL

• Control flow forced through valid targets
– No more gadgets!

– AnyAnyAnyAny valid target unlocks

• We can do better: MultiMultiMultiMulti----bit CFLbit CFLbit CFLbit CFL
– Assign keys to paths along the control flow graph (CFG)control flow graph (CFG)control flow graph (CFG)control flow graph (CFG)

– Only the correctcorrectcorrectcorrect target unlocks

15

– Only the correctcorrectcorrectcorrect target unlocks

– Before a transfer, insert a "locklocklocklock":
if (k != 0) abort();

k = value;

– Before a "valid target", insert an "unlockunlockunlockunlock":
if (k != value) abort();

k = 0;

Additional considerations

•System calls

– Insert lock verification code before syscall
instructions, e.g.

if (k!=0) abort();

•Protection of

16

•Protection of k
– Use x86 segmentation: give k its own segment.

– Ordinary code uses almost no segmentation:
there are segment registers never touched by
normal code.

•Cannot violate CFG more than once!

•No syscalls, so what's left?

– Change some memory

– Redirect control flow (once)

•But recall our threat model...

Security Analysis

17

•But recall our threat model...

– No new powers!

• Attacker can:

– Overwrite some memory

– Redirect control flow

Threat model

Implementation

•Environment:

– OS: Debian Linux 5.0.4 32-bit x86

– CPU: Intel Core2Duo E8400 3GHz

– RAM: 2GB DDR2-800

•Built a CFL-enabled version of:

18

•Built a CFL-enabled version of:

– libc (dietlibc)

– libgcc (helper library included by gcc compiler)

– Application under test

•Based on statically linked binaries

Implementation

•Added two phases to normal gcc build system:

– PrePrePrePre----assembly assembly assembly assembly phasephasephasephase: Rewrites assembly code

– PostPostPostPost----link phaselink phaselink phaselink phase: Extracts CFG, patches up binary

19

Pre-assembly phase

• The pre-assembly rewriter will:
1. Do unintended code prevention, n=32 bytes

2. Insert lock code before all indirect control transfers

3. Insert unlock code at all indirect control targets

4. In a section called “.lockinfo ”, make note of:
o All symbols and code label references

o All direct calls and indirect control flow transfers

20

o All direct calls and indirect control flow transfers

o Location of all lock & unlock code

• Lock/unlock code has dummy values for k .

Post-link phase

• The post-link phase will:
1. Use the .lockinfo to identify:

o All lock and unlock code locations

o All referenced code symbols (i.e., indirectly callable
symbols)

o The CFG

21

o The CFG

2. Export the list of indirectly callable symbols

3. Compute & patch the k values of lock and unlock
code directly into the finished binary

Evaluation

• Correctness

– “Reliable disassembly”

• Introduced in Google Native Client project

• A natural consequence of alignment technique

• Because unintended code is removed, we can reliably

22

• Because unintended code is removed, we can reliably

walk the disassembly

– Verify that all control flow transfers are preceded by

lock code

• Performance

Performance evaluation setup

• Workloads:

– Several from SPEC CPU 2000 and 2006

– Selected UNIX utilities

• Levels of protection:

– NoneNoneNoneNone: No changes made

23

– Just alignmentJust alignmentJust alignmentJust alignment: Add only the alignment shims to preclude

unintended code

– SingleSingleSingleSingle----bit CFLbit CFLbit CFLbit CFL: Implement the simple CFL scheme we

introduced first

– Full CFLFull CFLFull CFLFull CFL: The complete CFL scheme

• Overhead: slowdown of the latter three versus “None”.

CFL overhead in various workloads

24

Discussion

•CFL will constrain execution to the CFG,

allowing one violation at most

• It is only as good as the CFG it enforces

25

• “Non-control-data attacks are realistic

threats”[12]

Conclusion

• Control Control Control Control flow lockingflow lockingflow lockingflow locking

– Defends against code-reuse attacks

– Checks lazily rather than eagerly

– Low overhead, competitive performance

26

Questions?

27

Questions?

References
[1] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection tool to defend against return-oriented

programming attacks. Technical Report HGI-TR-2010-001, Horst Gortz Institute for IT Security, March 2010.

[2] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting return-oriented programming malicious
code. In 5th ACM ICISS, 2009

[3] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic Integrity Measurement and Attestation: Towards Defense
against Return-oriented Programming Attacks. In 4th ACM STC, 2009.

[4] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented rootkits with return-less kernels. In
5th ACM SIGOPS EuroSys Conference, Apr. 2010.

[5] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the
x86). In 14th ACM CCS, 2007.

[6] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy. Return-Oriented
Programming Without Returns. In 17th ACM CCS, October 2010.

[7] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure Execution Via Program Shepherding. In

28

[7] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure Execution Via Program Shepherding. In
11th USENIX Security Symposium, August 2002.

[8] Martin Abadi, Mihai Budiu, Ulfar Erilingsson, and Jay Ligatti. Control-Flow Integrity: Principles,
Implementations, and Applications. In 12th ACM CCS, October 2005

[9] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda. G-free: Defeating return-
oriented programming through gadget-less binaries. In ACSAC, 2010.

[10] Stephen McCamant and Greg Morrisett. Efficient, verifiable binary sandboxing for a CISC architecture. In MIT
Technical Report MIT-CSAIL-TR-2005-030, 2005.

[11] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha
Narula, and Nicholas Fullagar. Native Client: A sandbox for portable, untrusted x86 native code.
Communications of the ACM, 53(1):91–99, 2010.

[12] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-control-data attacks are
realistic threats. In In USENIX Security Symposium, pages 177–192, 2005.

[13] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, Zhenkai Liang, "Jump-Oriented Programming: A New Class of
Code-Reuse Attack," Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security (ASIACCS 2011), Hong Kong, China, March 2011.

