An Architecture for Constructing Self-Evolving Software Systems

Chrysanthos Dellarocas

Center for Coordination Science
Massachusetts Institute of
Technology
MIT Room E53-315
Cambridge, MA 02139, USA
+1 (617) 258-8115

dell@mit.edu

1. ABSTRACT

This paper proposes an architecturefor

" closing the feedback loop” over the entire
softwar e evolution process and enabling the
construction of self-evolving software systems.
Self-evolving softwar e systems ar e capabl e of
automatically detecting when changing
external circumstances or internal conditions
can be better handled by alter nate software
modules and ableto dynamically swap these
modulesinto place. Our approach integrates
results of recent work in softwar e ar chitecture
and dynamic reconfiguration. Furthermore, it
introduces the novel concept of an evolution
engine, which sitsalongside a running
application, overseesits execution and
automatically decides when and how to evolve
it. The evolution enginerelies on models of the
current and alternative system configurations
aswell ason a generic base of reusable
knowledge about softwar e exceptions.

1.1 Keywords

Dynamic achitedures and reoonfiguration, architecural
evolution

Mark Klein

Center for Coordination Science
Massachusetts Institute of
Technology
MIT Room E40-169
Cambridge, MA 02139, USA
+1 (617) 253-6796

m_klein@mit.edu

Howard Shrobe

Artificial Intelligence Laboratory
Massachusetts Institute of
Technology
MIT Room NE43-839
Cambridge, MA 02139, USA
+1 (617) 253-7877

hes@ai.mit.edu

2. INTRODUCTION

Most of the recent work in dynamic software evolution
focuses on dynamic reconfiguration and assumes that the
dedsions of when and how to evolve asoftware system are
performed manually (for example [6,8,11]). In a number of
highly volatile and time-criticd domains this is not good
enough Automatic target recognition, milit ary logistics and
air-traffic control are some examples of domains where
faulty or sub-optimal software behavior can cause disaster
in a matter of seands. Software systems in such domains
must be self-ewolving, that is, prepared to automaticaly
deted when changing external circumstances or interna
conditions can be better handled by alternate software
modules and able to dynamicaly swap these modules into
place

This paper proposes an architecdure for "closing the
feedbadk loop' over the etire software evolution process
and enabling the mnstruction of self-ewlving software
systems. Our approadch integrates results of receit work in
software achitedure ad dynamic reoonfiguration.
Furthermore, it introduces the novel concept of an ewolution
engine, which sits alongside arunning application, oversees
its exeaution and automaticaly deddes when and how to
evolve it. The evolution engine relies on models of the
current and alternative system configurations as well ason a
generic base of reusable knowledge about software fail ures
and exceptions.

We ae finding that software achitedure has an important
role to play in the mntext of self-evolving software but that
its definition has to be extended. In order to be ale to
automaticdly deted when a software system is not meding
its goals and dedde how to evolve it into a more viable
state, rich runtime information structures, which combine
together descriptions of a system's structure, intended
behavior, design rationde and design dternatives are
provingto be fundamental prerequisites.

3. OVERVIEW
Our architedure for constructing self-evolving software
systems consists of four components (Figure 1):

Failure mode repository Exception type repository

Model element

Possible failures-

<

Exception Type

Diagnostic rules
| [Detection strategies

Resolution strategies

Evolution Engine:

Diagnostic

services

Resolution
plan selection

A !
services

Plan
Y enactment

» services

1 ,

Architectural Abstraction Layer

Domain .
it Instrumentation
repository services
A
Architectural
model

A

mon
itor

Executable system

7 5

v

Figure 1: Overview of the proposed ar chitecture

e« A domain repaository, which captures the space of
alternative solutions in a given application domain.

* An architedural model, which refleds the arrent
goas, structure and design rationale of the running
system at any given time.

« An ewlution engine, which monitors whether the
system is meding its goals, deteds exceptiona
conditions, diagnoses the underlying causes and then
seleds and enads an evolution plan for resolving them.

e An architedural abstraction layer, which alows the
evolution engine to express dynamic system changes at
the achitecural level and ensures that these changes are
properly applied to the runnng system.

3.1 The Domain Repository

Our approach is intended for applicaion domains where,
although the spaceof alternative solutions is generally well
understood, insufficient information exists during design-
time for dedding which solution within that spacewould be
most appropriate in a given context. For example, in the
domain of automatic target recognition, although the space
of alternative dgorithmsiswell understood, the dedsion of
which algorithm to use eab time often cannot be reliably
made until after a missle has been fired.

To develop self-evolving systems in such domains, the first
prerequisite is to capture an adequate portion of the design
spacein adomain repository. Such adomain repository will
store information about the structure, behavior and design
tradeoffs (performance requirements, limitations, etc.) of
dternative software anfigurations in the given application
domain. The human designer will use this information in
order to derive the initial exeautable system configuration.
During rurrtime, the evolution engine (see below) will
consult the domain repository in order to seled an
dternative system configuration after some condition has
signaled the need for it.

3.2 TheArchitectural Model

To generate asoftware system in a highly volatile domain,
an initial set of design choices, however uncertain, must be
made and an initial configuration of components must be
put together. In addition to the domain repository, an
architedural model is needed to capture information about
the aurrent configuration of the system. In addition to
information about the structure of the system, the
architedural model must also contain information about the
system’'s intended behavior and the design rationde that
has lead to it. The evolution engine will make use of that
model in order to understand what goals a computation is
supposed to achieve (and under which assumptions the

system believes that it can adchieve them) so that it can
monitor whether it has been succes<ul.

3.3 TheEvolution Engine

The evolution engine sits alongside arunring applicaion,
oversess its exeaution and automaticdly deddes when and
how to evolve it. It relies on information contained in the
architedural model and design repaository as well as on a
generic base of reusable knowledge @out software failure
modes and exception types. The evolution engine removes
the neal for the system designer to anticipate dl possble
exceptions that might occur during the system’s operation
and explicitly “hardcode” waysto ded with them.

Anticipating andDeteding Exceptions

The first step in enabling self-evolution is to determine,
given a model of the system's current configuration, the
ways in which the system might fail and then to instrument
the system with additional monitors that these failures
can be deteded. One gproach for acdieving this is to
compare every element of the achitedural model against a
repository of generic architedural patterns, resource types
and constraint types annotated with the ways in which they
can fail, i.e. with their charaderistic exception types.
Failure modes for a given element can be uncovered using
falure mode aaysis [12]. In the cae of software
architedure, more spedaized anaysis tedhniques can
uncover certain posdble failures, such as deallock and race
conditions (for example [1,5,7]).

While systems can fail i n many diff erent ways, such failures
have arelatively limited number of different manifestations,
including timeouts, constraint and resource violations, etc.
Every exception type includes pointers to excetion
detedion strategies. Such dstrategies are parameterized
architedure modificaion scripts. They spedfy how to
instrument the system with additional monitors that check
for signs of adua or impending falure. The
instrumentation component of the evolution engne
instantiates and applies these scripts to the achitedura
model through the Architecural Abstradion Layer (see
below) in order to augment the base system with
appropriate monitor components.

Diagnasing Exceptions

During run-time, monitor components generate gpropriate
events when exception manifestations are deteded. Just as
in medicd domains, seleding an appropriate intervention
requires understanding the underlying cause of the problem,
i.e. itsdiagnasis. A key challenge here, however, is that the
symptoms reveded by the exception detedion processes
can suggest a wide variety of possble underlying causes.
Many different exceptions (e.g. “resource not available”,
“message misrouted” etc.) typicdly manifest themselves,
for example, as timeouts.

Our approad is based on heuristic dassfication [2]. This
approach works by traversing a taxonomy of generic

exception types. When an exception is deteded, the
evolution engine traverses the exception type taxonomy
top-down like adedsion tree It starts from the diagnoses
implied by the manifest symptoms and then iteratively
refines the spedficity of the diagnoses by eliminating
exception types whose defining charaderistics are not
setisfied.

Seleding aResolution Srategy

Once a exception has been deteded and at least tentatively
diagnosed, the evolution engine must prescribe aplan that
resolves the exception and evolves the system to a viable
state. This can be adieved, in our approad, by seleding
and instantiating one of the generic exception resolution
strategies that are a<ciated with the hypothesized
exception type. Examples of resolution strategies include:
repladng a faulty resource with an alternative resource,
repladng the aurrent configuration with an aternative
configuration from the domain repasitory, adjusting the set
of assumptions and constraints in the achitedural snapshot
to refled the new state of the environment, etc. Since a
exception can have several aternative resolution strategies,
ead suitable for different situations, the evolution engine
uses a dedsion procedure identica to that used in diagnosis
in order to find the right one.

Evolving the System

After aresolution strategy has been seleded, the evolution
engine elads it. A typicd resolution strategy would
traverse the domain repository and seled an alternative
configuration, which appeas to be better suited to the latest
infformation about the system requirements and
environment. Following that, an evolution plan is
constructed for moving the system from the aurrent
configuration to the new configuration. The evolution plan
is expresed as a sequence of architedure modification
operations. Examples of such operations include: adding,
removing or repladng a @mponent with an aternative
component, adding, removing or repladng a set of
constraints with alternative cnstraints, etc. The evolution
plan is applied to the achitedura model through the
Architedural Abstradion Layer.

3.4 TheArchitectural Abstraction Layer

The goal of the Architedural Abstradion Layer isto isolate
the evolution engine from low-level synchronizaion and
consistency isaues that arise during dynamic reconfiguration
[6,8] and to all ow it to accessinformation about the running
system and express configuration changes at the
architedural level. More spedficdly, the AAL provides an
interfacethroughwhich the evolution engine can accessand
modify the achitedural model of the running application
usng a set of highlevel architedure modification
operations, such as, add/remove acomponent, add/remove
a mngtraint, etc. The AAL then ensures that these changes
are mrredly applied to the running system and manages the

synchronization and consistency issles as®ciated with
dynamic change.

4. CURRENT STATUS

The Adaptive Systems and Evolutionary Software Group at
MIT (http://ccs. mit.edu/ ases) is in the process of
constructing a prototype implementation of the achitedure
presented in this paper. Our efforts are focused on the
following three aeas:

e designing and implementing the various rvices of the
evolution engine; experimenting with alternative
approaches towards monitoring, exception diagnosis,
plan seledion and plan enacdment

» developing prototype versions of the fail ure mode and
exception type repositories; exploring the extent to
which we can define generic exception detedion and
resolution strategies, which can then be combined with a
domain repository to provide gplicaion-spedfic
exception handling

» designing the interfaces of the evolution engine with
the achitedura and damain models, understanding
how much information about the system’s <gructure,
goas and design rationale is necessary to enable self-
evolution; integrating this information with existing
architedural description notations

Our intention is to base the remaining components of our
architedure on existing reseach prototypes in the aess of
domain and requirements engneeing (e.g. [3.4]),
architedural and functional description langueges (e.g.
[9,10]) and dynamic recmonfiguration (e.g. [6,8,11]).

5. REFERENCES

[1] R. Allen and D. Garlan. A Formal Basis for
Architedura Connedion. ACM Trans. on
Sdtware Eng. Method (TOSEM), 6 (3), July 1997,
pp. 213-249,

[2] W. J. Clancey. Heuristic Clasdficaion. Artificial
Intelli gence, 27(3), 1985 pp. 289-350.

[3] A. Dardenne, A. van Lamsweade and S. Fickas.
Goal-direded requirements aajuisition. Science of
Computer Programning, Vol. 20, 1993 pp. 3-50.

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

C. Déllarocas, J. Lee T.W. Malone, K. Crowston
and B. Pentland. Using a Process Handbod to
Design Organizational Proceses. Proc. AAA 1994
Spring Smposium on Computationd
Organization Design, Stanford, CA, March 21-23,
1994 pp. 50-56.

P. Inverardi and A.L. Wolf. Formal Spedfication
and analysis of software achitedures using the
chemicd abstrad madiine. |IEEE Trans. on
Sdtware Eng., 21 (4), Apr. 1995 pp. 373-386.

J. Kramer and J Magee The Evolving
Philosophers Problem: Dynamic Change
Management. IEEE Trans. on Sdtware Eng., 16
(11), Nov. 1990Q pp. 12931306

D.C .Luckham et. al. Spedfication and Analysis of
Software Architedure using Rapide. IEEE Trans.
on Sdtware Eng., 21 (4), April 1995 pp. 336-355.

K. Moazani-Goudarzi and J. Kramer. Maintaining
Node Consistency in the Faceof Dynamic Change.
Proc. of 3% Int'l Conf. on Config. Distrib. Systems
(CDS'96), Annapdlis, MD, May 1996 pp. 62-69.

N. Medvidovic and R.N. Taylor. A Framework for
Classfying and Comparing Architedure
Description Langueges. Proc. 6" European Sdi.
Eng. Conf., Zurich, Switzeland, Sept. 22-25,
1997 pp. 60-76.

JW. Murdock. Modeling Computation: A
Comparative Synthesis of TMK and ZD. Georgia
Inst. Of Tedh. College of Computing Technicad
Report GIT-CC-98-13, April 1998

P. Oreizy, N. Medvidovic, and R.N. Taylor.
Architedure-Based Runtime Software Evolution.
Proc. 20" Int'| Conf. on Sdt. Eng. (ICSE'99),
Kyoto, Japan, April 19-25, 1998 pp. 177-186.

D. Rahgja. Software system failure mode and
effeds analysis (SSAMEA)-a tod for reliability
growth. Proc. of Int'l Symp. On Reliability and
Maintainahlity (ISRM'90), Tokyo, Japan, June
199Q pp. 271-277.

