
Technical Analysis of the Top BlueHat Prize Submissions
swiat 26 Jul 2012 9:55 PM

Now that we have announced the winners of the first BlueHat Prize competition, we wanted to provide some
technical details on the top entries and explain how we evaluated their submissions. Speaking on behalf of
the judges, it was great to see people thinking creatively about defensive solutions to important security
problems!

To set the stage for this post, we thought it would be helpful to quickly remind everyone of the problem that
entrants needed to solve. Specifically, entrants were required to design a novel runtime mitigation
technology that would be capable of preventing the exploitation of memory safety vulnerabilities (such as
buffer overruns). The BlueHat Prize judging panel was then responsible for evaluating each submission as
described according to the following criteria (as described in the contest rules):

1. Practical and functional (30%)
a. Can the solution be deployed at large scale?
b. Does the prototype have low overhead?
c. Is the prototype free of any application compatibility or usability regressions?
d. Does the prototype function as intended?

2. Robustness (30%)
a. How easy would it be to bypass the proposed solution?

3. Impact (40%)
a. Does the solution strongly address key open problems or significantly refine an existing

approach?
b. Would the solution strongly mitigate exploits above and beyond Microsoft’s current arsenal?

The judges for this contest consisted of representatives from Windows, Microsoft Research, and Microsoft’s
Security Engineering Center (MSEC). Of the 20 entries received, the top three submissions described
different methods of mitigating return oriented programming (ROP). Let’s dive into the technical details of
these submissions.

3rd place: mitigating ROP via return site whitelisting (/ROP)
This entry, as submitted by Jared DeMott, described a method of imposing a whitelist on the set of locations
that a return instruction can transfer control to. More specifically, this solution calls for the introduction of a
new compiler flag (“/ROP”) that would add metadata to an executable that describes the set of valid return
sites in the image. When the image is loaded at runtime by the operating system, the image’s list is added
to a master list. As the program executes, each invocation of a return instruction triggers an exception that
causes the operating system to validate the target return site against the master list of return sites. If the
target return site is in the list, the program continues executing as normal; otherwise, the program is safely
terminated.

To prototype this idea, the submission included a Pin tool that simulated the hardware support that would
be needed to augment the behavior of the return instruction. In addition, the prototype also included an IDA
Python script to identify the set of valid return sites for an image. This script generated the input that was
needed for the Pin tool to check whether a return target was to be considered valid.

Practical and functional
Although this solution is functional, it is not seen as practical for large scale deployment as described. The
primary reason for this is due to the execution cost associated with implementing this check. This cost is
expected to be significant because the design calls for a software interrupt to be raised for each return
instruction. A second issue with this design is related to the data structure that is used to store the address
of valid return sites. In particular, the prototype of this design uses the STL map container which, although
it enables O(1) lookups, is not optimally compact and can therefore lead to considerable memory overhead
depending on the number valid return sites that exist in modules loaded by a process. The design for this
solution did not propose optimizations that could help to address both of these concerns.

Robustness
This solution is seen as a partial mitigation for ROP. It could be bypassed by leveraging gadgets that are in
the set of valid return sites or by using a gadget chaining method that does not involve a return
instruction. The feasibility of finding a sufficient set of gadgets in the set of valid return sites is expected to
be uncommon. The use of alternative chaining methods is feasible, although the complexity associated with
doing so exceeds the current state of the art in ROP-based exploits seen in the wild.

Impact

http://blogs.technet.com/26105/ProfileUrlRedirect.ashx
http://www.microsoft.com/security/bluehatprize/rules.aspx

This solution would have a moderate impact if were possible to deploy it at large scale. The fact that this
solution does not fully address all forms of code re-use limits the expected long term impact of the design
as described.

2nd place: mitigating ROP by placing new checks in critical
functions (ROPGuard)
This entry, as submitted by Ivan Fractic, described a method of mitigating ROP by introducing additional
checks that are performed when critical functions, such as VirtualProtect, are called. These checks are
designed to detect conditions that are indicative of ROP occurring, such as an API being called out of
context. The checks proposed by this submission included:

1. Verifying that the stack pointer is within the bounds of the thread’s stack.
2. Verifying that that the return address of a critical function is executable and preceded by a call.
3. Verifying that all stack frames are valid and satisfy criteria 1 and 2.
4. Simulate execution forward from a critical function’s return address to verify that subsequent returns

satisfy criteria #2.
5. Function specific contract changes (e.g. prevent reprotecting of the stack as executable).

Although adding checks to critical functions to detect ROP is not a new idea, and indeed some of the checks
above have already been described in previous research, this submission included novel elements that we
had not seen discussed before. We actually received a number of submissions which proposed adding new
checks to critical functions, but the other submissions had a subset of the checks proposed by this
submission or by previous research.

Practical and functional
The checks proposed by this submission are considered to be both practical and functional. By limiting
these checks to certain critical functions, the performance impact is minimized. Some of the proposed
checks would be incompatible with certain applications. Specifically, criteria #1 is known to be incompatible
with some legacy applications that do custom stack switching and #3 is incompatible with x86 programs
that enable frame pointer omission.

Robustness
ROP mitigations that rely on introducing new checks to critical functions are not considered to be robust
over the long term. The checks proposed by this submission and in previous research are capable of
mitigating ROP payloads that are used today, but it is expected that attackers would be able to adapt to
these checks at relatively low cost. For example, a fundamental problem with this type of approach is that
an attacker could attempt to call a lower level API that has not been instrumented by the checks. A variant
of this bypass is to transfer control after the instruction block that performs the checks (depending on how
the checks have been added).

Impact
This solution would have a moderate impact if implemented correctly and deployed at large scale. The fact
that this solution does not fundamentally address ROP limits the expected long term impact of the design as
described.

1st place: mitigating ROP via Last Branch Recording
(kBouncer)
This entry, as submitted by Vasilis Pappas, described a novel method of using the Last Branch Recording
(LBR) feature of Intel processors to detect ROP when system calls are made. This method relies on a kernel
component that allows branch recording to be enabled for return control transfers. When a system call
occurs, the kernel component then enumerates each entry in the LBR stack and verifies that the destination
address is preceded by a call instruction. The prototype for this solution relied on evaluating the contents of
the LBR when certain critical APIs were called rather than at the system call layer. The cited reason for this
was due to Windows kernel restrictions around interposing the system call layer in kernel mode.

Practical and functional
This solution is considered to be both practical and functional. The use of supported hardware features to
track the destination address of return control transfers helps to drive down the performance cost and
complexity of implementing this solution. There should also be minimal application compatibility impact
through this approach.

http://kryptoslogic.com/download/ROP_Whitepaper.pdf
http://www.phrack.org/issues.html?issue=62&id=5

Robustness
This solution is not expected to be robust over the long term, although it should be robust against ROP
payloads that are used today. There are multiple reasons why it is not expected to be robust. First and
foremost, the Last Branch Recording feature of Intel processors has a limited stack for storing control
transfers (16 entries on Nahelam and up). If an attacker can ensure that a sufficient number of valid returns
happen between the control transfer that eventually leads to an API call and the point where the LBR stack is
checked, then this solution can be bypassed. It is believed that attackers would be able to accomplish this in
most cases with a low to moderate development cost. While it may be possible to use the Branch Trace Store
(BTS) feature to help address this problem, the performance cost may become unacceptable. The other
reasons for this solution not being robust are shared with the two previous submissions: specifically,
imposing these checks on specific APIs (as in the prototype) may be prone to bypasses and imposing checks
only on returns does not mitigate all methods of chaining gadgets.

Impact
This solution would have a moderate impact if implemented correctly and deployed at large scale. The fact
that this solution does not fundamentally address ROP limits the expected long term impact of the design as
described.

Closing thoughts
The winning submissions illustrate some of the creative thinking that has gone into developing defensive
methods of making it more difficult and costly to exploit memory safety vulnerabilities. As we look toward
the future, we will investigate whether there are elements of these methods that may make sense to
integrate into EMET or a future version of our products. We have already taken steps in this direction by
integrating features from the ROPGuard submission and related prior research into the Technical Preview of
EMET 3.5.

As the judging criteria makes it clear, it can be quite challenging to turn an interesting defensive security
idea into something that can be shipped in a retail product at large scale. Nevertheless, ideas that may
seem impractical on the surface can eventually be turned into an innovative and practical solution – it just
takes some additional focused thinking.

Matt Miller

MSEC Security Science

http://blogs.technet.com/b/srd/archive/2012/07/24/emet-3-5-tech-preview-leverages-security-mitigations-from-the-bluehat-prize.aspx

