
libdft: Practical Dynamic Data Flow
Tracking for Commodity Systems

Vasileios P. Kemerlis Georgios Portokalidis Kangkook Jee Angelos D. Keromytis

Network Security Lab
Department of Computer Science

Columbia University, New York, NY, USA

{vpk, porto, jikk, angelos}@cs.columbia.edu

Abstract

Dynamic data flow tracking (DFT) deals with the tagging and
tracking of “interesting” data as they propagate during program
execution. DFT has been repeatedly implemented by a variety
of tools for numerous purposes, including protection from zero-
day and cross-site scripting attacks, detection and prevention of
information leaks, as well as for the analysis of legitimate and
malicious software. We present libdft, a dynamic DFT framework
that unlike previous work is at once fast, reusable, and works with
commodity software and hardware. libdft provides an API, which
can be used to deliver DFT-enabled tools that can be applied on
unmodified binaries, running on common operating systems and
hardware, thus facilitating research and rapid prototyping.

We explore different approaches for implementing the low-level
aspects of instruction-level data tracking, introduce a more efficient
and 64-bit capable shadow memory, and identify (and avoid) the
common pitfalls responsible for the excessive performance over-
head of previous studies. We evaluate libdft using real applications
with large codebases like the Apache and MySQL servers, and the
Firefox web browser. We also use a series of benchmarks and utili-
ties to compare libdft with similar systems. Our results indicate that
it performs at least as fast, if not faster, than previous solutions,
and to the best of our knowledge, we are the first to evaluate the
performance overhead of a fast dynamic DFT implementation in
such depth. Finally, our implementation is freely available as open
source software.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Monitors; D.2.13 [Reusable Software]: Reusable libraries

General Terms Design, Performance, Security

Keywords Data flow tracking, dynamic binary instrumentation,
taint analysis, information leak detection, exploit prevention

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’12, March 3–4, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-1175-5/12/03. . . $10.00

1. Introduction

Dynamic data flow tracking (DFT), also frequently referred to as
information flow tracking, is a well known technique that deals with
the tagging and tracking of “interesting” data as they propagate dur-
ing program execution. DFT has many uses, such as analyzing mal-
ware behavior [8, 20], hardening software against zero-day attacks
(e.g., buffer overflow, format string, SQL-injection, and cross-site
scripting (XSS)) [2, 17, 21], detecting and preventing information
leaks [10, 29], and even debugging software misconfigurations [1].
From an architectural perspective, it has been integrated into full
system emulators [5, 20] and virtual machine monitors [13, 16],
retrofitted into unmodified binaries using dynamic binary instru-
mentation [21], and added to source codebases using source-to-
source code transformations [27]. Proposals have also been made to
implement it in hardware [8, 23, 25], but they have had little appeal
to hardware vendors.

Previous studies utilized DFT to investigate the applicability of
the technique into a particular domain of interest, producing their
own problem-specific and ad-hoc implementations of software-
based DFT that all suffer from one, or more, of the following issues:
high overhead, little reusability (i.e., they are problem specific), and
limited applicability (i.e., they are not readily applicable to existing
commodity software). For instance, LIFT [21] and Minemu [2] use
DFT to detect security attacks. While fast, they do not support mul-
tithreaded applications (the first by design). LIFT only works with
64-bit binaries, while Minemu only with 32-bit binaries, featuring a
design that requires extensive modifications to support 64-bit archi-
tectures. More importantly, they focus on a single problem domain
and cannot be easily modified for use in others.

More flexible and customizable implementations of fine-grained
DFT have also failed to provide the research community with a
practical and reusable DFT framework. For example, Dytan [6]
focuses on presenting a configurable DFT tool that supports both
data and control flow dependencies. Unfortunately, its versatility
comes with a high price, even when running small programs with
data flow dependencies alone (control flow dependencies further
impact performance). For instance, Dytan reported a 30x slow-
down when compressing with gzip, while LIFT reports less than
10x. Although the experiments may not be directly comparable, the
significant disparity in performance suggests that the design of the
first is not geared towards low overhead.

This paper argues that a practical dynamic DFT implementa-
tion needs to address all three problems listed above, and thus it
should be concurrently fast, reusable, and applicable to commod-
ity hardware and software. We introduce libdft, a meta-tool in the
form of a shared library that implements dynamic DFT using In-
tel’s Pin dynamic binary instrumentation framework [15]. libdft’s

performance is comparable or better than previous work, incurring
slowdowns that range between 1.14x and 6.03x for command-line
utilities, while it can also run large server applications like Apache
and MySQL with an overhead ranging between 1.25x and 4.83x. In
addition, it is versatile and reusable by providing an extensive API
that can be used to implement DFT-powered tools. Finally, libdft
runs on commodity systems. Our current implementation works
with x86 binaries on Linux, while we plan to extend it to run on
64-bit architectures and the Windows operating system (OS). libdft
introduces an efficient, 64-bit capable, shadow memory, which rep-
resented one of the most serious limitations of earlier works, as flat
shadow memory structures imposed unmanageable memory space
overheads on 64-bit systems, and dynamically managed structures
introduce high performance penalties. More importantly, libdft sup-
ports multiprocess and multithreaded applications, and it does not
require any modifications to programs or the underlying OS.

The contributions of this paper can be summarized as follows:

• We discuss the design and implementation of a fast and reusable
shared DFT library for commodity software. Specifically, we
investigate and identify the underlying reasons responsible for
the performance degradation incurred by previous DFT tools
and present a design that minimizes it. We approach the prob-
lem from a systems perspective and attempt to answer the fol-
lowing questions: What are the performance boundaries of such
a DFT tool? What practices need to be avoided by practitioners
and system implementors? What is the source of the overhead?
We also present a set of novel optimizations for further improv-
ing the performance of DFT.

• We present the development of a libdft-powered tool, namely
libdft-DTA, to demonstrate the reusability of libdft as well
as its capabilities. libdft-DTA performs dynamic taint analysis
(DTA) to detect zero-day attacks similarly to TaintCheck [17],
Eudaemon [19], and LIFT [21]. We show that our versatile API
can be used to painlessly develop an otherwise complex tool in
approximately 450 lines of C++ code.

• We evaluate the performance of libdft using real applications
that include complex and large software such as the Apache and
MySQL servers, and the Firefox web browser. libdft achieves
performance similar, or better, than previous work, while being
applicable to a broader set of software. Moreover, our exten-
sive evaluation establishes a set of bounds regarding the perfor-
mance of DFT. To the best of our knowledge, we are the first to
perform such an extensive evaluation of a DFT framework.

• Our implementation is freely available as a shared library
(available at: http://www.cs.columbia.edu/˜vpk/

research/libdft/) and can be used for developing tools
that transparently (i.e., without requiring any change on ap-
plications or the underlying OS) make use of DFT services.
Developers can use the API provided to easily define data of
interest, and then capture their use at arbitrary points. This way
libdft facilitates research and rapid prototyping, by allowing
potential users to focus on solving a particular problem (e.g.,
detecting information leaks or application misconfigurations),
rather than dealing with the elaborate details of an information
flow tracking framework.

The remainder of this paper is organized as follows: Section 2
introduces DFT and discusses the differences between dynamic and
static DFT approaches. We present libdft in Section 3 and elaborate
on its implementation in Section 4. Section 5 discusses libdft’s API
through the creation of a DTA tool, which we evaluate along with
libdft in Section 6. Section 7 examines the limitations of the current
implementation, along with future considerations. Related work is
presented in Section 8 and conclusions are in Section 9.

Figure 1. Examples of code with data dependencies.

2. Data Flow Tracking

DFT has been a popular subject of research, primarily employed
for enforcing safe information flow and identifying illegal data
usage. In past work, it is frequently referred to as information
flow tracking (IFT) [23] or taint analysis. This work defines DFT
as: “the process of accurately tracking the flow of selected data
throughout the execution of a program or system”. This process
is characterized by three aspects, which we will attempt to clarify
with the help of the code-snippets in Figure 1.

Data sources Data sources are program or memory locations,
where data of interest enter the system, usually after the execution
of a function or system call. Data coming from these sources are
tagged and tracked. For instance, if we define files as a source, the
read call in Figure 1 would result in tagging data and pass.

Data tracking During program execution, tagged data are
tracked as they are copied and altered by program instructions.
Consider code snippet (a) in Figure 1, where data has already
been tagged in line 3. The while loop that follows calculates a sim-
ple checksum (XOR all the bytes in data) and stores the result in
csum. In this case, there is a data flow dependency between csum
and data, since the first directly depends on the latter. On the other
hand, authorized in (b) is indirectly affected by the value of
phash, which in turn depends on pass. This is frequently called a
control flow dependency, and in this work, we do not consider cases
of implicit data flow that are in accordance with previous work on
the subject [17, 23]. Dytan made provisions for conditionally han-
dling such control-flow dependencies, but concluded that while it
can be useful in certain domains, it frequently leads to an explosion
in the amount of tagged data and to incorrect data dependencies [6].
Ongoing work attempts to address these issues [14].

Data sinks Data sinks are also program or memory locations,
where one can check for the presence of tagged data, usually for
inspecting or enforcing data flow. For instance, tagged data may
not be allowed in certain memory areas and function arguments.
Consider again the code-snippet (a) in Figure 1, where in line 7
csum is written to a file. If files are defined as data sinks, the use
of write with csum can trigger a user-defined action.

Dynamic versus static DFT Performing DFT requires addi-
tional memory for the data tags. Also, the program itself needs
to be extended with tag propagation logic, and data tagging and
checking logic at the sources and sinks respectively. The additional
code for that is frequently referred to as instrumentation code, and
can be injected either statically (e.g., during source code develop-
ment and at compile/loading time), or dynamically using virtualiza-
tion or dynamic binary instrumentation (DBI). Static systems apply
DFT by recompiling software using a modified compiler [24], or a
source-to-source transformation engine [27]. Conversely, the dy-
namic ones can be directly applied on unmodified binaries, includ-
ing commercial off-the-shelf software [21, 26, 29]. In both cases,
software needs to be extensively instrumented for associating data
with some kind of tag and injecting logic that asserts tags at the
sources, propagates them according to the data dependencies de-
fined by the program semantics, and finally, inspecting the sinks for
the presence of tagged data. Dynamic solutions, albeit being much
slower than static ones, have the advantage of being immediately,
and incrementally, applicable to already deployed software.

http://www.cs.columbia.edu/~vpk/research/libdft/
http://www.cs.columbia.edu/~vpk/research/libdft/

PROCESS

Pin

libdftPintool

Process

binary

Other

library

Other

library

...

MEMORY

USER SPACE

KERNEL SPACE

Function calls

Instructions

System calls

 (I/O)

mov ebx, 0x0a
mov eax, [esp+0x10]

call eax

...

...

Tagmap

Code cache

Figure 2. Process image of a binary running under libdft. The
highlighted boxes describe possible data sources and sinks that can
be used with libdft.

3. Design

We designed libdft for use with the Pin DBI framework to facilitate
the creation of Pintools that employ dynamic DFT. Briefly, Pin
consists of a virtual machine (VM) library, and an injector that
attaches the VM in already running processes or new processes
that launches itself. Pintools are shared libraries that employ Pin’s
extensive API to inspect and modify a binary at the instruction
level. libdft is also a library, which can be used by Pintools to
transparently apply fine-grained DFT on binaries running over Pin.
More importantly, it provides its own API (presented in Section 5)
that enables tool authors to easily customize libdft by specifying
data sources and sinks, or even modify the tag propagation policy.

When a user attaches to an already running process, or launches
a new one using a libdft-enabled Pintool, the injector first injects
Pin’s runtime and then passes control to the tool. There are three
types of locations that a libdft-enabled tool can use as a data source
or sink: program instructions, function calls, and system calls. It
can “tap” these locations by installing callbacks that get invoked
when a certain instruction is encountered, or when a certain func-
tion or system call is made. These user-defined callbacks drive the
DFT process by tagging or un-tagging data, and monitoring or en-
forcing data flow. Figure 2 sketches the memory image of a pro-
cess running under a libdft-enabled Pintool. The highlighted boxes
mark the locations where the tool author can install callbacks. For
instance, the user can tag the contents of the buffer returned by the
read system call (as in the examples shown in Figure 1), and check
whether the operands of indirect call instructions are tagged (e.g.,
the eax register in Figure 2).

3.1 Data Tags

libdft stores data tags in a tagmap, which contains a process-wide
data structure (shadow memory) for holding the tags of data stored
in memory, and a thread-specific structure that keeps the tags for
the CPU state (i.e., registers) of each running thread. The format of
the tags stored in the tagmap is determined by mainly two factors:
(a) the granularity of the tagging, and (b) the size of the tags.

Tagging granularity In principle, we could tag data units as
small as a single bit, or up to large contiguous chunks of mem-
ory. The first enables us to perform very fine-grained and accurate
DFT, while using larger granularity means the data tracking will be
coarser and more error prone. For instance, with page-level gran-
ularity, moving a single byte (tagged) into an untagged location
will result into tagging the whole page that contains the destina-
tion, thus “polluting” adjacent data. However, choosing extremely
fine-grained tagging comes at a significant cost, as more memory

space is needed for storing the tags (e.g., using bit-level tagging,
8 tags are necessary for a single byte and 32 for a 32-bit register).
More importantly though, the tag propagation logic becomes more
complicated, since data dependencies are also more intricate (e.g.,

consider adding two 32-bit numbers that only have some of their
bits tagged). libdft uses byte-level tagging granularity, since a byte
is the smallest addressable chunk of memory in most architectures.
Our choice allows us to offer significantly fine-grained tracking for
most practical purposes and we believe that it strikes a balance be-
tween usability and performance [20].

Tag size Diametric to tagging granularity, larger tags are more
versatile as they allow for different types of data to be tagged
uniquely (e.g., each byte could be tagged using a unique 32-bit
number). Unfortunately, larger tags require complex propagation
logic and more storage space. libdft offers two different tag sizes:
(a) byte tags for associating up to 8 distinct values or colors to
each tagged byte (every bit represents a different tag class), and (b)
single-bit tags (i.e., data are either tagged or not). The first allows
for more sophisticated tracking and analysis tools, while the second
enables tools that only need binary tags for conserving memory.

3.2 Tag Propagation

Tag propagation is accomplished using Pin’s API to both instru-
ment and analyze the target process. In Pin’s terms, instrumentation
refers to the task of inspecting the binary instructions of a program
for determining what analysis routines should be inserted where.
For instance, libdft inspects every program instruction that (loosely
stated) moves or combines data to determine data dependencies.
On the other hand, analysis refers to the actual routines, or code,
being retrofitted to execute before, after, or instead of the original
code. In our case, we inject analysis code implementing the tag
propagation logic, based on the data dependencies observed during
instrumentation.

The original code and libdft’s analysis routines are translated by
Pin’s just-in-time (JIT) compiler for generating the code that will
actually run. This occurs immediately before executing a code se-
quence for the first time, and the result is placed in a code cache
(also depicted in Figure 2), so as to avoid repeating this process
for the same code sequence. Our injected code executes before
application instructions, tracking data as they are copied between
registers, and between registers and memory, thus achieving fine-
grained DFT. Pin’s VM ensures that the target process runs entirely
from within the code cache by interpreting all instructions that can-
not be executed safely otherwise (e.g., indirect branches). More-
over, a series of optimizations such as trace linking and register
re-allocation are applied for improving performance [15].

Finally, libdft allows tools to modify the default tag propagation
policy, by registering their own instrumentation callbacks via its
API, for instructions of interest. This way tool authors can tailor the
data tagging according to their needs, and cancel tag propagation in
certain cases or track otherwise unhandled instructions.

3.3 Challenges for Fast Dynamic DFT

To keep libdft’s overhead low, we carefully examined how DBI
frameworks, such as Pin, work for identifying the development
practices that should be avoided. Its overhead primarily depends on
the size of the analysis code injected, but it can frequently be higher
than anticipated due to the structure of the code itself. Specifically,
the registers provided by the underlying architecture will be used
to execute both application code, as well as code that implements
the DFT logic, thus forcing the DBI framework to spill registers
(i.e., save their contents to memory and later restore them), when-
ever an analysis routine needs to utilize registers already allocated.
Therefore, the more complex the code, the more registers have to
be spilled.

R1:

R2:

Rn:

s
y
s
c
a
l
l
_
d
e
s
c
[
]

pre_syscall

post_syscall

libdft API

handle_sub
handle_and

handle_xor

handle_cmov
handle_lods
handle_pop
handle_push

handle_cpuid
......

handle_add

r2m_xfer_opl()

...

Analysis routines

handle_or

r2m_xfer_opw()

r2r_alu_opl()

r2r_alu_opw()

r2r_alu_opb_l()

m2r_alu_opb_h()

Pin API

libdft backend

Instrumentation enginevcpumem_bitmap

I/O Interface

Tagmap Tracker

STAB tseg

tseg

Figure 3. The architecture of libdft. The shaded components of
I/O interface and tracker illustrate the instrumentation and analysis
code that implements the DFT logic, whereas the x-marked regions
on the tagmap indicate tagged bytes.

Additionally, certain types of instructions must be avoided due
to certain side-effects. For instance, spilling the EFLAGS register
in the x86 architecture is expensive in terms of processing cycles,
and is performed by specialized instructions (PUSHF, PUSHFD).
As a result, including instructions in analysis code that modify
this register should be done sparingly. More importantly though,
test and branch operations have to be avoided all together, since
they result into non-inlined code. In particular, whenever a branch
instruction is included in the DFT code, Pin’s JIT engine will emit
a function call to the corresponding analysis routine, rather than
inline the code of the routine along with the instructions of the
application. Imposing such limitations on the implementation of
any dynamic DFT tool is a challenge. Our implementation takes
into consideration these issues, in conjunction with Pin, to achieve
good performance.

The design of libdft provides the foundation for a framework
that satisfies all three properties listed in Section 1. By taking
into consideration the limitations discussed above, we achieve low
overhead. Moreover, the extensive API of libdft makes it reusable,
as it enables users to customize it for use in various domains, such
as security, privacy, program analysis, and debugging. Finally, the
last property is satisfied through the use of a mature, rather than an
experimental and feature-limited, DBI platform for providing the
apparatus to realize DFT for a variety of popular systems (e.g., x86
and x86-64 Linux and Windows OSs).

4. Implementation

We implemented libdft using Pin 2.9, which is currently available
for Linux and Windows OSs. Our prototype works with unmodi-
fied multiprocess and multithreaded applications running on 32-bit
x86 CPUs over Linux, but can be extended with moderate effort to
operate on the x86-64 architecture and the Windows OS (we dis-
cuss future ports in Section 7). The main components of libdft are
illustrated in Figure 3.

4.1 The Tagmap

The implementation of the tagmap plays a crucial role in the over-
all performance of libdft, since the injected DFT logic constantly
operates on data tags.

4.1.1 Register Tags

We store the tags for all 8 general purpose registers (GPRs) of the
x86 architecture in the vcpu structure, which is part of the tagmap
(see Figure 3). Note that we tag and track only the registers that
can be directly used by applications (like the GPRs). Registers such
as the instruction pointer (EIP), EFLAGS, and segment registers,
which are only altered implicitly, are not tagged or traced. Recall
that according to our definition of DFT, we only track direct data
flow dependencies, so it is safe to ignore EFLAGS. However, in-
structions that are executed conditionally, based on the contents
of EFLAGS, are handled appropriately (e.g., CMOVcc, SETcc).
Moreover, floating point registers (FPU), as well as SSE registers
(XMM, MMX) are currently ignored for the sake of simplicity. To sup-
port these registers in the future, we only need to enlarge vcpu.

The tagmap holds multiple vcpu structures, one for every
thread of execution. Specifically, libdft captures the thread creation
and thread termination events of an application and dynamically
manages the number of vcpu structures. We locate the appropriate
structure for each thread using its virtual id (i.e., an incremental
value starting from zero) that is assigned by Pin to every thread. In
the case of bit size tags, we use one byte to hold the four 1-bit tags
needed for every 32-bit GPR, so that the space overhead of vcpu
is 8 bytes for each thread. Similarly, in case of byte size tags, we
need 4 bytes for every 32-bit GPR, and hence the space overhead
of vcpu becomes 32 bytes per thread.

4.1.2 Memory Tags

Bit size tags When libdft is configured to use bit size tags, it stores
memory tags in a flat, fixed size structure (see mem bitmap in
Figure 3) that holds one bit for each byte of process addressable
memory. The total size of the virtual address space in x86 systems
is 4GB (232), however the OS reserves part of that space for itself
(i.e., the kernel). The amount of space reserved for the kernel
depends on the OS, with Linux usually adopting a 3G/1G memory
split that leaves 3GB of address space for processes. In this case,
we require 384MB to be contiguously reserved for the tagmap.

The memory tags of address vaddr can be obtained as follows:
tval = mem_bitmap[vaddr >> 3] & (MASK << (vaddr & 0x7)).
Specifically, we use the 29 most significant bits (MSBs) of vaddr,
as byte index in mem bitmap, for selecting a byte that contains
the tags of vaddr. Then, we treat the 3 less significant bits of vaddr
as bit offset within the previously-acquired byte, and by setting
MASK to 0x1 we obtain the tag bit for a single byte. Similarly, if
MASK is 0x3, or 0xF, we obtain the tag bits for a word, or dou-
ble word, respectively. The address space overhead imposed by
mem bitmap is 12.5%. Using a fixed size structure instead of a
dynamically managed one (e.g., a page table-like one) allows us to
avoid the penalties involved with managing and accessing it. Note
that while on 32-bit systems the size of the tagmap is reasonable,
flat bitmaps are not practical on 64-bit architectures. For instance,
in x86-64 a flat bitmap would require 32TB.

Byte size tags When libdft is using byte-sized tags, it stores
them in dynamically allocated tagmap segments (see tseg in Fig-
ure 3). Every time the application gets a new chunk of memory im-
plicitly by performing an image load (e.g., when loading a dynamic
shared object), or explicitly by invoking a system call like mmap,
mremap,brk, and shmat, libdft intercepts the event and allocates
an equally sized contiguous memory region. For instance, if the ap-
plication requests an anonymous mapping of 1MB using mmap,
libdft will “shadow” the allocated region with a tagmap segment
of 1MB, for storing the byte tags of the mmap-ed memory. More
importantly, tagmap segments that correspond to shared memory
chunks, are also shared. Hence, two processes running under libdft
can effectively share shadow memory. To the best of our knowl-
edge, we are the first to implement such a tag sharing scheme.

We obtain information about memory areas mapped at load
time, or before libdft was attached on the application, through the
proc pseudo-filesystem (/proc/<pid>/maps). This way we
acquire the location of the stack and other kernel-mapped memory
objects, such as the vDSO and vsyscall pages, and allocate the re-
spective tagmap segments accordingly. In order to deal with the im-
plicit expansion of the stack, libdft pre-allocates a tagmap segment
to cover the stack as if it expands to its maximum value, which
can be obtained via getrlimit(RLIMIT STACK). However,
the same is not necessary for thread stacks, since they are allocated
explicitly using mmap.

During initialization, libdft allocates a segment translation table
(STAB) for mapping virtual addresses to their corresponding bytes
in tagmap segments. Since memory is given to processes in blocks
that are multiples of page size, STAB entries correspond to page
size areas. For each page, STAB stores an addend value, which is
effectively a 32-bit offset that needs to be added to all memory ad-
dresses inside that page, for retrieving the respective tag metadata.
Assuming again a 3G/1G memory split and 4KB pages, STAB re-
quires 3MB (i.e., one entry for each 4KB in the range 0x00000000
– 0xBFFFFFFF). Whenever we allocate or free a tagmap seg-
ment, we update the STAB structure accordingly. Moreover, we
ensure that segments that match with adjacent memory pages are
also adjacent. This not only allows dealing with memory accesses
crossing segment boundaries (e.g., unaligned multi-byte accesses
that span two pages are valid in x86), but also enables us to use
a simple operation to retrieve the tag for any memory address:
taddr = vaddr + STAB[vaddr >> 12]. The 20 MSBs of vaddr are
used as index in STAB to get an addend value, which in turn added
to vaddr itself for obtaining the respective tag bytes.

Byte-sized tags let us tag data using 8 different colors, but in-
cur a higher per-byte memory overhead. Additionally, dynamically
managing the respective tagmap segments also introduces over-
head. However, we proactively allocate tagmap segments whenever
the application maps new memory, instead of lazily waiting until a
tagmap segment is used, to avoid the penalties involved with using
branching instructions in analysis routines.

4.2 Code Instrumentation and Analysis

The tracker is the core component of libdft that is in charge of
instrumenting a program to retrofit the DFT logic. It consists of
two parts, shown in Figure 3.

4.2.1 Instrumentation Engine

The instrumentation engine is responsible for inspecting program
instructions to determine the analysis routine(s) that should be
injected for each case. We use Pin’s instrumentation API to inspect
every instruction before it is translated by the JIT compiler. We
first resolve the instruction type (e.g., arithmetic, move, logic), and
then we analyze its operands for determining their category (i.e.,
register, memory address, or immediate) and length (byte, word,
double word). After gathering this information, we use Pin to insert
the appropriate analysis routine before each instruction.

The instrumentation code is invoked once for every sequence of
instructions, and the result (i.e., the original code and analysis rou-
tines) is placed into Pin’s code cache. We exploit code caching, by
handling the x86 ISA complexity during the instrumentation phase,
and keeping the analysis routines compact and fast. Specifically,
we move the elaborate logic of discovering data dependencies and
handling each variant of the same dependency category into the in-
strumentation phase. This allows us to aggressively optimize the
propagation code by injecting compact, category-specific, and fast
code snippets before each instruction. Due to the complexity and
inherent redundancy of the ISA, our instrumentation engine con-
sists of ∼3000 C++ lines of code (LOC).

4.2.2 Analysis Routines

The analysis routines contain the code that actually implements the
DFT logic for each instruction. They are injected by the instrumen-
tation engine before every instruction to assert, clear, and propagate
tags, and unlike instrumentation code they execute more frequently
(i.e., the analysis code injected for a specific instruction, executes
every time the instruction executes).

Carefully implementing these analysis routines is paramount for
achieving good performance. For instance, while Pin tries to inline
analysis code into the application’s code, the use of branch instruc-
tions will cause it to insert a function call to the respective routines
instead (recall that function calls require extra processing cycles).
The same also stands for overly large analysis routines. Interest-
ingly, we observed that the number of instructions, excluding all
types of jumps that Pin can inline is ∼20.

For these reasons, we introduce two guidelines for the develop-
ment of efficient tag propagation code: (i) tag propagation should
be branch-less, and (ii) tagmap updates should be performed with a
single assignment. Both of them serve the purpose of aiding the JIT
process to inline the injected code and minimize register spilling.
Our analysis routines are made up of ∼2500 C LOC, and include
only arithmetical, logical, and memory operations. Moreover, we
force Pin to use the fastcall x86 calling convention, for making the
DFT code faster and smaller (i.e., the compiler will avoid emitting
push, pop, or stack-based parameter loading instructions).

Tracking code can be classified to the following categories
based on the corresponding instruction type (note that the numbers
in parentheses indicate the total analysis routines we implemented
for each class, which are necessary for capturing the semantics of
different operand types and sizes):

• ALU (21): analysis routines for the most common x86 instruc-
tions that typically have 2 or 3 operands, such as ADD, SUB,
AND, XOR, DIV, IMUL, and so forth. For such instructions,
we take the union of the source and destination operand tags,
and we store the result in the respective tags of the destination
operand(s). Immediates are always considered untagged.

• XFER (20): this class includes data transfers from a register
to another register (r2r), from a register to a memory location
and vice-versa (r2m and m2r), as well as from one memory
address to another (m2m). For this type of instructions the
source operand tags are copied to the destination operand tags,
and again, immediates are always considered untagged.

• CLR (6): certain fairly complex instructions always result in
their operands being untagged. Examples of such instructions
include CPUID, SETxx, etc. Similarly, x86 idioms used for
“zeroing” a register (e.g.,xor eax, eax and sub eax,

eax), also result in untagging their operands.

• SPECIAL (45): this class includes analysis routines for x86
instructions that cannot be handled effectively with the afore-
mentioned primitives, such as XCHG, CMPXCHG, XADD, LEA,
MOVSX, MOVZX, and CWDE. For instance, although XADD can
be handled by instrumenting the instruction twice with the re-
spective XFER routines (for exchanging the tag values of the
operands), and once with the ALU routine that handles ADD, the
code size expansion would be prohibitive. Thus, we choose to
implement an optimized analysis routine, for minimizing the in-
jected code and inflicting less pressure on the code cache. libdft
has one special handler for each quirky x86 instruction.

• FPU, MMX, SSE: these are ignored by default, unless their
result is stored into one of the GPRs, or to a memory location.
In such cases, the destination is untagged.

-------------------[r2r_alu_opb_l]-------------------

threads_ctx[tid].vcpu.gpr[dst] |=

threads_ctx[tid].vcpu.gpr[src] & VCPU_MASK8;

--------------------[r2m_alu_opw]--------------------

*((uint16_t *)(mem_bitmap + VIRT2BYTE(dst))) |=

(threads_ctx[tid].vcpu.gpr[src] & VCPU_MASK16) <<

VIRT2BIT(dst);

--------------------[m2r_alu_opl]--------------------

threads_ctx[tid].vcpu.gpr[dst] |=

(*((uint16_t *)(mem_bitmap + VIRT2BYTE(src))) >>

-------------------[r2r_xfer_opb_l]------------------

threads_ctx[tid].vcpu.gpr[dst] =

(threads_ctx[tid].vcpu.gpr[dst] & ˜VCPU_MASK8) |

(threads_ctx[tid].vcpu.gpr[src] & VCPU_MASK8);

--------------------[r2m_xfer_opw]-------------------

*((uint16_t *)(mem_bitmap + VIRT2BYTE(dst))) =

(*((uint16_t *)(mem_bitmap + VIRT2BYTE(dst))) &

˜(WORD_MASK << VIRT2BIT(dst))) |

((uint16_t)(threads_ctx[tid].vcpu.gpr[src] &

VCPU_MASK16) << VIRT2BIT(dst));

--------------------[m2r_xfer_opl]-------------------

threads_ctx[tid].vcpu.gpr[dst] =

(*((uint16_t *)(mem_bitmap + VIRT2BYTE(src))) >>

VIRT2BIT(src)) & VCPU_MASK32;

Figure 4. Tag propagation code for various analysis routines when
libdft is using bit size tags. The VIRT2BYTE macro is used for
getting the byte offset of a specific address in mem bitmap (by
performing a bitwise right shift by 3), whereas VIRT2BIT gives
the bit offset within the previously-acquired byte.

-------------------[r2r_alu_opb_l]-------------------

*((uint8_t *)&threads_ctx[tid].vcpu.gpr[dst]) |=

*((uint8_t *)&threads_ctx[tid].vcpu.gpr[src]);

--------------------[r2m_alu_opw]--------------------

*((uint16_t *)(dst + STAB[VIRT2STAB(dst)])) |=

*((uint16_t *)&threads_ctx[tid].vcpu.gpr[src]);

--------------------[m2r_alu_opl]--------------------

threads_ctx[tid].vcpu.gpr[dst] |=

*((uint32_t *)(src + STAB[VIRT2STAB(src)]));

-------------------[r2r_xfer_opb_l]------------------

*((uint8_t *)&threads_ctx[tid].vcpu.gpr[dst]) =

*((uint8_t *)&threads_ctx[tid].vcpu.gpr[src]);

--------------------[r2m_xfer_opw]-------------------

*((uint16_t *)&threads_ctx[tid].vcpu.gpr[dst]) =

*((uint16_t *)&threads_ctx[tid].vcpu.gpr[src]);

--------------------[m2r_xfer_opl]-------------------

threads_ctx[tid].vcpu.gpr[dst] =

*((uint32_t *)(src + STAB[VIRT2STAB(src)]));

Figure 5. Code snippets for different analysis routines when libdft
is using byte size tags. VIRT2STAB is a macro for obtaining the
STAB index given a virtual address (it performs a bitwise right shift
by 12).

Figure 4 and 5 show excerpts from different types of analysis
routines in the case of bit- and byte-sized tags, respectively. Code
snippets labeled as alu correspond to routines that instrument
2 operand instructions belonging to the ALU category. On the
contrary, xfer indicates propagation code for instructions of the
XFER category. The operand size (i.e., 8-, 16-, 32-bit) is designated
by the op{b, w, l} label suffix, while the r2r, r2m, and m2r
prefix is used for specifying the operand type (register vs. memory).

In the case of byte size tags, achieving single assignment
tagmap updates and branch-less tag propagation is relatively easy,
due to the design of our shadow memory. Specifically, if both
operands are registers, then we merely need to perform a copy
or a bitwise OR operation, of the appropriate size, between the
respective GPRs in the vcpu structure of the current thread. On
the other hand, if one of the operands is a memory location, the
effective address (i.e.,src or dst depending on the instrumented
instruction) goes through STAB for getting the addend value that
should be added to the address itself, in order to address the tag
bytes from the corresponding tagmap segment (see Section 4.1.2).
The final propagation is performed similarly to the previous case.

Note that when libdft is configured to use bit size tags, analysis
routines tend to be larger and more elaborate. This is due to the
pedantic bit operations that are imperative, since we cannot simply
“move” separate bits between different tagmap locations. Hence,
in order to avoid using branch instructions or multiple assignment
statements, we resort in bit masks and bitwise operations.

4.3 I/O Interface

The I/O Interface is the component of libdft that handles the ex-
change of data between the kernel and the process through system
calls. In particular, it consists of two small pieces of instrumenta-
tion code, namely the pre syscall and post syscall stubs,
and a table of system call meta-information (syscall desc[]),
as illustrated in Figure 3. The syscall desc table holds specific
libdft-related information for all the 344 system calls of the Linux
kernel (up to v2.6.39). For instance, it stores user-registered call-
backs (for using a system call as a data source or sink), descriptors
for the arguments of the call, or whether the system call writes data
to user space memory.

When a system call is made by the application, the stubs are
called upon entry and exit. If the user has registered a callback func-
tion for a specific system call (either for entering or exiting), it is
invoked. Otherwise, the default behavior of the post syscall

stub is to untag the data being written/returned by the system call.
The advantages of this approach are twofold. First, we enable the
tool writer to hook specific I/O channels (e.g., network I/O streams)
and inspect the exchanged information. This way, the developer
can customize libdft by using system calls as data sources and
sinks. Second, we eliminate tag leaks by taking into consideration
that some system calls write specific data to user-provided buffers.
For example, consider gettimeofday that upon each call over-
writes user space memory that corresponds to one, or two, struct
timeval data structures. Such system calls always result in sani-
tizing (i.e., untagging) the data being returned, unless the tool writer
has installed a callback that selectively tags the returned data. Fi-
nally, hooking a function call is straightforward, and can be per-
formed directly using libdft’s and Pin’s API.

4.4 Optimizations

4.4.1 Fast vcpu Access (fast vcpu)

libdft initially stored the per-thread vcpu structure in a global array
indexed by Pin’s virtual thread id (see Section 4.1.1). However,
we determined that this was not the most efficient structure for
this purpose. Because the array can be concurrently accessed from
multiple threads, proper locking is required to safely expand it
when new threads are created. Moreover, retrieving the vcpu from
an analysis routine demands extra instructions (i.e., array lookup).

Instead, we can utilize Pin’s scratch registers to store a pointer
to the vcpu structure of each thread. Scratch registers are thread-
specific, virtual registers used internally by Pin, but also available
for use in Pintools. Each time a new thread is created, we allocate
a new vcpu structure as before, but instead of adding it in an
array, we save its address in such a register. Analysis routines are
also modified to receive the scratch register pointing to the vcpu
as argument. That is, threads ctx[tid].vcpu is changed
to thread ctx->vcpu (see Figure 4 and 5). This approach
demands more register spilling, but as we experimentally confirmed
(see Section 6), the benefits from avoiding locking and an extra
array indexing operation, outweigh the spilling overhead.

4.4.2 Fast REP-prefixed Instructions (fast rep)

Certain x86 instructions, such as MOVS, STOS, and LODS, can be
executed repeatedly using the REP prefix. During instrumentation,
Pin treats them as implicit loops containing the un-prefixed instruc-
tion to allow Pintools insert analysis routines that receive the cor-
rect effective address (EA) used on each repetition. This introduces
overhead because the REP-prefixed instruction is transformed to a
loop, and because tag propagating code is executed within the loop.

However, the effective address (EA) used on each repetition
depends on the EA used on the previous repetition and the value
of the DF bit in the EFLAGS register: EA = EAprev ± {1, 2, 4}.
We exploit this observation to move part of the analysis code
outside the loop. Particularly, we perform the expensive mapping
of a memory address to its shadow memory address only on the
first repetition. The analysis routine handling the first loop besides
performing the required address mapping and propagating tags,
also caches the translated shadow memory address. Afterward, the
analysis routine handling the rest of the repetitions can use the
cached address to perform tag propagation faster. Note that moving
all the propagation logic before the loop frequently has adverse
effects, like causing Pin to use a function call instead of inlining.

4.4.3 Huge TLB (huge tlb)

DFT logic constantly operates on data tags. Both when using bit-
and byte-sized tags, the analysis routines continuously access the
mem bitmap and STAB structures respectively. As the tag prop-
agation code is interleaved with application instructions, memory
accesses are spread between application and shadow memory, thus
leading to poor performance of the CPU’s translation lookaside
buffer (TLB). We attempt to alleviate the problem by utilizing the
multiple page size feature on x86 architectures for reducing the
misses in the TLB. Specifically, by allocating mem bitmap and
STAB using the MAP HUGETLB option with mmap (only for Linux
kernel versions ≥ 2.6.32), the allocation is performed using pages
of 4MB in size1, effectively reducing TLB “poisoning” due to ac-
cesses in libdft’s tagmap (i.e., less TLB misses due to memory ac-
cesses in mem bitmap and STAB, as well as less evictions of pro-
cess entries for serving tagmap page faults).

4.4.4 Tagmap Collapse (tmap col)

When using byte-sized tags, the tagmap allocates a page of memory
for every page used by the application, including pages used for the
heap, the stack, libraries, and so forth. However, not all pages are
assigned the same access rights. For instance, code segments are
usually write-protected, and the same is also true for certain other
types of data (e.g., constants, immutable objects, special-purpose
shared memory segments). Therefore, unless explicitly altered by
a tool writer, the tags corresponding to such pages will always
be constant. We observe that the DFT logic will never need to
legitimately alter the tag(s) for such memory pages, since the code
of the application cannot legitimately update them either.

We exploit this observation, and significantly reduce the mem-
ory overhead of tagmap, by collapsing segments that correspond to
write-protected memory regions into a single, constant segment.
In particular, we allocate a special page using mmap, namely a
zero page for clean tags, and set the access bits of that page to
PROT READ, effectively disallowing all writes to it. When new
write-protected pages are mapped/allocated by the application, we
update the corresponding STAB entries with addend values that
map to the zero page. Note that for this optimization we also need to
explicitly handle the mprotect system call for dealing with write-
protected pages that are later, or temporarily, mapped as writeable,
and vice-versa.

1 If Physical Address Extension (PAE) is enabled, the size of large pages is set to 2MB.

4.5 Memory Protection

Dynamic DFT is frequently used to analyze malware or enforce
security, and in that context it is desirable to guarantee the integrity
of libdft by protecting its memory similarly to a sandbox [12].
As shown in Figure 2, the same address space is used by the
application, Pin that allocates memory to store its code cache,
and libdft that allocates the tagmap. Since all of the above reside
inside the same space, the tracked program could accidentally or
intentionally corrupt Pin or libdft.

Our solution to the problem is inspired by the scheme proposed
by Xu et al. [27], and relies on the premise that application code
cannot execute natively without first being instrumented and an-
alyzed by libdft. Since we instrument all memory accesses, an in-
struction that tries to write at memory address vaddr will be instru-
mented with the corresponding DFT logic, in order to assert or clear
the respective tag(s) in tagmap. Therefore, by restricting access to
specific blocks on the tagmap, we can prevent application code
from accessing certain memory regions. In the case of bit-sized
tags, we first enforce Pin to only use memory in a specific mem-
ory range (e.g., in the lower 512MB, 0x00000000 – 0x20000000).
Then, we proceed to protect the bits of mem bitmap that corre-
spond to that range (e.g., the first 64MB). Whenever application
code tries to access the lower 512MB of its virtual address space,
the DFT analysis routines will access the protected blocks of the
tagmap, leading to a memory violation error. However, note that
the protected memory region cannot be arbitrary, and depends on
the architecture’s page size. Assuming a 4KB page size and 1-bit
tags, both the beginning and ending of the protected memory range
needs to be aligned to 32K (8 bits per byte × 4KB page).

In the case of byte-sized tags, we allocate a guard page using
mmap and set its access bits to PROT NONE, effectively disallowing
any access to it. During initialization, we set all STAB entries that
correspond to unallocated memory pages, to point to the guard
page. From the application’s perspective, Pin’s and libdft’s memory
is always considered unallocated space. Hence, any access to these
addresses will result in DFT logic operating on the guard page,
leading again to a memory violation error. Note that by using
libdft’s API tool writers can register callback handlers for dealing
with such violation errors.

5. Creating a Taint Analysis Tool Using libdft

One of the most frequent incarnations of DFT has been dynamic
taint analysis. DTA operates by tagging all data coming from the
network as tainted, tracking their propagation, and alerting the user
when they are used in a way that could compromise his system.
In this case, the network is the source of “interesting” data, while
instructions that are used to control a program’s flow are the sinks.
For the x86 architecture, these are jumps and function calls with
non-immediate operands, as well as function returns. Attackers can
manipulate the operands of such instructions, by exploiting various
types of software memory errors, such as buffer overflows, format
string vulnerabilities, and dangling pointers. They can then seize
control of the program by redirecting execution to existing code
(e.g., return-to-libc, ROP [3]), or their own injected instructions.

In this section, we will demonstrate the design and implemen-
tation of a DTA tool, namely libdft-DTA, which we implemented
in approximately 450 LOC in C++, using libdft with bit-sized tags
and the API calls shown in Table 1. We only list part of the API
used for the development of the tools, due to space considerations.
First, libdft-DTA invokes libdft init() for initializing libdft
and allocating the tagmap. Next, it uses syscall set post()

for registering a set of system call hooks to pinpoint untrusted
data. Specifically, it monitors the socket API (i.e., socket and
accept) for identifying PF {INET,INET6} socket descriptors.

Function Description

libdft init() Initialize the tagging engine

libdft start() Commence execution
libdft die() Detach from the application

ins set pre()

ins set post()

ins set clr()

Register instruction callbacks
to be invoked before, after, or
instead libdft’s instrumentation

syscall set pre()

syscall set post()

Hook a system call entry or
return

tagmap set{b,w,l}()
tagmap setn()

Tag {1, 2, 4} and n bytes of
virtual memory

Table 1. Overview of libdft’s API.

It also hooks the dup, dup2, and fcntl system calls to ensure
that duplicates of these descriptors are also tracked. Each time a
system call of the read or receive family is invoked with a moni-
tored descriptor as argument, the memory locations that store the
network data are asserted using tagmap setn().

libdft-DTA checks if tainted data are used in indirect control
transfers (i.e., loaded on EIP) using ins set post() with RET,
JMP, and CALL instructions. In particular, it instruments them with
a small code snippet that returns the tag markings corresponding to
the instruction operands and target address (branch target). If any of
the two is tainted, execution halts with an informative message con-
taining the offending instruction and the contents of the instruction
pointer (EIP). Finally, for protecting against attacks that alter sys-
tem call arguments, libdft-DTA also monitors the execve system
call for tainted parameters.

6. Evaluation

We evaluated libdft using a variety of software including a web
and database (DB) server, command-line and network utilities, a
web browser, and the SPEC CPU2000 suite. Our aim is to quantify
the performance of libdft, and establish a set of bounds for the
various types of applications and software complexity. To the best
of our knowledge, we are the first to evaluate the performance of
a dynamic DFT framework in such depth. We also compare the
performance of libdft with the results reported in selected related
studies, and proceed to evaluate the effectiveness of the various
optimizations and design decisions we took. We close this section
with an evaluation of the performance and effectiveness of the
libdft-powered DTA tool presented earlier.

The results presented throughout this section are mean values,
calculated after running 10 repetitions of each experiment, while
the reported confidence intervals correspond to 95%. Our testbed
consisted of two identical hosts, equipped with two 2.66 GHz quad
core Intel Xeon X5500 CPUs and 24GB of RAM each, running
Linux (Debian “squeeze” with kernel version 2.6.32). The version
of Pin used during the evaluation was 2.9 (build 39586). When
conducting our experiments, the hosts were idle with no other user
processes running apart from the evaluation suites.

6.1 Performance

We developed four simple Pintools to aid us in evaluating libdft.
The first is nullpin, which essentially runs a process using Pin with-
out any form of instrumentation or analysis. This tool measures the
overhead imposed by Pin’s runtime environment alone. The sec-
ond and third, namely libdft-{bit, byte}, utilize libdft for applying
DFT on the application being executed, and use bit-sized and byte-
sized tags respectively. These tools measure the overhead of libdft
when employing single assignment and branch-less propagation,
plus the optimizations presented in Section 4.4. Finally, in order to
demonstrate the efficacy of our design choices, we also evaluated
libdft-unopt, which approximates the behavior of an unoptimized

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

tar
archive

gzip
compress

bzip2
compress

tar
extract

gzip
decompress

bzip2
decompress

scp
100Mbps

scp
1Gbps

S
lo

w
d

o
w

n
 (

n
o

rm
a

liz
e

d
 r

u
n

ti
m

e
)

nullpin
libdft-unopt

libdft-bit
libdft-byte

Figure 6. The slowdown imposed by Pin and libdft when running
four common Unix command-line utilities.

DFT framework. Specifically, it does not employ any optimization
scheme and its analysis routines are not inlined, effectively resem-
bling the impact of lax tag propagation.2 Note that since the per-
formance of libdft does not depend on the existence or amount of
tagged data, none of our tools uses any of the API functions for
customizing the applied DFT.

Utilities The goal of our first benchmark was to quantify the
performance of libdft with commonly used Unix utilities. For this
experiment, we used the GNU versions of tar, gzip, and bzip2,
as well as scp from the OpenSSH package. We selected these
applications because they represent different workloads. tar per-
forms mostly I/O, while gzip and bzip2 are CPU-bound appli-
cations. In between, scp is both I/O driven and CPU intensive.

We run all the tools natively, and using our four tools, and mea-
sured their execution time with Unix time utility. We used tar for
archiving and extracting a vanilla Linux kernel “tarball” (v2.6.35.6;
∼400MB), whereas gzip and bzip2 were used for compressing
and decompressing it respectively. For scp, we copied 1GB of ran-
domly generated data over SSH, first over an 100Mbps link and
then over an 1Gbps link. We present the results in Figure 6.

libdft-bit imposes a slowdown that ranges between 1.14x and
6x (average 3.65x), while libdft-byte ranges between 1.20x and
6.03x (average 3.72x). Pin alone imposes an 1.17x slowdown (this
is Pin’s baseline). Overall, the more CPU-bound an application is,
the larger the impact of libdft. For instance, bzip2 is the most
CPU intensive and tar the least, representing the worst and best
performance of libdft. I/O operations have a positive effect on DFT.

This is also confirmed by the overhead observed when running
scp over an 1Gbps link, which is higher when compared with the
100Mbps case. We surmise that nullpin and libdft perform worse
when the limiting factor is not the I/O, because the respective la-
tency hides the translation and tag propagation overhead. Indeed,
when utilizing the 1Gbps link, the bottleneck shifts to the CPU,
greatly reducing scp’s throughput. Also note that byte-sized tags
impose an additional overhead of 1.9%, which stems from the man-
agement cost of the tagmap segments and memory shadowing (see
Section 4.1.2). Compared with an unoptimized implementation,
libdft with all our optimizations performs 3.64% to 46.37% faster.

Apache The second set of experiments calculates the perfor-
mance slowdown of libdft when applied on larger and more com-
plex software. Specifically, we investigate how libdft behaves when
instrumenting the commonly used Apache web server.

2 The body of the analysis routines used in libdft-unopt remains highly condensed,
since they are the same routines that we use in libdft-{bit, byte}. Hence, the overhead
measured with this tool gives a lower bound of an unoptimized DFT implementation.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

1KB 10KB 100KB 1MB

S
lo

w
d
o
w

n
 (

n
o
rm

a
liz

e
d
)

File size

100 Mbps

nullpin
libdft-unopt

libdft-bit
libdft-byte

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

1KB 10KB 100KB 1MB

S
lo

w
d
o
w

n
 (

n
o
rm

a
liz

e
d
)

File size

1 Gbps

nullpin
libdft-unopt

libdft-bit
libdft-byte

(a) Plain-text data.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

1KB 10KB 100KB 1MB

S
lo

w
d
o
w

n
 (

n
o
rm

a
liz

e
d
)

File size

100 Mbps

nullpin
libdft-unopt

libdft-bit
libdft-byte

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

1KB 10KB 100KB 1MB

S
lo

w
d
o
w

n
 (

n
o
rm

a
liz

e
d
)

File size

1 Gbps

nullpin
libdft-unopt

libdft-bit
libdft-byte

(b) Data over SSL/TLS.

Figure 7. The slowdown incurred by Pin and libdft on the Apache web server when serving static HTML files of different sizes. We used
Apache’s benchmarking utility ApacheBench (ab) to measure the mean time per request for all four files, first over an 100Mbps link, and
then over an 1Gbps link.

We used Apache v2.2.16 and configured it to pre-fork all
the worker processes (pre-forking is a standard multiprocessing
Apache module), in order to avoid high fluctuations in perfor-
mance, due to Apache forking extra processes for handling the
incoming requests at the beginning of our experiments. All other
options were left to their default setting. We measured Apache’s
performance using its own utility ab and static HTML files of dif-
ferent size. In particular, we chose files with sizes of 1KB, 10KB,
100KB, and 1MB, and once again run the server natively and with
our four tools. We also tested Apache over different network links,
as well as with and without SSL/TLS encryption.

Figure 7(a) illustrates the results for running Apache, and trans-
ferring data in plaintext. We observe that as the size of the file be-
ing served increases, libdft’s overhead diminishes. Similarly to our
previous experiment, the time Apache spends performing I/O hides
our overhead. As a result, libdft has negligible performance im-
pact when Apache is serving files larger than 10KB at 100Mbps
and 100KB at 1Gbps. In antithesis, libdft imposes an 1.25x/1.64x
slowdown with 1KB files at 100Mbps/1Gbps when using bit-sized
tags. The overhead of byte-sized tagging becomes more evident
with smaller files because more requests are served by Apache,
also increasing the number of mmap calls performed. This leads
to higher tagmap management overhead, as segments need to be
frequently allocated and freed. We anticipate that we can amortize
this extra overhead by releasing segments more lazily, as we may
have to re-allocate them soon after.

Figure 7(b) shows the results of conducting the same exper-
iments, but this time using SSL/TLS encryption. We notice that
libdft has larger impact when running on top of SSL. In the
100Mbps scenario, the slowdown becomes negligible only for files
larger than 1MB, whereas at 1Gbps libdft imposes an 1.24x slow-
down even with 1MB files. The reason behind this behavior is that
the intensive cryptographic operations performed by SSL make the
server CPU-bound.

Interestingly, libdft-byte performs 3% better (on average) than
libdft-bit. In order to better understand this behavior, we analyzed
the mix of the executed instructions and observed that serving
a web page over SSL results in an increased number of XFER-
type instrumentations, where one of the two operands is memory.3

3 SSL makes heavy use of instructions like MOVS, STOS, MOVSX, and MOVZX.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

create alter insert ATIS

S
lo

w
d

o
w

n
 (

n
o

rm
a

liz
e

d
 r

u
n

ti
m

e
)

Test suite

(a) MySQL

nullpin
libdft-unopt

libdft-bit
libdft-byte

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

Facebook Gmail YouTube VEE

S
lo

w
d

o
w

n
 (

n
o

rm
a

liz
e

d
 r

e
n

d
e

ri
n

g
 t

im
e

)

Web site

(b) Firefox

nullpin
libdft-unopt

libdft-bit
libdft-byte

Figure 8. The overhead of Pin and libdft when running MySQL
and Firefox. We employed MySQL’s sql-bench benchmark suite,
which measures table creation, data selection and insertion. Re-
garding Firefox, we accessed the 3 most popular web sites from
Alexa’s Top 500 and the VEE web site.

Tag propagation code that corresponds to data transfers is more
expensive in the case of bit-sized tags than the case of byte-sized
tags. This is because the body of the respective r2m, m2r, and m2m
analysis routines contains more instructions, due to the elaborate
bit operations that are necessary for asserting only specific bits in
the tagmap (see Figure 4 and 5 in Section 4.2.2).

MySQL In Figure 8(a), we present the results from evaluating
MySQL DB server. We used MySQL v5.1.49 and its own bench-
mark suite (sql-bench). The suite consists of four different tests,
which assess the completion time of various DB operations like ta-
ble creation and modification, data selection and insertion, etc. We
notice that the average slowdown incurred by Pin’s instrumenta-
tion alone is 1.64x, which is higher than the overhead observed
when running smaller utilities (see Figure 6). The increased over-
head is attributed to the significantly larger size of MySQL’s code-
base, which applies pressure on Pin’s JIT compiler and code cache.

As far as libdft is concerned, the average slowdown on the five
test suites was 3.36x when using byte-sized tags, and 3.55x when
using bit-sized tags. Similarly to our previous experiments, libdft’s
overhead became more pronounced with more complex and CPU
intensive tasks. In this case, the test-insert benchmark was
the most exhaustive, involving table creations, random-ordered row
insertions, duplicates checking, ordered selection, deletion, and
so forth, and exhibited the largest slowdown (4.65x/4.83x). More
importantly, libdft performs 5.65% faster when configured to use
byte-sized tags. Again, we analyzed the instructions of MySQL
and observed a significant amount of XFER-type tag propagation
routines in the mix. Our combined set of optimizations reduces the
runtime overhead by 20.58% – 24.83%.

Firefox After evaluating two of the most popular servers, we
tested libdft with the Firefox web browser that has even larger
and more complex codebase, and complements our evaluation of
client-side software that started with the smaller utilities. We used
Mozilla Firefox v3.6.18 to access the three most popular web
sites according to Alexa’s Top 500 (http://www.alexa.com/
topsites), as well as the site of VEE, and measured the effect
of libdft on rendering time. Figure 8(b) illustrates the results for
this experiment. We see that the average slowdown under nullpin,
libdft-bit, and libdft-byte, was 1.68x, 8.16x, and 7.06x respectively.
The overhead is relatively low when accessing mostly static con-
tent web pages (VEE), while it increases significantly when access-
ing media-rich sites (YouTube), and sites that depend heavily on
JavaScript (JS) like Gmail. Note that for Facebook and Gmail, we
accessed and measured a real profile page and not the log in screen.
The effect of optimizations ranges between 18.64% and 29.68%.

Next, we benchmarked the JS engine of Firefox using the Dro-
maeo test suite (http://dromaeo.com/?recommended).
Dromaeo measures the speed of specific JS operations, so there
is no I/O or network lag, as in the page loading benchmark. We
observed that the slowdown incurred by both nullpin and libdft
was considerably higher, with an average of 3.2x for nullpin, and
14.52x/13.9x for libdft-bit/libdft-byte respectively. While increased
overhead was expected because this benchmark is also CPU-bound,
the slowdown is significantly larger from previous CPU intensive
experiments. It seems that since JS is interpreted and subsequently
“jitted” by the browser’s runtime, it interferes with the translation
and optimizations performed by Pin’s JIT engine, thus leading to
excessive runtime overheads. In fact, this implies that significant
overheads would emerge whenever DBI is combined with an inter-
preting runtime environment such as JS. Regardless, when using
the browser to access common web sites, we do not suffer the
performance decline observed in the Dromaeo benchmark.

6.2 Effectiveness of Optimizations

In order to quantify the impact of our set of optimizations pre-
sented in Section 4, we used the SPEC CPU2000 suite. Figure 9
shows the overhead of running the suite under the unoptimized ver-
sion of libdft (libdft-unopt) normalized to native execution, and
the improvement in performance contributed by each optimiza-
tion, as it is incorporated in our framework. Branch-less and sin-
gle assignment tag propagation, denoted by O1, has a notable
impact on the imposed overhead, reducing it by 10.65% when
libdft uses bit-sized tags and 15.09% in case of byte-sized tags.
This optimization captures the impact of our efforts for aggres-
sively inlining the analysis routines implementing tag propaga-
tion. Optimization O2 (O1 + fast vcpu) reduces running time
by 29.45% and 30.34% for libdft-bit and libdft-byte respectively.
Recall that fast vcpu results in smaller and lock-free code. O3
and O4, which add fast rep and huge tlb respectively, offer
marginally enhanced performance to libdft (i.e., 0.8% and 0.6%
with libdft-bit, and 2.17% and 3.15% with libdft-byte).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

libdft-bit libdft-byte

S
lo

w
d

o
w

n
 (

n
o

rm
a

liz
e

d
 r

u
n

ti
m

e
)

CINT

SPEC CPU2000

unopt
O1
O2
O3
O4

Figure 9. The impact of our optimizations when applied cumu-
latively on the SPEC CPU2000 benchmark: O1 (branch-less and
single assignment tag propagation), O2 (O1 + fast vcpu), O3
(O2 + fast rep), O4 (O3 + huge tlb).

This is because SPEC CPU2000 does not utilize large memory
chunks, nor it contains a significant amount of REP-prefixed in-
structions. Thus, the payoff is smaller.

6.3 Comparison with Related Systems

Table 2 compares libdft with other, previously proposed dynamic
DFT systems, namely Dytan [6], Minemu [2], LIFT [21], and
PTT [11]. In particular, we compare the performance results ob-
tained during the evaluation of libdft, with the numbers reported by
the authors of these tools for similar benchmarks. We resorted to
using the results reported in related work because we were unable
to obtain copies of the software to evaluate it ourselves.

Dytan is the most flexible tool, allowing users to customize its
sources, sinks, and propagation policy, while it can also track data
based on control-flow dependencies (see Section 2; Figure 1). Al-
beit flexible, it incurs high performance penalties. For instance,
gzip executes 30x slower than running natively, even when im-
plicit tracking is turned off. When the latter is utilized, gzip per-
forms 50x slower, while it can also lead to taint explosion. That is,
erroneously tracking large amounts of data, due to the imprecision
of control-flow data dependencies [22].

In contrast, Minemu is the fastest tool, but it provides limited
functionality. It uses an ad-hoc emulator for the mere purpose of
performing fast DTA, and cannot be configured for use in other
domains without modifying the emulator itself. Moreover, it does
not provide colored tags, nor it supports self-modifying code. More
importantly, Minemu cannot be used “as-is” on 64-bit architec-
tures, due to its shadow memory design and heavy reliance on SSE
(XMM) registers. In particular, it exploits the XMM registers to
avoid spilling GPRs during taint tracking. However, this optimiza-
tion may not have the same benefits on x86-64, since SSE has be-
come standard and Minemu will have to resort on XMM spilling.

LIFT is another low-overhead dynamic DFT system. Unlike
libdft, it focuses on detecting attacks instead of providing an ex-
tensible framework. LIFT builds on the premise that programs fre-
quently execute without tagged data, and as a result tag propagation
can be omitted. Their approach involves activating data tracking,
only when tagged data are loaded in one of the CPU registers. This
optimization is orthogonal to libdft, which could also benefit from
dynamically enabling and disabling data tracking. In practice, the
speedup depend on the program at hand and how often it oper-
ates on tagged data. Note that with tracking always enabled, LIFT
exhibits higher overhead than libdft, when running the SPECint

http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://dromaeo.com/?recommended

System Tag Size Supported Binaries Customizable
Control-flow
Dependencies

Threading
Indicative Slowdown

gzip SPECint Average

libdft 1 & 8 bits 32-bit, 64-bit ready Yes No Yes 4.3x 5.08x (SPECint 2000)
Dytan 32 bits 32-bit, 64-bit ready Yes Yes Yes 30x -

Minemu 8 bit 32-bit No No No 1.6x 2.4x (SPECint 2006)
(boolean) (current prototype)

LIFT 1 bit 64-bit No No No - 6.6x (SPECint 2006)
(LIFT-FS)

PTT 32 bits 32-bit, 64-bit ready Limited No Yes 22.5x -

Table 2. Comparison between libdft and other dynamic DFT systems. The table also contrasts the overhead reported by the authors of these
systems for selected applications and benchmarks.

Application Vulnerability SecurityFocus ID

wu-ftpd v2.6.0 Format string BID 1387
ATPhttpd v0.4 Stack overflow BID 5215
WsMp3 v0.0.2 Heap corruption BID 6240
ProFTPD v1.3.3 Stack overflow BID 44562

Table 3. libdft-DTA successfully prevented the listed attacks.

benchmark. Operation-wise, it only runs with x86-64 binaries, and
it does not support multithreading by design.

PTT is different from the rest of the systems because it performs
system-wide data tracking, and uses additional cores through par-
allelization to improve performance. Even though it is one of the
fastest such systems, it still incurs significant overheads.

libdft and Dytan are the only frameworks that can be exten-
sively customized to create other tools. libdft’s tags are shorter than
Dytan’s, while it does not perform control-flow dependency track-
ing. We believe this is a reasonable compromise, made to achieve
greatly improved performance and entice developers to use our
framework instead of building ad-hoc tools from scratch (e.g., like
Minemu). Additional performance experiments with the Apache
web server and the file distribution used by LIFT, show that libdft-
bit reduces throughput and increases response time by 0.4% and
0.02% respectively, while LIFT does so by 6.2% and 90.9%. Fur-
thermore, by comparing the results depicted in Figure 7(a) with
Minemu’s, we observe that libdft outperforms Minemu in plain-text
transfers. Interestingly, Minemu seems to demonstrate the reverse
trend with SSL (i.e., its overhead increases when file size does).

6.4 The libdft-DTA Tool

The purpose of developing the libdft-DTA tool was not to provide a
solid DTA solution, but to demonstrate that our API can be used to
easily and quickly develop otherwise complex tools. Nevertheless,
we tested its effectiveness using the set of exploits listed in Table 3.
In all cases, it successfully detected and prevented the exploita-
tion of the corresponding application. We also evaluated the perfor-
mance of the tool using scp, Apache, and MySQL, and compare it
with libdft’s baseline performance. We observe that the additional
overhead imposed by the tool is negligible (≤ +7%) over the base-
line overhead of DFT. While we cannot claim that all libdft-based
tools will have such low additional overhead, our results demon-
strate that libdft can be customized to implement problem-specific
instances of DFT efficiently.

7. Limitations and Future Work

In Linux, device control is mostly performed using the system call
ioctl. This call uses a command number that identifies the opera-
tion to be performed, and in certain cases the receiver in the kernel.
While attempts have been made to apply a formula on this num-
ber, due to backward compatibility issues and programmer errors,
actual ioctl numbers are many times arbitrary (interested readers
are referred to ioctl list(2)). Identifying individual ioctl

calls is necessary to sanitize the memory locations where data are
being read. While ioctl is not used by regular applications, later
versions of libdft could utilize system call tracing tools, such as
strace, for pinpointing ioctls.

In the future, we plan to extend libdft to run on Windows OSs
and 64-bit architectures. We expect that porting libdft to run on
Windows will be straightforward. Currently, all of libdft’s compo-
nents, besides the system call part of the I/O interface, can be used
“as is” with the Windows OS (the underlying ISA is the same).
Note that although the Windows system calls are numerous, they
are rarely used directly by developers. libdft needs to intercept them
solely for sanitizing the data being read into the process. Also, port-
ing our framework to work with 64-bit x86 architectures does not
pose any significant challenges, but requires moderate engineer-
ing effort. Finally, we plan to further investigate the impact of the
tmap col and huge tlb optimizations. Specifically, we seek to
quantify the reduction in memory consumption of specific types of
applications due to tagmap collapse, as well as identify cases where
fewer TLB misses can speedup libdft.

8. Related Work

The work closest to ours is by Clause et al. [6], which we compared
with libdft in Section 6.3. LIFT [21] and Minemu [2] are two of the
fastest DFT systems based on binary instrumentation, but as we
have also discussed earlier, they are problem-specific and offer less
functionality to prospective DFT users. More importantly, LIFT
optimizations are orthogonal to libdft and could be exploited to
further improve the performance of our tool.

TaintCheck [17] was one of the first tools to utilize DTA,
for protecting binary-only software from buffer overflow and
other types of memory corruption attacks, entirely in software.
TaintCheck incurs prohibitive slowdowns, which may case an ap-
plication to run up to 37x slower. Vigilante [7] utilizes DFT to
generate self-certifying alerts (SCAs). These alerts accurately de-
scribe the network message that was used in a previously detected
attack, and can be distributed to parties hosting vulnerable soft-
ware without the need for a secure distribution channel, because
they can be independently and securely certified by the receiving
party. Vigilante relies on the possibility of capturing attacks on
server honeypots that will generate the SCAs, and as such does not
focus on performance.

Eudaemon [19] builds upon the Qemu user space emulator to
allow one selectively apply taint analysis on a process (e.g., when
potentially harmful actions are taken, or the system is idle). It in-
curs an overhead of approximately 9x, which can be alleviated on
long-running applications by selectively enabling or disabling DFT.
TaintEraser [29] uses Pin to apply taint analysis on binaries for
the purpose of identifying information leaks. Furthermore, it intro-
duces the concept of “function shortcuts” to reduce the overhead.
These shortcuts enable the native execution of frequently called
functions, but need to be defined manually by the developer, re-
ducing the portability and practicality of the system. libdft could
also benefit by such shortcuts (e.g., in prevalent libc functions).

Hardware implementations of DFT [8, 9, 23] have been pro-
posed to evade the large penalties imposed by software-only imple-
mentations, but unfortunately they have had no appeal with hard-
ware vendors. Implementations of DTA using virtual machines and
emulators have been also proposed [5, 13, 20]. While these solu-
tions have some practicality for malware analysis platforms and
honeypots, they induce slowdowns that make them impractical on
production systems.

Speck [18] increases the performance of security checks, like
DTA, by decoupling the checks from application execution using
process-level replaying and Pin. In this manner, DTA can be run
parallel with the application, while the DTA itself can be also par-
allelized. Similarly, Aftersight [4] decouples VM execution from
program analysis, offloading the task to a separate, or even remote,
platform. HiStar [28] uses labels to tag and protect sensitive data.
It is a new OS design, and its main focus is to protect the sys-
tem from components that start exhibiting malicious behavior after
being compromised. HiStar’s data tracking is more coarse-grained
than libdft’s, and introduces major changes in the OS level.

9. Conclusions

We presented libdft, a practical dynamic DFT platform. Our goal
is to facilitate future research by providing a framework that is
at once fast, reusable, and applicable to commodity software and
hardware. We also investigated the reasons that DFT tools based
on DBI frameworks frequently perform badly, and presented the
practices that need to be avoided by the authors of such tools. Our
evaluation shows that libdft imposes low overhead, comparable to
or faster than previous work. Its effect on web server throughput
can be negligible when running over a 100Mbps network link and
serving static HTML files, while even when switching to a 1Gbps
link it never exceeds 2.04x. Moreover, we showed that performance
depends on application CPU and I/O requirements. For instance,
MySQL performs approximately 3.36x slower under libdft, while
I/O intensive tools like tar sustain less than 1.14x overhead. We
believe that libdft strikes a balance between usability and perfor-
mance, incurring non prohibitive costs, even when running large
and complex software like MySQL, Apache, and Firefox.

Acknowledgements

This work was supported by DARPA, the US Air Force and the Na-
tional Science Foundation through Contracts DARPA-FA8750-10-
2-0253 and AFRL-FA8650-10-C-7024, and Grant CNS-09-14312,
respectively, with additional support from Google and Intel Corp.
Any opinions, findings, conclusions or recommendations expressed
herein are those of the authors, and do not necessarily reflect those
of the US Government, DARPA, the Air Force, or the NSF.

References

[1] M. Attariyan and J. Flinn. Automating configuration troubleshooting
with dynamic information flow analysis. In Proc. of the 9th OSDI,
pages 237–250, 2010.

[2] E. Bosman, A. Slowinska, and H. Bos. Minemu: The World’s Fastest
Taint Tracker. In Proc. of the 14th RAID, pages 1–20, 2011.

[3] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy. Return-Oriented Programming without Returns. In
Proc. of the 17

th CCS, pages 559–572, 2010.

[4] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In Proc. of the 2008
USENIX ATC, pages 1–14.

[5] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.
Understanding Data Lifetime via Whole System Simulation. In Proc.

of the 13
th USENIX Security, pages 321–336, 2004.

[6] J. Clause, W. Li, and A. Orso. Dytan: A Generic Dynamic Taint
Analysis Framework. In Proc. of the 2007 ISSTA, pages 196–206.

[7] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham. Vigilante: End-to-End Containment of Internet
Worms. In Proc. of the 20th SOSP, pages 133–147, 2005.

[8] J. R. Crandall and F. T. Chong. Minos: Control Data Attack Prevention
Orthogonal to Memory Model. In Proc. of the 37th MICRO, pages
221–232, 2004.

[9] M. Dalton, H. Kannan, and C. Kozyrakis. Real-world Buffer Overflow
Protection for Userspace & Kernelspace. In Proc. of the 17th USENIX

Security, pages 395–410, 2008.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, and A. N. S.
Patrick McDaniel. TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones. In Proc. of the 9

th

OSDI, pages 393–407, 2010.

[11] A. Ermolinskiy, S. Katti, S. Shenker, L. L. Fowler, and M. McCauley.
Towards Practical Taint Tracking. Technical Report UCB/EECS-
2010-92, EECS Department, University of California, Berkeley, USA,
Jun 2010.

[12] B. Ford and R. Cox. Vx32: Lightweight User-level Sandboxing on the
x86. In Proc. of the 2008 USENIX ATC, pages 293–306.

[13] A. Ho, M. Fetterman, A. W. Christopher Clark, and S. Hand. Practical
Taint-based Protection using Demand Emulation. In Proc. of the 2006

EuroSys, pages 29–41.

[14] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA++:
Dynamic Taint Analysis with Targeted Control-Flow Propagation. In
Proc. of the 18th NDSS, 2011.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation. In Proc. of the

2005 PLDI, pages 190–200.

[16] A. C. Myers. JFlow: Practical Mostly-Static Information Flow Con-
trol. In Proc. of the 26th POPL, pages 228–241, 1999.

[17] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Com-
modity Software. In Proc. of the 12th NDSS, 2005.

[18] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Parallelizing
Security Checks on Commodity Hardware. In Proc. of the 13th

ASPLOS, pages 308–318, 2008.

[19] G. Portokalidis and H. Bos. Eudaemon: Involuntary and On-Demand
Emulation Against Zero-Day Exploits. In Proc. of the 2008 EuroSys,
pages 287–299.

[20] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an Emulator for
Fingerprinting Zero-Day Attacks. In Proc. of the 2006 EuroSys, pages
15–27.

[21] F. Qin, C. Wang, Z. Li, H.-S. Kim, Y. Zhou, and Y. Wu. LIFT: A Low-
Overhead Practical Information Flow Tracking System for Detecting
Security Attacks. In Proc. of the 39th MICRO, pages 135–148, 2006.

[22] A. Slowinska and H. Bos. Pointless Tainting? Evaluating the Practi-
cality of Pointer Tainting. In Proc. of the 2009 EuroSys, pages 61–74.

[23] G. E. Suh, J. Lee, and S. Devadas. Secure Program Execution via
Dynamic Information Flow Tracking. In Proc. of the 11

th ASPLOS,
pages 85–96, 2004.

[24] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A.
Blome, G. A. Reis, M. Vachharajani, and D. I. August. RIFLE: An
Architectural Framework for User-Centric Information-Flow Security.
In Proc. of the 37th MICRO, pages 243–254, 2004.

[25] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. Flexi-
taint: A Programmable Accelerator for Dynamic Taint Propagation. In
Proc. of the 14

th HPCA, pages 243–254, 2008.

[26] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnerability
Detection. In Proc. of the 13

th IEEE S&P, pages 497–512, 2010.

[27] W. Xu, S. Bhatkar, and R. Sekar. Taint-Enhanced Policy Enforcement:
A Practical Approach to Defeat a Wide Range of Attacks. In Proc. of

the 15
th USENIX Security, pages 121–136, 2006.

[28] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making
Information Flow Explicit in HiStar. In Proc. of the 7th OSDI, pages
263–278, 2006.

[29] D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. TaintEraser:
Protecting Sensitive Data Leaks Using Application-Level Taint Track-
ing. SIGOPS Oper. Syst. Rev., 45:142–154, 2011.

	Introduction
	Data Flow Tracking
	Design
	Data Tags
	Tag Propagation
	Challenges for Fast Dynamic DFT

	Implementation
	The Tagmap
	Register Tags
	Memory Tags

	Code Instrumentation and Analysis
	Instrumentation Engine
	Analysis Routines

	I/O Interface
	Optimizations
	Fast vcpu Access (fast_vcpu)
	Fast REP-prefixed Instructions (fast_rep)
	Huge TLB (huge_tlb)
	Tagmap Collapse (tmap_col)

	Memory Protection

	Creating a Taint Analysis Tool Using libdft
	Evaluation
	Performance
	Effectiveness of Optimizations
	Comparison with Related Systems
	The libdft-DTA Tool

	Limitations and Future Work
	Related Work
	Conclusions

