
An Architecture for Constructing Self-Evolving Software Systems

Chrysanthos Dellarocas
Center for Coordination Science

Massachusetts Institute of
Technology

MIT Room E53-315
Cambridge, MA 02139, USA

+1 (617) 258-8115

dell@mit.edu

Mark Klein
Center for Coordination Science

Massachusetts Institute of
Technology

MIT Room E40-169
Cambridge, MA 02139, USA

+1 (617) 253-6796

m_klein@mit.edu

Howard Shrobe
Artificial Intelligence Laboratory

Massachusetts Institute of
Technology

MIT Room NE43-839
Cambridge, MA 02139, USA

+1 (617) 253-7877

hes@ai.mit.edu

1. ABSTRACT
This paper proposes an architecture for
"closing the feedback loop" over the entire
software evolution process and enabling the
construction of self-evolving software systems.
Self-evolving software systems are capable of
automatically detecting when changing
external circumstances or internal conditions
can be better handled by alternate software
modules and able to dynamically swap these
modules into place. Our approach integrates
results of recent work in software architecture
and dynamic reconfiguration. Furthermore, it
introduces the novel concept of an evolution
engine, which sits alongside a running
application, oversees its execution and
automatically decides when and how to evolve
it. The evolution engine relies on models of the
current and alternative system configurations
as well as on a generic base of reusable
knowledge about software exceptions.
1.1 Keywords
Dynamic architectures and reconfiguration, architectural
evolution

2. INTRODUCTION
Most of the recent work in dynamic software evolution
focuses on dynamic reconfiguration and assumes that the
decisions of when and how to evolve a software system are
performed manually (for example [6,8,11]). In a number of
highly volatile and time-critical domains this is not good
enough. Automatic target recognition, milit ary logistics and
air-traff ic control are some examples of domains where
faulty or sub-optimal software behavior can cause disaster
in a matter of seconds. Software systems in such domains
must be self-evolving, that is, prepared to automatically
detect when changing external circumstances or internal
conditions can be better handled by alternate software
modules and able to dynamically swap these modules into
place.

This paper proposes an architecture for "closing the
feedback loop" over the entire software evolution process
and enabling the construction of self-evolving software
systems. Our approach integrates results of recent work in
software architecture and dynamic reconfiguration.
Furthermore, it introduces the novel concept of an evolution
engine, which sits alongside a running application, oversees
its execution and automatically decides when and how to
evolve it. The evolution engine relies on models of the
current and alternative system configurations as well as on a
generic base of reusable knowledge about software failures
and exceptions.

We are finding that software architecture has an important
role to play in the context of self-evolving software but that
its definition has to be extended. In order to be able to
automatically detect when a software system is not meeting
its goals and decide how to evolve it into a more viable
state, rich run-time information structures, which combine
together descriptions of a system's structure, intended
behavior, design rationale and design alternatives are
proving to be fundamental prerequisites.

3. OVERVIEW
Our architecture for constructing self-evolving software
systems consists of four components (Figure 1):

Figure 1: Overview of the proposed architecture

• A domain repository, which captures the space of
alternative solutions in a given application domain.

• An architectural model, which reflects the current
goals, structure and design rationale of the running
system at any given time.

• An evolution engine, which monitors whether the
system is meeting its goals, detects exceptional
conditions, diagnoses the underlying causes and then
selects and enacts an evolution plan for resolving them.

• An architectural abstraction layer, which allows the
evolution engine to express dynamic system changes at
the architectural level and ensures that these changes are
properly applied to the running system.

3.1 The Domain Repository
Our approach is intended for application domains where,
although the space of alternative solutions is generally well
understood, insuff icient information exists during design-
time for deciding which solution within that space would be
most appropriate in a given context. For example, in the
domain of automatic target recognition, although the space
of alternative algorithms is well understood, the decision of
which algorithm to use each time often cannot be reliably
made until after a missile has been fired.

To develop self-evolving systems in such domains, the first
prerequisite is to capture an adequate portion of the design
space in a domain repository. Such a domain repository will
store information about the structure, behavior and design
tradeoffs (performance, requirements, limitations, etc.) of
alternative software configurations in the given application
domain. The human designer will use this information in
order to derive the initial executable system configuration.
During run-time, the evolution engine (see below) will
consult the domain repository in order to select an
alternative system configuration after some condition has
signaled the need for it.

3.2 The Architectural Model
To generate a software system in a highly volatile domain,
an initial set of design choices, however uncertain, must be
made and an initial configuration of components must be
put together. In addition to the domain repository, an
architectural model is needed to capture information about
the current configuration of the system. In addition to
information about the structure of the system, the
architectural model must also contain information about the
system’s intended behavior and the design rationale that
has lead to it. The evolution engine will make use of that
model in order to understand what goals a computation is
supposed to achieve (and under which assumptions the

� � � � � � � � � � � � 	 �
 � � � � � � � �
 � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � � � � � � � � � �

! � � � � � � � � � �
� � � � � � � � " � �

� � � � � � � � �
� � � � � � � �

� $ � �

� � % � � � � � � �

& ' � � � � �
 	 � � � � � � $
� � � � � � � � � � � � 	

$ � (� 	
) * +, - * .) * +, - * .

& / � 	 � � � �
 &
 0 �
 �

1 2 3 4 5 4 5 4 6 4 7 8
9 : ; < = > ? @ A @ = > B

9 = B B @ C D ; E F @ D G : ; B

H I J 4 K 8 L 2 7 M N K 4
O @ F P > = B A @ < : G D ; B

O ; A ; < A @ = > B A : F A ; P @ ; B
Q ; B = D G A @ = > B A : F A ; P @ ; B

R � � 	 � � � $ � (� � � % � � � � � � � & ' � � % � � �
 � � % � � � % � � � � � � �

system believes that it can achieve them) so that it can
monitor whether it has been successful.

3.3 The Evolution Engine
The evolution engine sits alongside a running application,
oversees its execution and automatically decides when and
how to evolve it. It relies on information contained in the
architectural model and design repository as well as on a
generic base of reusable knowledge about software failure
modes and exception types. The evolution engine removes
the need for the system designer to anticipate all possible
exceptions that might occur during the system’s operation
and explicitly “hardcode” ways to deal with them.

Anticipating and Detecting Exceptions

The first step in enabling self-evolution is to determine,
given a model of the system's current configuration, the
ways in which the system might fail and then to instrument
the system with additional monitors so that these failures
can be detected. One approach for achieving this is to
compare every element of the architectural model against a
repository of generic architectural patterns, resource types
and constraint types annotated with the ways in which they
can fail , i.e. with their characteristic exception types.
Failure modes for a given element can be uncovered using
failure mode analysis [12]. In the case of software
architecture, more specialized analysis techniques can
uncover certain possible failures, such as deadlock and race
conditions (for example [1,5,7]).

While systems can fail i n many different ways, such failures
have a relatively limited number of different manifestations,
including timeouts, constraint and resource violations, etc.
Every exception type includes pointers to exception
detection strategies. Such strategies are parameterized
architecture modification scripts. They specify how to
instrument the system with additional monitors that check
for signs of actual or impending failure. The
instrumentation component of the evolution engine
instantiates and applies these scripts to the architectural
model through the Architectural Abstraction Layer (see
below) in order to augment the base system with
appropriate monitor components.

Diagnosing Exceptions

During run-time, monitor components generate appropriate
events when exception manifestations are detected. Just as
in medical domains, selecting an appropriate intervention
requires understanding the underlying cause of the problem,
i.e. its diagnosis. A key challenge here, however, is that the
symptoms revealed by the exception detection processes
can suggest a wide variety of possible underlying causes.
Many different exceptions (e.g. “ resource not available”,
“message misrouted” etc.) typically manifest themselves,
for example, as timeouts.

Our approach is based on heuristic classification [2]. This
approach works by traversing a taxonomy of generic

exception types. When an exception is detected, the
evolution engine traverses the exception type taxonomy
top-down like a decision tree. It starts from the diagnoses
implied by the manifest symptoms and then iteratively
refines the specificity of the diagnoses by eliminating
exception types whose defining characteristics are not
satisfied.

Selecting a Resolution Strategy

Once an exception has been detected and at least tentatively
diagnosed, the evolution engine must prescribe a plan that
resolves the exception and evolves the system to a viable
state. This can be achieved, in our approach, by selecting
and instantiating one of the generic exception resolution
strategies that are associated with the hypothesized
exception type. Examples of resolution strategies include:
replacing a faulty resource with an alternative resource,
replacing the current configuration with an alternative
configuration from the domain repository, adjusting the set
of assumptions and constraints in the architectural snapshot
to reflect the new state of the environment, etc. Since an
exception can have several alternative resolution strategies,
each suitable for different situations, the evolution engine
uses a decision procedure identical to that used in diagnosis
in order to find the right one.

Evolving the System

After a resolution strategy has been selected, the evolution
engine enacts it. A typical resolution strategy would
traverse the domain repository and select an alternative
configuration, which appears to be better suited to the latest
information about the system requirements and
environment. Following that, an evolution plan is
constructed for moving the system from the current
configuration to the new configuration. The evolution plan
is expressed as a sequence of architecture modification
operations. Examples of such operations include: adding,
removing or replacing a component with an alternative
component, adding, removing or replacing a set of
constraints with alternative constraints, etc. The evolution
plan is applied to the architectural model through the
Architectural Abstraction Layer.

3.4 The Architectural Abstraction Layer
The goal of the Architectural Abstraction Layer is to isolate
the evolution engine from low-level synchronization and
consistency issues that arise during dynamic reconfiguration
[6,8] and to allow it to access information about the running
system and express configuration changes at the
architectural level. More specifically, the AAL provides an
interface through which the evolution engine can access and
modify the architectural model of the running application
using a set of high-level architecture modification
operations, such as, add/remove a component, add/remove
a constraint, etc. The AAL then ensures that these changes
are correctly applied to the running system and manages the

synchronization and consistency issues associated with
dynamic change.

4. CURRENT STATUS
The Adaptive Systems and Evolutionary Software Group at
MIT (http://ccs.mit.edu/ases) is in the process of
constructing a prototype implementation of the architecture
presented in this paper. Our efforts are focused on the
following three areas:

• designing and implementing the various services of the
evolution engine; experimenting with alternative
approaches towards monitoring, exception diagnosis,
plan selection and plan enactment

• developing prototype versions of the failure mode and
exception type repositories; exploring the extent to
which we can define generic exception detection and
resolution strategies, which can then be combined with a
domain repository to provide application-specific
exception handling

• designing the interfaces of the evolution engine with
the architectural and domain models; understanding
how much information about the system’s structure,
goals and design rationale is necessary to enable self-
evolution; integrating this information with existing
architectural description notations

Our intention is to base the remaining components of our
architecture on existing research prototypes in the areas of
domain and requirements engineering (e.g. [3,4]),
architectural and functional description languages (e.g.
[9,10]) and dynamic reconfiguration (e.g. [6,8,11]).

5. REFERENCES

[1] R. Allen and D. Garlan. A Formal Basis for
Architectural Connection. ACM Trans. on
Software Eng. Method. (TOSEM), 6 (3), July 1997,
pp. 213-249.

[2] W. J. Clancey. Heuristic Classification. Artificial
Intelli gence, 27(3), 1985, pp. 289-350.

[3] A. Dardenne, A. van Lamsweerde and S. Fickas.
Goal-directed requirements acquisition. Science of
Computer Programming, Vol. 20, 1993, pp. 3-50.

[4] C. Dellarocas, J. Lee, T.W. Malone, K. Crowston
and B. Pentland. Using a Process Handbook to
Design Organizational Processes. Proc. AAAI 1994
Spring Symposium on Computational
Organization Design, Stanford, CA, March 21-23,
1994, pp. 50-56.

[5] P. Inverardi and A.L. Wolf. Formal Specification
and analysis of software architectures using the
chemical abstract machine. IEEE Trans. on
Software Eng., 21 (4), Apr. 1995, pp. 373-386.

[6] J. Kramer and J. Magee The Evolving
Philosophers Problem: Dynamic Change
Management. IEEE Trans. on Software Eng., 16
(11), Nov. 1990, pp. 1293-1306.

[7] D.C .Luckham et. al. Specification and Analysis of
Software Architecture using Rapide. IEEE Trans.
on Software Eng., 21 (4), April 1995, pp. 336-355.

[8] K. Moazami-Goudarzi and J. Kramer. Maintaining
Node Consistency in the Face of Dynamic Change.
Proc. of 3rd Int’ l Conf. on Config. Distrib. Systems
(CDS '96), Annapolis, MD, May 1996; pp. 62-69.

[9] N. Medvidovic and R.N. Taylor. A Framework for
Classifying and Comparing Architecture
Description Languages. Proc. 6th European Soft.
Eng. Conf., Zurich, Switzerland, Sept. 22-25,
1997, pp. 60-76.

[10] J.W. Murdock. Modeling Computation: A
Comparative Synthesis of TMK and ZD. Georgia
Inst. Of Tech. College of Computing Technical
Report GIT-CC-98-13, April 1998.

[11] P. Oreizy, N. Medvidovic, and R.N. Taylor.
Architecture-Based Runtime Software Evolution.
Proc. 20th Int’ l Conf. on Soft. Eng. (ICSE'98),
Kyoto, Japan, April 19-25, 1998, pp. 177-186.

[12] D. Raheja. Software system failure mode and
effects analysis (SSFMEA)-a tool for reliabilit y
growth. Proc. of Int’ l Symp. On Reliabilit y and
Maintainabilit y (ISRM’90), Tokyo, Japan, June
1990, pp. 271-277.

