
AAAI-96, pp. 1022 – 1029.

Generating Multiple New Designs From a Sketch

Thomas F. Stahovich, Randall Davis, Howard Shrobe∗
MIT Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

stahov@ai.mit.edu

Abstract

We describe a program called SketchIT that
transforms a single sketch of a mechanical device
into multiple families of new designs. It repre-
sents each of these families with a “BEP-Model,”
a parametric model augmented with constraints
that ensure the device produces the desired be-
havior. The program is based on qualitative con-
figuration space (qc-space), a novel representa-
tion that captures mechanical behavior while ab-
stracting away its implementation. The program
employs a paradigm of abstraction and resynthe-
sis: it abstracts the initial sketch into qc-space
then maps from qc-space to new implementa-
tions.

Introduction

SketchIT is a computer program capable of taking
a single sketch of a mechanical design and generaliz-
ing it to produce multiple new designs. The program
takes as input a stylized sketch of the original design
and a description of the desired behavior and from this
generates multiple families of new designs.

It does this by first transforming the sketch into a
representation that captures the behavior of the origi-
nal design while abstracting away its particular imple-
mentation. The program then maps from this abstract
representation to multiple new families of implemen-
tations. This representation, which we call qualitative
configuration space, is the key tool allowing SketchIT
to perform its tasks.

The program represents each of the new families of
implementations with what we call a behavior ensur-
ing parametric model (“BEP-Model”): a parametric
model augmented with constraints that ensure the ge-
ometry produces the desired behavior.1 Our program
takes as input a single sketch of a device and produces

∗Support for this project was provided by the Advanced
Research Projects Agency of the Department of Defense
under Office of Naval Research contract N00014-91-J-4038.

1A parametric model is a geometric model in which the
shapes are controlled by a set of parameters.

(a) (b)

f1

f2 f3

f4 f5

f6 f7 f8

actuatorpushrod

lever

hook: bimetallic strip

pushrod stop
engagement
pairs:
f1 - f6
f2 - f5
f3 - f4
f7 - f8

Figure 1: (a) One structure for the circuit breaker. (b)
Sketch as actually input to program. Engagement faces
are in bold. The actuator represents the reset motion
imparted by the user. (Labels for engagement pairs:
(f1 f6)=push-pair, (f2 f5)=cam-follower, (f3 f4)=lever-
stop, (f7 f8)=pushrod-stop.)

as output multiple BEP-Models, each of which will pro-
duce the desired behavior.

We use the design of a circuit breaker to illustrate
the program in operation; one implementation is shown
in Figure 1a. In normal use, current flows from the
lever to the hook; current overload causes the bimetal-
lic hook to heat and bend, releasing the lever and inter-
rupting the current flow. After the hook cools, pressing
and releasing the pushrod resets the device.

The designer describes the circuit breaker to
SketchIT with the stylized sketch shown in Figure 1b,
using line segments for part faces and icons for springs,
joints, and actuators. SketchIT is concerned only
with the functional geometry, i.e., the faces where parts
meet and through which force and motion are trans-
mitted (lines f1–f8). The designer’s task is thus to
indicate which pairs of faces are intended to engage
each other. Consideration of the connective geometry
(the surfaces that connect the functional geometry to
make complete solids) is put off until later in the design
process.

The designer describes the desired behavior of a de-
vice to SketchIT using a state transition diagram
(Figure 2b). Each node in the diagram is a list of the
pairs of faces that are engaged and the springs that are

Hook
Cools

Hook
Heats

Reset

1 2

3 Hook
CoolsReset

push-pair
pushrod-stop

hook=cold
(b)(a)

Hook
Heatslever-stop

pushrod-stop
hook=cold

push-pair
pushrod-stop

hook=hot
1 2

3

Figure 2: The desired behavior of the circuit breaker.
(a) Physical interpretation. (b) State transition dia-
gram. In each of the three states, the hook is either at
its hot or cold neutral position.

relaxed. The arcs are the external inputs that drive the
device. Figure 2b, for instance, describes how the cir-
cuit breaker should behave in the face of heating and
cooling the hook and pressing the reset pushrod.

Figure 3 shows a portion of one of the BEP-models
that SketchIT derives in this case. The top of the fig-
ure shows the parameters that define the sloped face
on the lever (f2) and the sloped face on the hook (f5).
The bottom shows the constraints that ensure this
pair of faces plays its role in achieving the overall de-
sired behavior: i.e., moving the lever clockwise pushes
the hook down until the lever moves past the point
of the hook, whereupon the hook springs back to its
rest position. As one example of how the constraints
enforce the desired behavior, the ninth equation, 0
> R14/TAN(PSI17) + H2 12/SIN(PSI17), constrains
the geometry so that the contact point on face f2 never
moves tangent to face f5. This in turn ensures that
when the two faces are engaged, clockwise rotation of
the lever always increases the deflection of the hook.

The parameter values shown in the top of Figure 3
are solutions to the constraints of the BEP-Model,
hence this particular geometry provides the desired
behavior. These specific values were computed by a
program called DesignView, a commercial parametric
modeler based on variational geometry. Using Design-
View, we can easily explore the family of designs de-
fined by this BEP-Model. Figure 4, for example, shows
another solution to this BEP-Model. Because these pa-
rameter values satisfy the BEP-Model, even this rather
unusual geometry provides the desired behavior. As
this example illustrates, the family of designs defined
by a BEP-Model includes a wide range of design so-
lutions, many of which would not be obtained with
conventional approaches.

Figures 3 and 4 show members of just one of the
families of designs that the program produces for the
circuit breaker. SketchIT produces other families of
designs (i.e., other BEP-Models) by selecting different
motion types (rotation or translation) for the compo-
nents and by selecting different implementations for
the pairs of interacting faces. For example, Figure 5
shows a design obtained by selecting a new motion type
for the lever: in the original design the lever rotates,
here it translates. Figure 6 shows an example of se-
lecting different implementations for the pairs of in-

L15 0.142

PHI16 135.013

S13 2.728

H1_11 0.101

H2_12 0.041

PSI17 134.782

f2

f5

H1_11 > 0 H2_12 > 0 S13 > H1_11
L15 > 0 PHI16 > 90 PHI16 < 180
PSI17 > 90 PSI17 < 180
0 > R14/TAN(PSI17) + H2_12/SIN(PSI17)
R14 = SQRT(S13^2 + L15^2 - 2*S13*L15*COS(PHI16))

Figure 3: Output from the program (a BEP-Model).
Top: the parametric model; the decimal number next
to each parameter is the current value of that param-
eter. Bottom: the constraints on the parameters. For
clarity, only the parameters and constraints for faces
f2 and f5 are shown.

f2
f3

f4

f5

f6
f7 f8

f1

Figure 4: Another solution to the BEP-Model of Fig-
ure 3. Shading indicates how the faces might be con-
nected to flesh out the components. This solution
shows that neither the pair of faces at the end of the
lever nor the pair of faces at the end of the hook need
be contiguous.

teracting faces: In the original implementation of the
cam-follower engagement pair, the motion of face f2 is
roughly perpendicular to the motion of face f5; in the
new design of Figure 6, the motions are parallel.

Representation: QC-Space

SketchIT’s approach to its task is use a representa-
tion that captures the behavior of the original design
while abstracting away the particular implementation,
providing the opportunity to select new implementa-
tions.

For the class of devices that SketchIT is concerned
with, the overall behavior is achieved through a se-
quence of interactions between pairs of engagement
faces. Hence the behavior that our representation must
capture is the behavior of interacting faces.

Our search for a representation began with configu-

hook

lever

pushrod

Figure 5: A design variant obtained by replacing the
rotating lever with a translating part.

hook

cam-follower
lever-stop

lever
pivot

pushrod

pushrod-stop

push-pair

}

}

}{

Figure 6: A design variant obtained by using differ-
ent implementations for the engagement faces. The
pushrod is pressed so that the hook is just on the verge
of latching the lever.

ration space (c-space), which is commonly used to rep-
resent this kind of behavior. Although c-space is capa-
ble of representing the behaviors we are interested in,
it does not adequately abstract away their implemen-
tations. We discovered that abstracting c-space into
a qualitative form produces the desired effect; hence
we call SketchIT’s behavioral representation “quali-
tative configuration space” (qc-space).

This section begins with a brief description of c-
space, then describes how we abstract c-space to pro-
duce qc-space.

C-Space

Consider the rotor and slider in Figure 7. If the angle
of the rotor UR and the position of the slider US are as
shown, the faces on the two bodies will touch. These
values of UR and US are termed a configuration of the
bodies in which the faces touch, and can be represented
as a point in the plane, called a configuration space
plane (cs-plane).

If we determine all of the configurations of the bod-
ies in which the faces touch and plot the corresponding
points in the cs-plane (Figure 7), we get a curve, called
a configuration space curve (cs-curve). The shaded re-
gion “behind” the curve indicates blocked space, con-
figurations in which one body would penetrate the
other. The unshaded region “in front” of the curve
represents free space, configurations in which the faces
do not touch.

The axes of a c-space are the position parameters
of the bodies; the dimension of the c-space for a set

US

UR

UR

U
S

Figure 7: Left: A rotor and slider. The slider translates
horizontally. The interacting faces are shown with bold
lines. Right: The c-space. The inset figures show the
configuration of the rotor and slider for selected points
on the cs-curve.

of bodies is the number of degrees of freedom of the
set. To simplify geometric reasoning in c-space, we
assume that devices are fixed-axis. That is, we assume
that each body either translates along a fixed axis or
rotates about a fixed axis. Hence in our world the c-
space for a pair of bodies will always be a plane (a
cs-plane) and the boundary between blocked and free
space will always be a curve (a cs-curve).2 However,
even in this world, a device may be composed of many
fixed-axis bodies, hence the c-space for the device as
a whole can be of dimension greater than two. The
individual cs-planes are orthogonal projections of the
multi-dimensional c-space of the overall device.

Abstracting to QC-Space

C-space is already an abstraction of the original design.
For example, any pair of faces that produces the cs-
curve in Figure 7 will produce the same behavior (i.e.,
the same dynamics), as the original pair of faces. Thus,
each cs-curve represents a family of interacting faces
that all produce the same behavior.

We can, however, identify a much larger family of
faces that produce the same behavior by abstracting
the numerical cs-curves to obtain a qualitative c-space.
In qualitative c-space (qc-space) we represent cs-curves
by their qualitative slopes and the locations of the
curves relative to one another. By qualitative slope we
mean the obvious notion of labeling monotonic curves
as diagonal (with positive or negative slope), vertical,
or horizontal; by relative location we mean relative lo-
cation of the curve end points.3

To see how qualitative slope captures something es-
sential about the behavior, we return to the rotor and

2The c-space for a pair of fixed-axis bodies will always
be 2-dimensional. However, it is possible for the c-space
to be a cylinder or torus rather than a plane. See Section
“Selecting Motion Type” for details.

3We restrict qcs-curves to be monotonic to facilitate
qualitative simulation of a qc-space.

slider. The essential behavior of this device is that the
slider can push the rotor: positive displacement of the
slider causes positive displacement of the rotor, and
vice versa. If the motions of the rotor and slider are
to be related in this fashion, their cs-curve must be
a diagonal curve with positive slope. Conversely, any
geometry that maps to a diagonal curve with positive
slope will produce the same kind of pushing behavior
as the original design.

Their are eight types of qualitative cs-curves, shown
in Figure 10. Diagonal curves always correspond to
pushing behavior; vertical and horizontal curves corre-
spond to what we call “stop behavior,” in which the
extent of motion of one part is limited by the position
of another.

The key, more general, insight here is that for mono-
tonic cs-curves, the qualitative slopes and the relative
locations completely determine the first order dynam-
ics of the device. By first order dynamics we mean
the dynamic behavior obtained when the motion is as-
sumed to be inertia-free and the collisions are assumed
to be inelastic and frictionless.4 The consequence of
this general insight is that qc-space captures all of the
relevant physics of the overall device, and hence serves
as a design space for behavior. It is a particularly con-
venient design space because it has only two properties:
qualitative slope and relative location.

Another important feature of qc-space is that it
is constructed from a very small number of building
blocks, viz., the different types of qcs-curves in Fig-
ure 10. As a consequence we can easily map from
qc-space back to implementation using precomputed
implementations for each of the building blocks. We
show how to do this in Section “Selecting Geometries.”

The SketchIT System
Figure 8 shows a flow chart of the SketchIT system
with its two main processes: abstraction and resynthe-
sis.

Abstraction Process
SketchIT uses generate and test to abstract the ini-
tial design into one or more working qc-spaces, i.e., qc-
spaces that provide the behavior specified in the state
transition diagram.

The generator produces multiple candidate qc-
spaces from the sketch, each of which is a possible
interpretation of the sketch. The simulator computes
each candidate’s overall behavior (i.e., the aggregate
behavior of all of the individual interactions), which
the tester then compares to the desired behavior.

The generator begins by computing the numerical
c-space of the sketch, then abstracts each numerical

4“Inertia-free” refers to the circumstance in which the
inertia terms in the equations of motion are negligible com-
pared to the other terms. One important property of
inertia-free motion is that there are no oscillations. This
set of physical assumptions is also called quasi-statics.

cs-curve into a qcs-curve, i.e., a curve with qualitative
slope and relative location.

As with any abstraction process, moving from spe-
cific numerical curves to qualitative curves can intro-
duce ambiguities. For example, in the candidate qc-
space in Figure 9 there is ambiguity in the relative lo-
cation of the abscissa value (E) for the intersection be-
tween the push-pair curve and the pushrod-stop curve.
This value is not ordered with respect to B and C, the
abscissa values of the end points of the lever-stop and
cam-follower curves in the hook-lever qcs-plane: E may
be less than B, greater than C, or between B and C.5

Physically, point E is the configuration in which the
lever is against the pushrod and the pushrod is against
its stop; the ambiguity is whether in this particular
configuration the lever is (a) to the left of the hook
(i.e., E < B) (b) contacting the hook (i.e., B < E < C),
or (c) to the right of the hook (i.e., C < E). When the
generator encounters this kind of ambiguity, it enumer-
ates all possible interpretations, passing each of them
to the simulator.

The relative locations of these points are not am-
biguous in the original, numerical c-space. Neverthe-
less, SketchIT computes all possible relative loca-
tions, rather than taking the actual locations directly
from the numerical c-space. One reason for this is that
it offers one means of generalizing the design: The orig-
inal locations may be just one of the possible working
designs; the program can find others by enumerating
and testing all the possible relative locations.

A second reason the program enumerates and tests
all possible relative locations is because this enables it
to compensate for flaws in the original sketch. These
flaws arise from interactions that are individually cor-
rect, but whose global arrangement is incorrect. For
example, in Figure 1b the interaction between the lever
and hook, the interaction between the pushrod and
the lever, and the interaction between the pushrod
and its stop may all be individually correct, but the
pushrod-stop may be sketched too far to the left, so
that the lever always remains to the left of the hook

5We do not consider the case where E = B or E = C.

QCS
Generator

Simulator

Tester
Motion
Types

Interaction
Library

OK
FAIL

Parametric
 Models &
 Constraints

 Sketch
 & Desired
Behavior

QC-Space

Figure 8: Overview of SketchIT system.

ca
m

-fo
llo

w
er

le
ve

r-
sp

rin
g

hook=hot

hook=cold

le
ve

r-
st

op

Lever Angle

Hook
Position

Pushrod
Position

Lever Angle

le
ve

r-
sp

rin
g

motion limit

pushrod-stop

pushrod-spring

push-pair

A B C D A E D

Figure 9: Candidate qc-space for the circuit breaker.

(i.e., the global arrangement of these three interactions
prevents the lever from actually interacting with the
hook.) By enumerating possible locations for the inter-
section between the pushrod-stop and push-pair qcs-
curves, SketchIT will correct this flaw in the original
sketch.

Currently, the candidate qc-spaces the generator
produces are possible interpretations of ambiguities in-
herent in the abstraction. The simulator and tester
identify which of these interpretations produce the de-
sired behavior. We are also working on repairing more
serious flaws in the original sketch, as we describe in
the Future Work section.

SketchIT employs an innovative qualitative simu-
lator designed to minimize branching of the simulation.
See [12] for a detailed presentation of the simulator.

Re-Synthesis

In the resynthesis process, the program turns each of
the working qc-spaces into multiple families of new de-
signs. Each family is represented by a BEP-Model.

Qc-space abstracts away both the motion type of
each part and the geometry of each pair of interact-
ing faces. Hence there are two steps to the resynthesis
process: selecting a motion type for each part and se-
lecting a geometry for each pair of engagement faces.

Selecting Motion Type SketchIT is free to se-
lect a new motion type for each part because qc-space
abstracts away this property. More precisely, qc-space
abstracts away the motion type of parts that translate
and parts that rotate less than a full revolution.6

Changing translating parts to rotating ones, and vice

6Qc-space cannot abstract away the motion type of
parts that rotate more than a full revolution because the
topology of the qc-space for such parts is different: If one of
a pair of parts rotates through full revolutions, its motion
will be 2π periodic, and what was a plane in qc-space will
become a cylinder. (If both of the bodies rotate through
full revolutions the qc-space becomes a torus.) Hence, if
a pairwise qc-space is a cylinder or torus, the design must
employ rotating parts (one for a cylinder, two for a toroid)
rather than translating ones.

versa, permits SketchIT to generate a rich assort-
ment of new designs.

Selecting Geometries The general task of translat-
ing from c-space to geometry is intractable ([1]). How-
ever, qc-space is carefully designed to be constructed
from a small number of basic building blocks, 40 in all.
The origin of 32 of these can be seen by examining Fig-
ure 10: there are four choices of qualitative slope; for
each qualitative slope there are two choices for blocked
space; and the qc-space axes q1 and q2 can represent
either rotation or translation. The other 8 building
blocks represent interactions of rotating or translating
bodies with stationary bodies.

Because there are only a small number of basic build-
ing blocks, we were able to construct a library of im-
plementations for each building block. To translate
a qc-space to geometry, the program selects an entry
from the library for each of the qcs-curves.

q1

q2

A B C D E F G H

Figure 10: For drawing convenience, qcs-curves are
shown as straight line segments; they can have any
shape as long as they are monotonic.

Each library entry contains a pair of parameterized
faces and a set of constraints that ensure that the faces
implement a monotonic cs-curve of the desired slope,
with the desired choice of blocked space. Each library
entry also contains algebraic expressions for the end
point coordinates of the cs-curve.

For example, Figure 11 shows a library entry for
qcs-curve F in Figure 10, for the case in which q1 is
rotation and q2 is translation. For the corresponding
qcs-curve to be monotonic, have the correct slope, and
have blocked space on the correct side, the following
ten constraints must be satisfied:

w > 0 L > 0 h > 0
s < h r > h π/2 < φ ≤ π
ψ > 0 ψ < arcsin(h/r) + π/2

arccos(h/r) + arccos(L
2+r2−s2

2Lr
) < π/2

r = (s2 + L2 − 2sL cos(φ))1/2

The end point coordinates of the cs-curve are:

θ1 = arcsin(h/r) x1 = −r cos(θ1)
θ2 = π − arcsin(h/r) x2 = −r cos(θ2)

Figure 12 shows a second way to generate qcs-curve
F, using the constraints:
h1 > 0 h2 > 0
s > h1 L > 0
π/2 < φ < π π/2 < ψ < π

0 > r/ tan(ψ) + h2/ sin(ψ) r = (s2 + L2 − 2sL cos(φ))1/2

The end point coordinates of this cs-curve are:

ψ

θ

φ
r

s

L

h

w

x

Figure 11: The two faces are shown as thick lines. The
rotating face rotates about the origin; the translating
face translates horizontally. θ is the angle of the rotor
and x, measured positive to the left, is the position of
the slider.

ψ
θ

φr

s

L

h1

x h2

Figure 12: The two faces are shown as thick lines. The
rotating face rotates about the origin; the translating
face translates horizontally. θ is the angle of the rotor
and x, measured positive to the left, is the position of
the slider.

θ1 = − arcsin(h2/r)
x1 = −r cos(θ1) + h2/ tan(ψ)

θ2 = arcsin(h1/s) + arccos(s
2+r2−L2

2sr)
x2 = −s cos(arcsin(h1/s)) − h1/ tan(ψ)

In the first of these designs the motion of the slider
is approximately parallel to the motion of the rotor,
while in the second the motion of the slider is approxi-
mately perpendicular to the motion of the rotor.7 The
two designs thus represent qualitatively different im-
plementations for the same qcs-curve.

To generate a BEP-Model for the sketch, we se-
lect from the library an implementation for each qcs-
curve. For each selection we create new instances of
the parameters and transform the coordinate systems
to match those used by the actual components. The
relative locations of the qcs-curves in the qc-space are
turned into constraints on the end points of the qcs-
curves. We assemble the parametric geometry frag-
ments and constraints of the library selections to pro-
duce the parametric model and constraints of the BEP-
Model.

Our library contains geometries that use flat faces,
although we have begun work on using circular faces.8

We have at least one library entry for each of the 40
kinds of interactions. We are continuing to generate
new entries.

SketchIT is able to produce different BEP-Models
(i.e., different families of designs) by selecting different

7The first design is a cam with offset follower, the second
is a cam with centered follower.

8Circular faces are used when rotors act as stops.

library entries for a given qcs-curve. For example, Fig-
ure 4 shows a solution to the BEP-Model SketchIT
generates by selecting the library entry in Figure 12
for the cam-follower qcs-curve. Figure 6 shows a so-
lution to a different BEP-Model SketchIT generates
by selecting the library entry in Figure 11 for the cam-
follower. As these examples illustrate, the program
can generate a wide variety of solutions by selecting
different library entries.

Refining a Concept
As we have noted, the constraints in each BEP-Model
represent the range of values that the geometric pa-
rameters can take on, and still provide the behavior
originally specified. The constraints thus define an en-
tire family of solutions a designer can explore in order
to adapt an initial conceptual design to meet additional
design requirements.

We illustrate this with a new example concerning
the design of the yoke and rotor device shown in Fig-
ure 13a. Continuous counter-clockwise rotation of the
rotor causes the yoke to oscillate left and right with a
brief dwell between each change in direction.

A

B

1

2

3

(a) (b)

Figure 13: The yoke and rotor device. (a) Structure.
(b) Stylized sketch. Each of the rotor faces is intended
to engage each of the yoke faces.

We describe the device to SketchIT with the styl-
ized sketch in Figure 13b. The desired behavior is to
have each of the rotor blades engage each of the yoke
faces in turn. From this input SketchIT generates
the BEP-Model in Figure 14.

The designer now has available the large family of
designs specified by the BEP-model and can at this
point begin to specify additional design requirements.

Imagine that one requirement is that all strokes have
the same length. A simple way to achieve this is to
constrain the yoke and rotor to be symmetric. We
do this by adding additional constraints to the BEP-
Model, such as the following which constrain the rotor
blades to be of equal length and have equal spacing:
R1 = R2 = R3, AOFF1−AOFF2 = 120◦, AOFF3−
AOFF1 = 120◦

Imagine further that all strokes are required to be
1.0cm long. We achieve this by adding the additional
constraint:9 LM29− LM27 = 1.0

9LM29 and LM27 are variables that SketchIT assigns
to the extreme positions of the yoke. We obtain the names
of these variables by using a graphical browser to inspect
SketchIT’s simulation of the device. Because we have

PHI <= 180 PHI > 90 R > H
H > 0 L > 0 W > 0
PSI < 0 PSI < ASIN(H/R)+90
ACOS(H/R) + ACOS((L^2 + R^2 - S^2)/(2*L*R)) < 90

Figure 14: Sample constraints from the yoke and ro-
tor’s BEP-Model; For simplicity, new variable names
have been substituted for sets of variables constrained
to be equal. For example, because all three rotor blades
are constrained to have equal length, R replaces R1,
R2, and R3.

Finally, imagine that the dwell is required to be 40◦,
i.e., between each stroke, the rotor turns 40◦ while the
yoke remains stationary. We can achieve this by adding
one additional constraint: LMG− LM8 = 40◦

We can now invoke DesignView to find a solution
to this augmented set of constraints; the solution will
be guaranteed to produce both the designed behavior
and the desired performance characteristics. We have
been able to do this design refinement simply by adding
additional constraints to the BEP-Model.

RELATED WORK
Our techniques can be viewed as a natural complement
to the bond graph techniques of the sort developed in
[15]. Our techniques are useful for computing geome-
try that provides a specified behavior, but because of
the inertia-free assumption employed by our simula-
tor, our techniques are effectively blind to energy flow.
Bond graph techniques, on the other hand, explicitly
represent energy flow but are incapable of representing
geometry.

Our techniques focus on the geometry of devices
which have time varying engagements (i.e., variable
kinematic topology). Therefore, our techniques are
complementary to the well know design techniques for
fixed topology mechanisms, such as the gear train and
linkage design techniques in [3].

There has been a lot of recent interest in automat-
ing the design of fixed topology devices. A common
task is the synthesis of a device which transforms a
specified input motion to a specified output motion
([10], [14] [16]). For the most part, these techniques
synthesize a design using an abstract representation
of behavior, then use library lookup to map to im-
plementation. However, because our library contains
interacting faces, while theirs contain complete compo-
nents, we can design interacting geometry, while they
cannot. Like SketchIT, these techniques produce de-
sign variants.

To construct new implementations (BEP-Models),
we map from qc-space to geometry. [8] and [1] have
also explored the problem of mapping between c-space
and geometry. They obtain a geometry that maps to

constrained the yoke and the rotor to be symmetric, all
strokes have the same length.

a desired c-space by using numerical techniques to di-
rectly modify the shapes of parts. However, we map
from qc-space to geometry using library lookup.

Our work is similar in spirit to research exploring
the mapping from shape to behavior. [9] uses kine-
matic tolerance space (an extension of c-space) to ex-
amine how variations in the shapes of parts affect their
kinematic behavior. Their task is to determine how a
variation in shape affects behavior, ours is to determine
what constraints on shape are sufficient to ensured the
desired behavior. [5] examines how much a single geo-
metric parameter can change, all others held constant,
without changing the place vocabulary (topology of c-
space). Their task is to determine how much a given
parameter can change without altering the current be-
havior, ours is to determine the constraints on all the
parameters sufficient to obtain a desired behavior.

More similar to our task is the work in [6]. They de-
scribe an interactive design system that modifies user
selected parameters until there is a change in the place
vocabulary, and hence a change in behavior. Then,
just as we do, they use qualitative simulation to de-
termine if the resulting behavior matches the desired
behavior. They modify c-space by modifying geom-
etry, we modify qc-space directly. They do a form of
generalization by generating constraints capturing how
the current geometry implements the place vocabulary;
we generalize further by constructing constraints that
define new geometries. Finally, our tool is intended to
generate design variants while theirs is not.

Our work builds upon the research in qualitative
simulation, particularly, the work in [4], [7], and [11].
Our techniques for computing motion are similar to
the constraint propagation techniques in [13].

FUTURE WORK
As Section “Abstraction Process” described, the cur-
rent SketchIT system can repair a limited range of
flaws in the original sketch. We are continuing to work
on techniques for repairing more serious kinds of flaws.

Because there are only two properties in qc-space
that matter — the relative locations and the qualita-
tive slopes of the qcs-curves, to repair a sketch, even
one with serious flaws, the task is to find the correct
relative locations and qualitative slopes for the qcs-
curves.

We can do this using the same generate and test
paradigm described earlier, but for realistic designs
this search space is still far too large. We are explor-
ing several ways to minimize search such as debugging
rules that examine why a particular qc-space fails to
produce the correct behavior, based on its topology.
The desired behavior of a mechanical device can be
described by a path through its qc-space, hence the
topology of the qc-space can have a strong influence on
whether the desired path (and the desired behavior) is
easy, or even possible. For example, the qc-space may
contain a funnel-like topology that “traps” the device,

preventing it from traversing the desired path. If we
can diagnose these kinds of failures, we may be able
to generate a new qc-space by judicious repair of the
current one.

We are also working to expand the class of devices
that SketchIT can handle. Currently, our techniques
are restricted to fixed-axis devices. Although this con-
stitutes a significant portion of the variable topology
devices used in actual practice (See [11]), we would
like extend our techniques to handle particular kinds
of non-fixed-axis devices. We are currently working
with a commonly occurring class of devices in which a
pair of parts has three degrees of freedom (rather than
two) but the qc-space is still tractable.

We are beginning to explore how our techniques can
be applied to other problem domains. For example,
we believe that the BEP-Model will be useful for kine-
matic tolerance analysis (see [2] for an overview of tol-
erancing). Here the task is to determine if a given set
of variations in the shapes and locations of the parts
of a device will compromise the desired behavior.

We have also begun to explore design rationale cap-
ture. We believe that the constraints of the BEP-
Model will be a useful form of design documentation,
serving as a link between the geometry and the desired
behavior. The constraints might, for example, be used
to prevent subsequent redesign efforts from modifying
the geometry in a way that compromises hard won de-
sign features in the original design.

CONCLUSION
This work is clearly at an early stage; we have yet to
determine how well our techniques will scale to design
problems that are more complex than the working ex-
amples reported here. Even so, we have successfully
used the program on three design problems: the cir-
cuit breaker, the yoke and rotor, and the firing mech-
anism from a single action revolver. We have demon-
strated that SketchIT can generate multiple families
of designs from a single sketch and that it can repair a
limited range of flaws in the initial design.

One reason this work is important is that sketches
are ubiquitous in design. They are a convenient and
efficient way to both capture and communicate de-
sign information. By working directly from a sketch,
SketchIT takes us one step closer to CAD tools that
speak the engineer’s natural language.

Given the intimate connection between shape and
behavior, design of mechanical artifacts is typically
conceived of as the modification of shape to achieve be-
havior. But if changes in shape are attempts to change
behavior, and if the mapping between shape and be-
havior is quite complex [1], then, we suggest, why not
manipulate a representation of behavior? Our qualita-
tive c-space is just such a representation. We suggest
that it is complete and yet offers a far smaller search
space. It is complete because any change in shape will
produce a c-space that maps to a new qc-space differing

from the original by at most changes in relative loca-
tions and qualitative slopes. Qc-space is far smaller
precisely because it is qualitative: often many changes
to the geometry map to a single change in qc-space. Fi-
nally, it is an appropriate level of abstraction because
it isolates the differences that matter: changes in the
relative locations and qualitative slopes of a qc-space
are changes in behavior.

REFERENCES
[1] Caine, M. E., 1993, “The Design of Shape from Mo-
tion Constraints,” MIT AI Lab. TR 1425, September.
[2] Chase, K. W. and Parkinson, A. R., 1991, “A Sur-
vey of Research in the Application of Tolerance Analy-
sis to the Design of Mechanical Assemblies,” Research
in Engineering Design, Vol. 3, pp. 23–37.
[3] Erdman, A. and Sandor, G., 1984, Mechanism De-
sign: Analysis and Synthesis, Vol. 1, Prentice-Hall,
Inc., NJ.
[4] Faltings, B., 1990, “Qualitative Kinematics in
Mechanisms,” JAI, Vol. 44, pp. 89–119.
[5] Faltings, B., 1992, “A Symbolic Approach to Qual-
itative Kinematics,” JAI, Vol. 56, pp. 139–170.
[6] Faltings, B. and Sun, K., 1995, “FAMING: Sup-
porting Innovative Mechanism Shape Design,” CAD.
[7] Forbus, K., Nielsen, P., and Faltings, B.,
1991, “Qualitative Spatial Reasoning: The CLOCK
Project,” Northwestern Univ., The Institute for the
Learning Sciences, TR #9.
[8] Joskowicz, L. and Addanki, S., 1988, “From Kine-
matics to Shape: An Approach to Innovative Design,”
Proceedings AAAI-88, pp. 347–352.
[9] Joskowicz, L., Sacks, E., and Srinivasan, V., 1995,
“Kinematic Tolerance Analysis,” 3rd ACM Symposium
on Solid Modeling and Applications, Utah.
[10] Kota, S. and Chiou, S., 1992, “Conceptual Design
of Mechanisms Based on Computational Synthesis and
Simulation of Kinematic Building Blocks,” Research in
Engineering Design, Vol. 4, #2, pp. 75–88.
[11] Sacks, E. and Joskowicz, L., 1993, “Automated
Modeling and Kinematic Simulation of Mechanisms,”
CAD, Vol. 25, #2, Feb., pp. 106–118.
[12] Stahovich, T., 1996, “SketchIT: a Sketch In-
terpretation Tool for Conceptual Mechanical Design,”
MIT AI Lab. TR 1573, March.
[13] Stallman, R. and Sussman, G., 1976, “Forward
Reasoning and Dependency-Directed Backtracking in
a System for Computer-Aided Circuit Analysis,” MIT
AI Lab. TR 380.
[14] Subramanian, D., and Wang, C., 1993, “Kinematic
Synthesis with Configuration Spaces,” The 7th In-
ternational Workshop on Qualitative Reasoning about
Physical Systems, May, pp. 228–239.
[15] Ulrich, K, 1988, “Computation and Pre-
parametric Design,” MIT AI Lab. TR-1043.
[16] Welch, R. V. and Dixon, J. R., 1994, “Guiding
Conceptual Design Through Behavioral Reasoning,”
Research in Engineering Design, Vol. 6, pp. 169–188.

