Mitigating Code-Reuse Attacks with

Control-Flow Locking

Tyler Bletsch, Xuxian Jiang, Vince Freeh
Dec. 9, 2011

NC STATE UNIVERSITY

Introduction

e Computer systems run complicated software,
which is vulnerable
- We keep finding new vulnerabilities

- Vulnerabilities are routinely exploited
WEIRJ D threat|post]
Q

Wednesday, December Tth, 2011

| |[Search]

The Kaspersky Lab Security News Service

Slashdot *

Multimedia

stories

Adobe Warns of Critical Zero Day Vulnera Home » Compliance & Regulations »
recent

Posted by Soulskill on Tuesday December 06, @08:18F .
popular from the might-want-to-just-trademark-that-term dept. December 7, 2011, 8:00AM

Insecure Applications: We Are The 84 Percent!
wiredmikey writes

ask slashdot by Paul Roberts > ﬁ - n Share | I Like
"Adobe issued an advisory today on a zero-(f— ;

come under aftack in the wild. According o /
games corruption vulnerability that can be exploited 2 Comment
hijack a system. So far, there are reports the

3 Follow [@paulfroberts

book reviews #1410

idle targeted attacks against Adobe Reader 9.x 1

yro Adobe Reader and Acrobat 9.4.6 and earlie Wnew report from Veracode makes clear how bad: just 16 percent of aimost 10,000 applications tested in the
computers, as well as Adobe Reader X (10. |ast six months received a [ity grade on their first attempt.

news

versions on Windows and Mac. Patches for!

X and Acrobat X will come on the next quarte
rland from Veracode's report six months ago, in which 42% of the applications tested passed on their first try.

- Application security experts at the company reported continued problems with insecure Web applications in
use by government agencies, and a plethora of insecure mobile applications.

The finding, presented in the latest, semi annual State of Software Security Reporie, is a marked departure

Attack technigues

e Exploit a software vul. to redirect control flow
— Buffer overflow, format string bug, etc.

- Code injection attacks —
* Upload malicious machine code

* Prevented by W™X

- Code reuse attacks
* Engage in malicious control flow

Background on code-reuse attacks

e We assume the attacker can
- Put a payload into W”X-protected memory

- Exploit a bug to overwrite some control data
(return address, function pointer, etc.)

— Altered control data will redirect control flow

Background on code-reuse attacks

e Return-into-libc attack
- Execute entire libc functions

— Attacker may:
* Use system/exec to run a shell
* Use mprotect/mmap to disable WX

— Straight-line code only
e General assumption

Stack grows
downward

5

Background on code-reuse attacks

 How to get arbitrary computation?
Return-oriented programming (ROP)

* Chains together gadgets: tiny snippets of code
ending inr et

* Achieves Turing completeness

e Demonstrated on x86, SPARC, ARM, z80, ...

- Including on a deployed voting machine,
which has a non-modifiable ROM

- Remote exploit on Apple Quicktime?

1 http://threatpost.com/en_us/blogs/new-remote-flaw-apple-quicktime-bypasses-aslir-and-dep-083010

Defenses against ROP

 ROP attacks rely on the stack in a unique way

e Researchers built defenses based on this:

- ROPdefender!ll and others: maintain a shadow stack
- DROP™I and DynIMAI3l: detect high frequency r et s
- Returnless!4l: Systematically eliminate all r et s

* Problem: code-reuse attacks need not be
limited to the stack and ret |

- Jump-oriented programming!13l: a way to be Turing
complete with just mp.

Can we do better?

 What is the core problem behind code-reuse
attacks?

- Using control data in memory to allow jumps to
literally anywhere

e Solution: Constrain attacker choices, move
towards finer and finer control flow integrity

Can we do better?

e Earlier work

- Program shepherding!™: instrumentation-based, < Vewexpensie
up to 7x overhead

- Control flow integrity!8! (CFI) {_still too expensive
» Before each transfer, eagerly check target for a special token inline
with code

* Relatively high overhead (up to 46%)

e We propose a more efficient mechanism
— Validation performed lazily instead of eagerly
- Mutex-inspired “locking” mechanism

Control flow locking (CFL))

Can we do better?

* Unintended code
- Eliminate it or prevent its execution globally

- Use a sandboxing technique based on alignment
* Introduced by McCamant, et al. [10]
 Developed further in Google Native Client!*]

e Intended code

10

Preventing unintended code

* |mpose three changes on compiled code:

1. No instruction may cross an n-byte boundary

2. All indirect control flow transfers must target an
n-byte boundary

3. All targets for indirect control flow transfers must be
aligned to an n-byte boundary

0 112 3 | 4| 5 6 (|7/8] 9 [|10
(1) 0 12| 3 4 | 5 6 |7/8|| 9 | 10
(2) 0 12| 3 4 | 5 6 |7 8 9 | 10
(3) 0 1|2 \ 3 | 4 5 6 7\ 8 9 | 10
; M : Target

ret with alignment enforcement

Can we do better?

* Unintended code
- Prevent its execution globally

- Use a sandboxing technique based on alignment
* Introduced by McCamant, et al. [10]
 Developed further in Google Native Client!*]

e Intended code

- Insert security code at intended control flow
transfers
e Indirect mp and call ;allret instructions

12

Handling intended code

e Start with a simple version: Single-bit CFL

- Before a transfer, insert a "lock":
If (k I=0) abort();
k=1,

- Before a "valid target", insert an "unlock":
k=0;

Valid target:
* Labels in assembly code that are indirectly callable
** Return sites: locations directly after a call

13

Effect of single-bit CFL

(insns) ; ret (insns) ; ret W

///% (insns) ; ret m

14

Improving single-bit CFL

e Control flow forced through valid targets
- No more gadgets!
- Any valid target unlocks

e We can do better: Multi-bit CFL

— Assign keys to paths along the control flow graph (CFG)
— Only the correct target unlocks

- Before a transfer, insert a "lock":
If (k = 0) abort();
k= val ue;
- Before a "valid target", insert an "unlock":
if (k!= val ue) abort();
k =0;

15

Additional considerations

e System calls

- Insert lock verification code before syscall
Instructions, e.g.
If (k!=0) abort();

e Protection of k
- Use x86 segmentation: give k its own segment.

— Ordinary code uses almost no segmentation:
there are segment registers never touched by
normal code.

16

Security Analysis

e Cannot violate CFG more than once!

* No syscalls, so what's left?
- Change some memory
- Redirect control flow (once)

e But recall our threat model...
- No new powers!

e Attacker can:
— Overwrite some memory
- Redirect control flow

17

Implementation

* Environment:
— OS: Debian Linux 5.0.4 32-bit x86
— CPU: Intel Core2Duo E8400 3GHz
- RAM: 2GB DDR2-800

* Built a CFL-enabled version of:
— libc (dietlibc)
- libgcc (helper library included by gcc compiler)
— Application under test

 Based on statically linked binaries

18

Implementation

* Added two phases to normal gcc build system:
- Pre-assembly phase: Rewrites assembly code
- Post-link phase: Extracts CFG, patches up binary

.8
ccl S Pre-as locteed as i
annotated o Ldoc info
il section
e oo

List of indirectly called symbols

Post-ld) | «
ockinfo |
on i

19

Pre-assembly phase

e The pre-assembly rewriter will:
1. Do unintended code prevention, n=32 bytes
2. Insert lock code before all indirect control transfers
3. Insert unlock code at all indirect control targets
4. In a section called “.lockinfo ”, make note of:

0 All symbols and code label references
0 All direct calls and indirect control flow transfers

O Location of all lock & unlock code
e Lock/unlock code has dummy values for K.

5 '
.C cel .S Pre-as Ioc;ed as Id Post-Id values se
annotated i i I
| ki Jlockinfo | Jlockinfo |

section |

T .___f_el:_n_q____ section
—_— I —_— S = e S e S L D)

List of indirectly called symbols

Post-link phase

e The post-link phase will:

1. Use the .lockinfo to identify:

0 All lock and unlock code locations

0 All referenced code symbols (i.e., indirectly callable
symbols)

0 The CFG
2. Export the list of indirectly callable symbols

3. Compute & patch the k values of lock and unlock
code directly into the finished binary

Id
ockinfo
ion
-

List of indirectly called symbols

.S
-C ccl N Pre-as legked as
annotated i
i
i

—_— :l"T —_—

Post-Id)
ockinfo |
on |

Evaluation

e (Correctness

- “Reliable disassembly”
 Introduced in Google Native Client project
A natural consequence of alignment technique

 Because unintended code is removed, we can reliably
walk the disassembly

- Verify that all control flow transfers are preceded by
lock code

e Performance

22

Performance evaluation setup

e Workloads:
- Several from SPEC CPU 2000 and 2006
- Selected UNIX utilities

e Levels of protection:
- None: No changes made

- Just alignment: Add only the alignment shims to preclude
unintended code

— Single-bit CFL: Implement the simple CFL scheme we
introduced first

— Full CFL: The complete CFL scheme
e Overhead: slowdown of the latter three versus “None”.

23

CFL overhead in various workloads

25%

Just alignment | Single-bit CFL m Full CFL

20%

15%

10%

5%

0% A

SPEC CPU2000 SPEC CPUZ2006

-5%

24

Discussion

* CFL will constrain execution to the CFG,
allowing one violation at most

* [t is only as good as the CFG it enforces

e “Non-control-data attacks are realistic
threats”[12!

25

Conclusion

 Control flow locking
- Defends against code-reuse attacks
— Checks lazily rather than eagerly
- Low overhead, competitive performance

26

Questions?

27

References

[1] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection tool to defend against return-oriented
programming attacks. Technical Report HGI-TR-2010-001, Horst Gortz Institute for IT Security, March 2010.

[2] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting return-oriented programming malicious
code. In 5th ACM ICISS, 2009

[3] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic Integrity Measurement and Attestation: Towards Defense
against Return-oriented Programming Attacks. In 4th ACM STC, 20009.

[4] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented rootkits with return-less kernels. In
5th ACM SIGOPS EuroSys Conference, Apr. 2010.

[5] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the
x86). In 14th ACM CCS, 2007.

[6] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy. Return-Oriented
Programming Without Returns. In 17th ACM CCS, October 2010.

[7] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure Execution Via Program Shepherding. In
11th USENIX Security Symposium, August 2002.

[8] Martin Abadi, Mihai Budiu, Ulfar Erilingsson, and Jay Ligatti. Control-Flow Integrity: Principles,
Implementations, and Applications. In 12th ACM CCS, October 2005

[9] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda. G-free: Defeating return-
oriented programming through gadget-less binaries. In ACSAC, 2010.

[10] Stephen McCamant and Greg Morrisett. Efficient, verifiable binary sandboxing for a CISC architecture. In MIT
Technical Report MIT-CSAIL-TR-2005-030, 2005.

[11] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha
Narula, and Nicholas Fullagar. Native Client: A sandbox for portable, untrusted x86 native code.
Communications of the ACM, 53(1):91-99, 2010.

[12] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. lyer. Non-control-data attacks are
realistic threats. In In USENIX Security Symposium, pages 177-192, 2005.

[13] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, Zhenkai Liang, "Jump-Oriented Programming: A New Class of
Code-Reuse Attack," Proceedings of the 6th ACM Symposium on Information, Computer and

Communications Security (ASIACCS 2011), Hong Kong, China, March 2011. 8

