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Abstract

We introduce program shepherding, a method for

monitoring control flow transfers during program

execution to enforce a security policy. Shepherding

ensures that malicious code masquerading as data

is never executed, thwarting a large class of security

attacks. Shepherding can also enforce entry points

as the only way to execute shared library code. Fur-

thermore, shepherding guarantees that sandboxing

checks around any type of program operation will

never be bypassed. We have implemented these ca-

pabilities efficiently in a runtime system with mini-

mal or no performance penalties. This system oper-

ates on unmodified native binaries, requires no spe-

cial hardware or operating system support, and runs

on existing IA-32 machines.

1 Introduction

The goal of most security attacks is to gain unautho-

rized access to a computer system by taking control

of a vulnerable privileged program. This is done by

exploiting bugs that allow overwriting stored pro-

gram addresses with pointers to malicious code.

Today’s most prevalent attacks target buffer over-

flow and format string vulnerabilities. However, it

is very difficult to prevent all exploits that allow
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address overwrites, as they are as varied as pro-

gram bugs themselves. It is also unreasonable to

try to stop malevolent writes to memory containing

program addresses, because addresses are stored in

many different places and are legitimately manipu-

lated by the application.

Security attacks cannot be thwarted by simply in-

serting checks around application code that may

cause system-wide changes. A malicious entity that

gains control can simply inject its own code to per-

form any operation that the overall application has

permission to do. Hijacking trusted applications

such as web servers, mail transfer agents, and login

servers, which are typically run with many global

permissions, gives full access to machine resources.

Rather than attempt to stop a multitude of attack

paths, where the protection is only as powerful as

the weakest link, our approach is to prevent the ex-

ecution of malicious code. We present program
shepherding — monitoring control flow transfers

to enforce a security policy. Program shepherding

prevents execution of data or modified code and

ensures that libraries are entered only through ex-

ported entry points. Instead of focusing on prevent-

ing memory corruption, we prevent the final step of

an attack, the transfer of control to malevolent code.

This allows thwarting a broad range of security ex-

ploits with a simple central system that can itself

be easily made secure. Program shepherding also

provides sandboxing that cannot be circumvented,

allowing construction of customized security poli-

cies.

Program shepherding requires verifying every



branch instruction, which can be costly when done

via instrumentation or in an interpreter. In order

to reduce this overhead we perform security checks

once and place the resulting trusted code in a cache,

where it can be executed overhead-free in the fu-

ture. Our implementation naturally fits within the

RIO infrastructure, a dynamic optimizer built on the

IA-32 version [3] of Dynamo [2]. Our system im-

poses minimal or no performance overhead, oper-

ates on unmodified native binaries, and requires no

special hardware or operating system support. Al-

though RIO is implemented for both Windows and

Linux, this paper focuses on Linux only. We plan

to extend our work to Windows.

In Section 2 we classify the types of security ex-

ploits that are prevented by program shepherding’s

three techniques, which are described in Section 3.

Section 4 discusses methods of implementing pro-

gram shepherding efficiently, and Section 5 de-

scribes the details of our implementation. Section 6

discusses how to prevent attacks directed at our sys-

tem itself. We present experimental results and the

performance of our system in Section 7.

2 Security Exploits

This section provides some background on the

types of security exploits we are targeting. We clas-

sify security exploits based on three characteris-

tics: the program vulnerability being exploited, the

stored program address being overwritten, and the

malicious code that is then executed.

2.1 Program Vulnerabilities

The two most-exploited classes of program bugs in-

volve buffer overflows and format strings. Buffer

overflow vulnerabilities are present when a buffer

with weak or no bounds checking is populated with

user supplied data. A trivial example is unsafe

use of the C library functions strcpy or gets.

This allows an attacker to corrupt adjacent struc-

tures containing program addresses, most often re-

turn addresses kept on the stack[7]. Buffer over-

flows affecting a regular data pointer can actually

have a more disastrous effect by allowing a memory

write to an arbitrary location on a subsequent use of

that data pointer. One particular attack corrupts the

fields of a double-linked free list kept in malloc
headers [16]. On a subsequent call to free, the

list update operation

this->prev->next = this->next
will modify an arbitrary location with an arbitrary

value.

Format string vulnerabilities also allow attackers to

modify arbitrary memory locations with arbitrary

values and often out-rank buffer overflows in re-

cent security bulletins [6, 19]. A format string vul-

nerability occurs if the format string to a function

from the printf family ( ,f,s,sn printf,
syslog) is provided or constructed from data

from an outside source. The most common

case is when printf(str) is used instead of

printf("\%s",str). The first problem is that

attackers may be able to read the memory contents

of the process. The real danger, however, comes

from the %n conversion specifier that writes back

to the argument the number of characters printed

so far. The location and the value of this number

can easily be controlled by an attacker with type

and width specifiers, and more than one write of an

arbitrary value to an arbitrary address can be per-

formed in a single intrusion.

In this paper we assume that attackers can exploit

a vulnerability that gives them random write access

to arbitrary addresses in the program address space.

This ability can be used to overwrite any stored pro-

gram address to transfer control of the process to

the attacker.

2.2 Stored Program Addresses

Many entities participate in transferring control in

a program execution. Compilers, linkers, loaders,

runtime systems, and hand-crafted assembly code

all have legitimate reasons to transfer control. Pro-

gram addresses are credibly manipulated by most



of these entities, e.g. dynamic loaders patch shared

object functions, dynamic linkers update relocation

tables; and language runtime systems modify dy-

namic dispatch tables. Generally, these program

addresses are intermingled with and indistinguish-

able from data. In such an environment, preventing

a control transfer to malicious code by stopping il-

legitimate memory writes is next to impossible. It

requires the cooperation of numerous trusted and

untrusted entities that need to check many different

conditions and understand high-level semantics in

a complex environment. The resulting protection is

only as powerful as the weakest link.

Security exploits have attacked program addresses

stored in many different places. Buffer overflow

attacks target addresses adjacent to the vulnerable

buffer. Stack allocated buffers allow the classic re-

turn address attack and a local function pointer at-

tack. Heap buffer overflows also allow global func-

tion pointer attacks and a setjmp structure at-

tack. Simple data pointer buffer overflows, mal-
loc overflow attacks, and %n format string at-

tacks are able to modify any stored program ad-

dress in the vulnerable application — in addition

to the aforementioned addresses, these attacks tar-

get entries in the atexit list, .dtors destructor

routines, and in the Global Offset Table (GOT) [12]

of shared object entries.

2.3 Malicious Code

An attacker can cause damage with injection of new

malicious code or by malicious reuse of already

present code. Usually the first approach is taken

and the attack code is implemented as new native

code that is injected in the program address space

as data [20]. New code can be injected into var-

ious areas of the address space: in a stack buffer,

heap buffer, static data segment, near heap, or even

the Global Offset Table. Since normally there is

no distinction between read and execute privileges

for memory pages (this is the case for IA-32), the

only requirement is that the pages are writable dur-

ing the injection phase. Pointing any code pointer

to the beginning of the introduced code will trigger

intrusion when that pointer is used.

It is also possible to reuse existing code by chang-

ing a code pointer and constructing an activation

record with suitable arguments. A simple but pow-

erful attack reuses existing code by changing a

function pointer to the C library function system,

and arranges the first argument to be an arbitrary

shell command to be run.

An attacker may be able to form higher level ma-

licious code by introducing data carefully arranged

as a chain of activation records, so that on return

from each function execution continues in the next

one [18]. A jump into the middle of an instruc-

tion (on IA-32 instructions are variable-sized) could

cause execution of a malicious instruction stream,

although this attack may be of very limited use.

3 Program Shepherding

The program shepherding approach to preventing

execution of malicious code is to monitor all control

transfers to ensure that each satisfies a given secu-

rity policy. This allows us to ignore the complexi-

ties of various vulnerabilities and the difficulties in

preventing illegitimate writes to stored program ad-

dresses. Instead, we can catch a large class of secu-

rity attacks by preventing execution of malevolent

code. We do this by employing three techniques:

restricted code origins, restricted control transfers,

and un-circumventable sandboxing.

3.1 Restricted Code Origins

In monitoring all code that is executed, each in-

struction’s origins are checked against a security

policy to see if it should be given execute privi-

leges. For example, a policy could allow execution

of code only if it is from the original application

or library image on disk and is unmodified. The

policy could allow dynamically generated code, but

require that it execute within a layer of sandbox-

ing. We describe in Section 5.1 how to distinguish



original code from modified and possibly malicious

code.

Restricted code origins alone can stop all security

exploits that inject code masquerading as data into

a program. This covers a majority of currently de-

ployed security attacks, including the classic stack

buffer overflow attack.

A hardware execute flag for memory pages can

provide similar features to our restricted code ori-

gins. However, it cannot by itself duplicate program

shepherding’s features because it cannot stop inad-

vertent or malicious change to protection flags. Pro-

gram shepherding uses un-circumventable sand-

boxing, described in Section 3.3, to prevent this

from happening.

3.2 Restricted Control Transfers

Program shepherding enables security policies such

as enforcing the calling convention by preventing

return instructions from targeting non-call sites.

Controlling return targets can severely restrict ex-

ploits that overwrite return addresses, as well as op-

portunities for stitching together fragments of exist-

ing code in an attack.

Another useful policy is restricting transitions from

one segment to another, e.g. from application code

to a shared library, or from one shared library to

another. We can prevent malevolent jumps into the

middle of library routines by restricting targets of

calls and jumps to be on the library’s export list and

the source’s import list.

3.3 Un-Circumventable Sandboxing

Sandboxing allows building customized security

policies for different types of code. For example,

checks can be added before loads and stores to en-

sure that only certain memory regions are accessed

by application code.

With the ability to monitor all transfers of control,

program shepherding is able to guarantee that sand-

boxing checks cannot be bypassed. Sandboxing

without this guarantee can never provide true secu-

rity — if an attack can gain control of the execution,

it can jump straight to the sandboxed operation, by-

passing the checks.

Sandboxing can provide detection of attacks that

get past both restricted code origins and restricted

control transfers. For example, an attack that over-

writes a code pointer in order to call the system
routine will not be stopped if system is allowed

by the export and import lists. Program shepherd-

ing’s guaranteed sandboxing can be used for intru-

sion detection for this and other attacks. The secu-

rity policy must decide what to check for (for exam-

ple, suspicious calls to system calls like execve)

and what to do when an intrusion is actually de-

tected. These issues are beyond the scope of this

paper, but have been discussed elsewhere [15, 17].

4 Efficient Implementation of Program
Shepherding

Our goal was to build an efficient system for mon-

itoring control flow that runs on existing hardware

and requires no modification to application source

code or binaries. One possibility is instrumenta-

tion of application and library code prior to execu-

tion to add security checks around every branch in-

struction. However, this imposes significant perfor-

mance penalties. Furthermore, an attacker aware of

the instrumentation could design an attack to over-

write or bypass the checks.

Another possibility is to use an interpreter. Interpre-

tation is a natural way to monitor program execu-

tion because every application operation is carried

out by a central system in which security checks

can be placed. Interpretation via emulation is slow,

especially on an architecture like IA-32 with a com-

plex instruction set. To reduce the emulation over-

head, interpreters typically cache the native trans-

lations of frequently executed code so they can be

directly executed in the future. By using a code
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Figure 1: Flow chart of the RIO system infrastructure. Dark shading indicates application code. Note that the context

switch is simply between the code cache and RIO; application code and RIO code all runs in the same process and

address space.

cache, we can perform security checks only once,

when we copy the code to the cache. If the code

cache is protected from malicious modification, fu-

ture executions of the trusted cached code proceed

with no security or emulation overhead.

4.1 Dynamic Optimization

A dynamic optimization system also utilizes this

code cache design. We decided to build our pro-

gram shepherding system as an extension to a dy-

namic optimizer called RIO. RIO is built on top of

the IA-32 version [3] of Dynamo [2]. RIO’s op-

timizations are still under development. However,

this is not a hindrance for our security purposes,

as its performance is already reasonable (see Sec-

tion 7.5). RIO is implemented for both IA-32 Win-

dows and Linux, and is capable of running large

desktop applications.

A flow chart showing the operation of RIO is shown

in Figure 1. The figure concentrates on the flow of

control in and out of the code cache, which is the

bottom portion of the figure. The copied applica-

tion code looks just like the original code with the

exception of its control transfer instructions, which

are shown with arrows in the figure.

Below we give an overview of RIO’s operation, fo-

cusing on the aspects that are relevant to our imple-

mentation of program shepherding.

4.2 RIO: Runtime Introspection and Opti-
mization

RIO copies basic blocks (sequences of instructions

ending with a single control transfer instruction)

into a code cache and executes them natively. At the

end of each block the application’s machine state

must be saved and control returned to RIO (a con-
text switch) to copy the next basic block. If a target

basic block is already present in the code cache, and

is targeted via a direct branch, RIO links the two

blocks together with a direct jump. This avoids the

cost of a subsequent context switch.

Indirect branches cannot be linked in the same way

because their targets may vary. To maintain trans-

parency, original program addresses must be used

wherever the application stores indirect branch tar-

gets (for example, return addresses for function

calls). These addresses must be translated into



their corresponding code cache addresses in order

to jump to the target code. This translation is per-

formed as a fast hashtable lookup. Unfortunately

indirect branch performance will never equal that of

the original code, because a single instruction (the

indirect branch) in the original execution has been

expanded to multiple instructions.

To improve the efficiency of indirect branches, and

to achieve better code layout, basic blocks that are

frequently executed in sequence are stitched to-

gether into a unit called a trace. When connect-

ing beyond a basic block that ends in an indirect

branch, a check is inserted to ensure that the ac-

tual target of the branch will keep execution on the

trace. This check is much faster than the hashtable

lookup, but if the check fails the full lookup must be

performed. The superior code layout of traces goes

a long way toward amortizing the overhead of cre-

ating them and often speeds up the program [2, 23].

5 Implementation Details

This section discusses the implementation of the

components of program shepherding discussed in

Section 3. Most monitoring operations only need

to be performed once, allowing us to achieve good

performance in the steady-state of the program. In

our implementation, a performance-critical inner

loop will execute without a single additional in-

struction beyond the original application code.

5.1 Restricted Code Origins

The origins of a basic block are easily monitored by

adding checks at the point where the system copies

a basic block into the code cache. These checks

need be executed only once for each basic block.

Code origins often require knowing whether code

has been modified from its original image on disk,

or whether it is dynamically generated. This is done

by write-protecting all pages that are declared as

containing code on program start-up. In normal

ELF [12] binaries code pages are separate from data

pages and are write-protected by default. Dynami-

cally generated code is easily detected when the ap-

plication tries to execute code from a writable page,

while self-modifying code is detected by monitor-

ing calls that un-protect code pages.

If code and data are allowed to share a page, we

make a copy of the page, which we write-protect,

and then unprotect the original page. The copy is

then used as the source for basic blocks. If self-

modifying code must be allowed, RIO keeps track

of the origins of every block in the code cache, in-

validating a block when its source page is modified.

The original page must be kept write-protected to

detect every modification to it. The performance

overhead of this depends on how often writes are

made to code pages, but we expect self-modifying

code to be rare.

We handle new or modified code as specified by

the security policy. We envision a series of pro-

tection levels, where original unmodified code is

more trusted, and dynamically generated or mod-

ified code is less trusted, requiring additional sand-

boxing. Legitimate dynamically-generated code is

usually used for performance; for example, many

high-level languages employ just-in-time compila-
tion [1, 11] to generate optimized pieces of code

that will be executed natively rather than inter-

preted. This code almost always does not contain

system calls or other potentially dangerous items.

For this reason, imposing a strict security policy

on dynamically-generated code (for example, dis-

allowing the execve system call) is a reasonable

approach.

5.2 Restricted Control Transfers

The dynamic optimization infrastructure makes

monitoring control flow transfers very simple. For

direct branches, any desired security checks can be

performed at the point of basic block linking. If a

transition between two blocks is disallowed by the

security policy, they are not linked together. In-

stead, the direct branch is linked to a routine that



announces or handles the security violation. These

checks need only be performed once for each po-

tential link. A link that is allowed becomes a direct

jump with no overhead.

For an indirect branch, the hashtable lookup rou-

tine translates the target program address into a ba-

sic block entry address. Transitions between blocks

using indirect branches are controlled by censor-

ing the hashtable. We only place targets in the

hashtable that are allowed by the security policy.

A separate hashtable can be used for return instruc-

tions to ensure that they only target call sites. This

separation has no effect on performance.

To require that all calls and jumps between seg-

ments satisfy the import and export lists, we

can match targets against entry points of PLT-

defined [12] or dynamically resolved symbols.

Security checks for indirect branches that only ex-

amine their targets have little performance over-

head. However, examining the source and the tar-

get has the potential to slow down execution. This

must be done either by adding explicit checks in

the hashtable lookup routine, or by indexing the

hashtable both by source and target.

5.3 Un-Circumventable Sandboxing

When required by the security policy, RIO inserts

sandboxing into a basic block when it is copied to

the code cache. In normal sandboxing, an attacker

can jump to the middle of a block and bypass the in-

serted checks. RIO only allows control flow trans-

fers to the top of basic blocks or traces in the code

cache, preventing this.

An indirect branch that targets the middle of an

existing block will miss in the indirect branch

hashtable lookup, go back to RIO, and end up copy-

ing a new basic block into the code cache that will

duplicate the bottom half of the existing block. The

necessary checks will be added to the new block,

and the block will only be entered from the top, en-

suring we follow the security policy.

Page Type RIO mode Application mode

Application code R R

Application data RW RW

RIO code cache RW R (E)

RIO code R (E) R

RIO data RW R

Table 1: Privileges of each type of memory page be-

longing to the application process. R stands for Read, W

for Write, and E for execute. We separate execute privi-

leges here to make it clear what code is allowed by RIO

to execute.

Restricted code cache entry points are crucial not

just for building custom security policies with un-

circumventable sandboxing, but also for enforcing

the other shepherding features by protecting RIO.

This is discussed in the next section.

6 Protecting RIO

Program shepherding could be defeated by attack-

ing RIO’s own data structures, including the code

cache, which are in the same address space as the

application. This section discusses how to prevent

attacks on RIO. Since the core of RIO is a relatively

small piece of code, we believe we can secure it and

leave no loopholes for exploitation.

6.1 Memory Protection

To protect RIO we write-protect RIO’s data and

the code cache while control is in application code.

We divide execution time into two modes: RIO

mode and application mode. RIO mode corre-

sponds to the top half of Figure 1. Application

mode corresponds to the bottom half of Figure 1,

the code cache and the RIO routines that are exe-

cuted without performing a context switch back to

RIO. We give each type of memory page the privi-

leges shown in Table 1. RIO data includes the indi-

rect branch hashtable and other data structures.

Initially, all application and RIO code pages are



write-protected. When we enter RIO mode we

unprotect the code cache and RIO data pages.

If a basic block copied to the code cache con-

tains a system call that may change page priv-

ileges, the call is sandboxed to prevent changes

that violate Table 1. Program shepherding’s un-

circumventable sandboxing guarantees that these

system call checks are executed. When we enter

application mode we write-protect the code cache

pages and RIO data pages. Because we do not al-

low application code to change these protections,

we guarantee that RIO’s state cannot be corrupted.

We protect RIO’s Global Offset Table (GOT) [12]

by binding all symbols on program startup and then

write-protecting the GOT.

6.2 Multiple Application Threads

RIO’s data structures and code cache are thread-

private. Each thread has its own unique code cache

and data structures. System calls that modify page

privileges are checked against the data pages of all

threads. When a thread enters RIO mode, only that

thread’s RIO data pages and code cache pages are

unprotected.

A potential attack could occur while one thread is in

RIO mode and another thread in application mode

modifies the first thread’s RIO data pages. We could

solve this problem by forcing all threads to exit

application mode when any one thread enters RIO

mode. The performance cost of this solution would

be minimal on a single processor or on a multipro-

cessor when every thread is spending most of its

time executing in the code cache. However, the

performance cost would be unreasonable on mul-

tiprocessor when threads are continuously context

switching. We are still working on alternative solu-

tions.

6.3 Interaction with Dynamic Optimization

We will maintain our security implementation as

RIO is enhanced with classic compiler optimiza-

tions to improve performance. Some proposed opti-

mizations maintain state while in application mode,

requiring write permission on pages such that RIO

cannot guarantee security. We plan to be involved

in the design of future optimizations so that they

can be incorporated securely into RIO.

7 Experimental Results

Our program shepherding implementation is able to

detect and prevent a wide range of known security

attacks. This section presents a test suite of exploits

and then shows the performance of our system and

the performance impact of our security techniques.

7.1 Test Suite

We constructed several programs exhibiting a full

spectrum of buffer overflow and format string vul-

nerabilities. Our experiments also included the fol-

lowing applications with recently reported security

vulnerabilities:

stunnel-3.21 CAN-2002-0002[8] A format string

vulnerability in stunnel (SSL tunnel) al-

lows remote malicious servers to execute arbi-

trary code because several fdprintf (a cus-

tom file descriptor wrapper of fprintf) calls

have no format argument.

groff-1.16 CAN-2002-0003[8] The preprocessor

of the groff formatting system has an ex-

ploitable buffer overflow which allows remote

attackers to gain privileges via lpd in the

LPRng printing system. The pic picture

compiler from the groff package also has a

format string vulnerability [21].

ssh-1.2.31 CVE-2001-0144[8] An integer-

overflow bug in the CRC32 compensation

attack detection code causes the SSH daemon

(run typically as root) to create a hash table

with size zero in response to long input. Later



attempts to write values into the hash table

provide attackers with random write access to

memory.

sudo-1.6.1 CVE-2001-0279[8] sudo (superuser

do) allows local users to gain root privileges.

The vulnerability is triggered by long com-

mand line arguments and is caused by an out

of bound access due to incomplete end of loop

conditions. An exploit based on malloc cor-

ruption has been published [16].

Attack code is usually used to immediately give the

attacker a root shell or to prepare the system for

easy takeover by modifying system files. Hence,

the exploits in our tests tried to either start a shell

with the privilege of the running process, typically

root, or to add a root entry into the /etc/passwd
file. We based our exploits on several “cookbook”

and proof-of-concept works [4, 26, 16, 21] to inject

new code [20], reuse existing code in a single call,

or reuse code in a chain of multiple calls [18]. Stan-

dard C library functions were used for existing code

attacks. Chained calls were arranged by injecting

carefully constructed activation records. On return

from one function, execution continues in code in a

function epilogue that shifts the stack pointer to the

following activation record and continues execution

in the next function of the chain.

Our test suite exploits were able to get control by

modifying a wide variety of code pointers including

return addresses; local and global function pointers;

setjmp structures; and atexit, .dtors, and

GOT [12] entries. We investigated attacks against

RIO itself, e.g. overwriting RIO’s GOT entry to

allow malicious code to run in RIO mode, but could

not come up with an attack that could bypass the

protection mechanisms presented in Section 6.

All vulnerable programs were successfully ex-

ploited when run on a standard RedHat 7.2 Linux

installation. Execution of the vulnerable binaries

under RIO without security checks also allowed

successful intrusions. Although RIO interfered

with a few of the exploits due to changed addresses

in the targets, it was trivial to modify the exploits to

work under RIO.

Table 2 summarizes the contribution of each pro-

gram shepherding technique toward stopping these

attacks. We now describe these results in detail.

7.2 Restricted Code Origins

Enabling the code origin checks of RIO disallowed

execution from address ranges other than the text

pages of the binary and all mapped shared libraries.

All exploits that introduce external code were de-

tected and stopped.

A majority of currently deployed security attacks

would be prevented by this technique alone. How-

ever, code origin checks are insufficient to thwart

attacks that change a target address pointer to point

to existing code in the program address space.

7.3 Restricted Control Transfers

We have evaluated which attacks would have been

prevented by control transfer restrictions, which we

are in the process of implementing.

Most of our vulnerable programs did not have any

application code which could be maliciously used

by an attacker. However, all of them had the stan-

dard C library mapped into their address space. Fur-

thermore, many of the large programs imported all

of the library routines that our attacks needed, so re-

strictions on cross-segment transitions would only

stop a few of these attacks.

Requiring that return instructions target only call

sites would thwart our chained call attack, even

when the needed functions are explicitly imported

and allowed by cross-segment restrictions. The

chaining technique would be countered because of

its reliance on return instructions: once to gain con-

trol at the end of each existing function, and once

in the code to shift to the activation record for the

next function call.

Note that if existing code used an indirect jump in-

struction to return instead of an actual return in-



Attack Type Code Origins Restricted Transfers Sandboxing

Return Address stops all policy
Injected Code

Other Pointer
stops all

dependent
Return Address stops most

Imported
Other PointerSingle Call

Not Imported stops all

stops execve

policy

E
x

is
ti

n
g

C
o

d
e

Chained Calls stops all
dependent

Table 2: Capabilities of program shepherding against different attack classes.

: Only code at a return point can be run.

: Since only a single call can be executed, sandboxing execve should prevent intrusion.

struction, our special return handling would be of

no help. Such code will probably not be present in

most applications — it will certainly not be gener-

ated by compilers since it breaks important hard-

ware optimizations in modern IA-32 processors.

7.4 Un-Circumventable Sandboxing

Single malicious function calls to an imported li-

brary routine are still possible by modification of

a function pointer, as are the simpler data-only at-

tacks that only modify the argument of an otherwise

valid function call.

We consider the readily available execve system

call to be the most vulnerable point in a single-call

attack. However, it is possible to construct an intru-

sion detection predicate to distinguish attacks from

valid execve calls, and either terminate the appli-

cation or drop privileges to limit the exposure.

7.5 Performance

Figure 2 shows the performance of RIO with and

without program shepherding features. The figure

shows normalized execution time on Linux for the

SPEC2000 benchmarks [24] (compiled -O3 and

run with unlimited code cache space). The first

bar gives the performance of RIO by itself. RIO’s

code layout optimizations enable it to speed up a

number of the benchmarks. The second bar shows

RIO’s performance when it checks code origins to

ensure that only unmodified, original code is ex-

ecuted. This overhead is negligible, as it occurs

only at the point where basic blocks are copied

into the code cache. The third bar gives the over-

head of write-protecting RIO memory pages on ev-

ery context switch. This overhead is again mini-

mal, within the noise in our measurements for most

benchmarks. Only gcc has significant slowdown

due to page protection, because it consists of sev-

eral short runs with little code re-use. We are work-

ing on improving our page protection scheme and

completing implementation of the schemes for pro-

tecting RIO mentioned in Section 6 for multiple

threads.

We are confident that the checks that are involved

in restrictions on transitions between memory seg-

ments and on return targets will produce negligible

overheads, as with the code origin checking that we

have shown. We have implemented sandboxing of

system calls, which introduces no noticeable over-

head.
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Figure 2: Normalized program execution time for our system (the ratio of our execution time to native execution

time) on the SPEC2000 benchmarks [24] (excluding FORTRAN 90). The first bar is for RIO with no program

shepherding implementation. The middle bar shows the overhead of checking code origins. The right bar shows the

overhead of performing page protection calls to prevent attacks against the system itself.

8 Related Work

Reflecting the significance and popularity of buffer

overflow and format string attacks, there have been

several other works that attempted to provide auto-

matic protection and detection of these vulnerabili-

ties. We will shortly summarize the more success-

ful ones.

StackGuard [7] is a compiler patch that modifies

function prologues to place “canaries” adjacent to

the return address pointer. A stack buffer overflow

will modify the “canary” while overwriting the re-

turn pointer, and a check in the function epilogue

can detect that condition. This technique is success-

ful only against sequential overwrites and protects

only the return address.

StackGhost [14] is an example of hardware-

facilitated return address pointer protection. It is a

kernel modification of OpenBSD that uses a Sparc

architecture trap when a register window has to be

written to or read from the stack, so it performs

transparent operations on the return address before

it is written to the stack on function entry and before

control transfer on function exit.

Techniques for stack smashing protection by keep-

ing copies of the actual return addresses in an area

unaccessible to the application, are also proposed

in the kernel modification in [14], and in the com-

piler patch StackShield [25] suffer from various

complications in multi-threading environment and

from deviations from a strict calling convention

by setjmp() and exceptions. Unless the mem-

ory areas are unreadable to the application there is

no hard guarantee that an attack targeted against a

given protection scheme can be foiled. On the other

hand, if the return stack copy is protected for the

duration of a function execution, it has to be un-

protected on each call and that can be prohibitively

expensive (mprotect on Linux on x86 is 60–70

times more expensive than an empty function call).

Techniques for write-protection of stack pages [7]

have also shown significant performance penalties.

FormatGuard [6] is a library patch for eliminating

format string vulnerabilities. It provides wrappers

for the printf functions that count the number of

arguments and match them to the specifiers. It is



applicable only to functions that use the standard

library functions directly, and it requires recompi-

lation.

Enforcing non-executable permissions on the IA-

32 via kernel patches was made for the stack pages

in [10] and on all data pages with PaX [22]. Both

provide no protection against attacks using existing

code. Furthermore, our system provides execution

protection from user mode and achieves better per-

formance for protecting all data pages.

The system infrastructure itself is a dynamic opti-

mization system based on the IA-32 version [3] of

Dynamo [2]. Other software dynamic optimizers

are Wiggins/Redstone [9], which employs program

counter sampling to form traces that are specialized

for the particular Alpha machine they are running

on, and Mojo [5], which targets Windows NT run-

ning on IA-32. None of these has been used for

anything other than optimization.

9 Conclusions

This paper introduces program shepherding, which

employs the techniques of restricted code origins,

restricted control transfers, and un-circumventable

sandboxing to provide strong security guarantees.

We have implemented program shepherding in the

RIO runtime system and have shown that it success-

fully prevents a wide range of security attacks effi-

ciently.

RIO does not rely on hardware, operating system,

or compiler support, and operates on unmodified bi-

naries on a generic Linux IA-32 platform. By per-

forming security checks once and caching trusted

code, our program shepherding implementation has

minimal overhead.

We are expanding the list of security checks that

shepherding can provide without loss of perfor-

mance. We are also maintaining our security imple-

mentation with updates to RIO that improve perfor-

mance.

Program shepherding allows operating system ser-

vices to be moved to more efficient user-level li-

braries. For example, in the exokernel [13] operat-

ing system, the usual operating system abstractions

are provided by unprivileged libraries, giving effi-

cient control of system resources to user code. Pro-

gram shepherding can enforce unique entry points

in these libraries, enabling the exokernel to provide

its better performance without sacrificing security.

We believe that program shepherding will be an in-

tegral part of future security systems. It is relatively

simple to implement, has little or no performance

penalty, and can coexist with existing operating sys-

tems, applications, and hardware. Many other se-

curity components can be built on top of the un-

circumventable sandboxing provided by program

shepherding. Program shepherding provides use-

ful security guarantees that drastically reduces the

potential damage from attacks.
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