
Dynamic Authoring of Audio with Linked Scripts
Hijung Valentina Shin

MIT CSAIL
hishin@mit.edu

Wilmot Li
Adobe Research

wilmotli@adobe.com

Frédo Durand
MIT CSAIL

fredo@mit.edu

ABSTRACT
Speech recordings are central to modern media from podcasts
to audio books to e-lectures and voice-overs. Authoring these
recordings involves an iterative back and forth process between
script writing/editing and audio recording/editing. Yet, most
existing tools treat the script and the audio separately, making
the back and forth workflow very tedious. We present Voice
Script, an interface to support a dynamic workflow for script
writing and audio recording/editing. Our system integrates the
script with the audio such that, as the user writes the script or
records speech, edits to the script are translated to the audio
and vice versa. Through informal user studies, we demonstrate
that our interface greatly facilitates the audio authoring process
in various scenarios.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces - Graphical user interfaces

Author Keywords
Audio recording; Scripting; Transcript-based editing;
Voice-over; Dynamic workflows

INTRODUCTION
Audio recordings of speech are prevalent across a variety of
media, including podcasts, audio books, e-lectures and voice-
overs for narrated videos. Creating such audio recordings
typically involves three main tasks: writing a script, recording
the speech, and editing the recorded audio. While authors
typically start by writing at least a rough script of what they
plan to record, in practice, the process of creating the final
audio rarely involves a simple linear progression through these
steps. A more common workflow is to move back and forth
between writing or editing the script, recording or improvising
subsets of the speech, and editing together portions of multiple
recorded takes.

For example, consider the case of recording the audio for
an online lecture. After writing some notes to use as a rough
script, the lecturer records a few takes and listens to the speech.
She decides that one of the concepts requires a more detailed
explanation, so she edits her notes, re-records the relevant

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the historical ap-
proach.
• License: The author(s) retain copyright, but ACM receives an exclusive publication
license.
• Open Access: The author(s) wish to pay for the work to be open access. The addi-
tional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement assuming it is
single spaced.
Every submission will be assigned their own unique DOI string to be included here.

speech, and merges the new recording into the final audio.
Such updates may also happen in response to feedback from
viewers after the lecture is published online. Similarly, when
authoring a voice-over for a video, the initial recording may
not align perfectly with the visual footage (e.g., some spoken
explanations may be too short or too long for the correspond-
ing video clips). In a collaborative scenario, an editor could
request edits to the initial recording of a narrator. In each
case, users may need to modify the script and re-record certain
sections of the speech. In general, the process of recording and
editing the speech together often reveals issues that require
going back to edit portions of the script.

Unfortunately, most existing tools for authoring speech record-
ings do not facilitate this back and forth workflow. Typically,
users write and edit the script in a text editing environment
and then record and edit the audio in a standard waveform
editing tool. The central issue is that the written script and
the recorded audio are treated as completely separate entities.
This separation introduces several sources of friction in the
workflow. When the user records the speech, any deviations
from the initial written text (either intentional or not) are not re-
flected in the script. Evaluating the recordings to decide what
takes to choose or what script modifications are necessary re-
quires careful scrubbing through the audio to find the relevant
parts. In addition, once the user chooses a particular version of
the speech to include, the script no longer matches the speech,
which complicates any subsequent edits. Finally, if the user
decides to modify a portion of the script, she must figure out
what subset to re-record to ensure that the new recording can
be merged in without creating audio artifacts (e.g., replacing
a single word in a recorded sentence is hard to do since the
word may not blend seamlessly with the adjacent words).

To address these challenges, we present Voice Script an inter-
face that supports script writing, speech recording, and audio
editing in a unified way. Our key idea is to maintain a so-
called master-script that is linked to the audio and always
reflects the current state of the project, including unrecorded,
recorded, improvised and edited portions of the script. We use
automatic speech recognition to transcribe the audio into text,
and solve the task of combining together multiple recordings
and syncing audio with the script like a text differencing and
merging problem. To help users maintain a consistent master-
script, Voice Script provides semi-automated tools for merging
recorded takes into the master-script and visualizations that
indicate what portions of the script need to be recorded (or
re-recorded) in response to edits to the script. The combina-
tion of these features enables users to move back and forth
between script editing, speech recording and audio editing in
a seamless fashion.

We used our interface to create audio recordings in a vari-
ety of workflows, including recording a fairly detailed script,
recording without any script, and a collaborative scenario be-
tween two users. We also conducted informal evaluations
where users created their own audio recordings to summarize
technical articles. In another small comparative study, users
compared our interface to a state-of-the-art text-based audio
editing tool for the task of creating an audio recording from
multiple raw recordings. The results demonstrate that our
interface supports a wide range of workflows and enables first-
time users to easily author speech recordings. User feedback
suggests that the integration of script and audio through the
master-script greatly facilitates the authoring process.

RELATED WORK
Adobe Story [3], FinalDraft [7] and Celtx [6] are examples
of professional software dedicated to script writing. They
support collaboration, automatic formatting, navigation and
planning for future production, but they treat the script as a text
document that is essentially separate from the recordings. In
fact, in our formative interviews of lay and professional audio
producers, we found that many of them use general-purpose
document editors like Google Docs [9] or Microsoft Word
[12] to prepare their scripts.

At the recording and editing stage, many users rely on com-
mercial digital audio workstations, like Adobe Audition [1],
Avid ProTools [5], GarageBand [8] and Audacity [4]. Video
editing software such as Adobe Premiere [2] or ScreenFlow
[13] are also commonly used. These tools allow users to edit
audio by manipulating waveforms in a multi-track timeline
interface. They also provide a wide variety of low-level signal
processing functions. However, since they are designed to
serve as general-purpose audio production systems, they in-
clude many features that are not directly relevant for creating
audio narratives whose main content is speech. Hindenburg
Systems [10] develops tools that are specifically targeted for
audio narratives. Still, they are primarily concerned only with
the audio and they do not deal with the script directly.

Recently, several researchers have explored using audio tran-
scripts to support text-based navigation and editing of audio.
Whittaker and Amento [24] demonstrate that users prefer edit-
ing voicemail through its transcript instead of its waveform. In-
spired by similar intuition, Casares et al. [15] and Berthouzoz
et al. [14] enable video navigation and editing through time-
aligned transcripts. Rubin et al. [23] extend this approach
to audio narratives and propagate edits in the transcript text
to the corresponding speech track. These systems all focus
on editing pre-recorded audio via its transcript, whereas we
also consider how script edits influence the recording process
and how audio edits also evolve the script. [22] Our work
also takes advantage of text-based navigation and editing, but
unlike these systems, we support a dynamic workflow where
both the audio recordings and the underlying script can be
continuously updated.

CREATING SPEECH RECORDINGS
To learn about current practices and challenges for creating
speech recordings, we interviewed ten professional lecturers

and two video producers who regularly create audio recordings
for online lectures that are published on online platforms,
including YouTube, Udacity, EdX and MITx. The following
are several key insights we gained from the interviews.

Scripts are prevalent. All of the lecturers prepared writ-
ten materials about what they were going to say before they
started recording. The format and level-of-details of these
scripts varied. For instance, one lecturer used his lecture slides
containing images and a list of bullet points as his script. An-
other lecturer typed a thorough word-for-word transcription of
what he was going to say in a text document. Another person
used handwritten notes as an outline. In all cases, while they
were recording, they kept the scripts within their view and
depended on them to guide their speech.

Recordings deviate from the script. In many cases, the ini-
tial scripts were rough or incomplete. Only two out of the
ten lecturers we interviewed prepared a word-for-word script
before recording. The majority used lecture slides or handwrit-
ten notes containing a rough outline of what they were going
to record. They used these outlines as guides and improvised
most of the actual recorded speech. One of the lecturers did an
initial recording from the outline, and then used that to flesh
out the script before recording additional takes. Even when a
word-for-word script was prepared beforehand, the recording
often did not follow the script exactly. While recording, the
speaker sometimes remembered and added more details, or
found a more natural way of saying a written sentence. In
some cases, major script changes were made long after the
initial recording was created. For example, one lecturer noted
that he periodically revisited and re-recorded parts of lectures
to add up-to-date examples. The result is that recorded speech
almost always differs either slightly or significantly from the
initial written script. While a few people edited the written
script to resolve these discrepancies, in most cases the script
and recorded audio end up in inconsistent states. This incon-
sistency makes it difficult for users to update the recording.
They cannot simply read and edit the script because it may not
accurately represent the recorded audio. Moreover, changing
any portion of the recording requires identifying the appropri-
ate subset of speech to re-record such that the new recording
can be merged into the final track with no noticeable seams at
the take boundaries.

Final track includes multiple recordings. As mentioned
above, users almost always record multiple takes of the speech.
Thus, assembling the final track typically requires merging
these takes together using audio editing software. Many users
noted that aligning the waveforms of multiple takes, finding
the best take, and then cutting and joining them seamlessly
were very time consuming and tedious tasks.

VOICE SCRIPT AUTHORING INTERFACE
Based on these observations, we developed Voice Script, a
speech authoring interface that supports script writing, speech
recording and audio editing in a single unified workflow. Our
interface is built on three key features.

Text-based representation of audio. We build on previous
work [15, 24, 14, 23] that demonstrates the benefits of text-

u User starts by
writing an outline.
Unrecorded text is
displayed in grey.

v User’s audio is
transcribed in real-
time to display a
verbatim transcript.

w Transcript are
aligned with the
master-script.

y Alternative takes
of similar sentences
are grouped. User
can compare and
select.

{ Segments
accepted to the
final track are
displayed in dark.

Missing:
In script / Not Recorded

x Missing /
improvised
segments are
color-coded.

z User can accept an audio segment to insert it in the final track.

Improvised:
Not in script / Recorded

Figure 1. The Voice Script interface. The master-script view on the left shows the current state of the project, including both recorded and unrecorded
text. On the right, there are individual tabs for each recording, along with an All tab that shows a summary of all takes.

based representations of spoken audio for navigation and edit-
ing. Voice Script uses automatic speech recognition to tran-
scribe audio recordings in realtime and represent each take
with a verbatim transcript. As with previous systems, edits
to these text transcripts are automatically propagated to the
audio, which facilitates simple audio editing tasks.

Master-script view. To help users manage the relationship
between scripted text and recorded speech, we introduce the
notion of a master-script that shows a unified view of both un-
recorded portions of the script and recorded speech included in
the final track. By representing and visualizing both recorded
and unrecorded text, the master-script provides a complete,
readable view of the current state of the project that evolves
as the user records and adds new takes to the final track, edits
recorded text, or adds/modifies text that must be recorded.

Merge process. Since recorded text typically differs from the
script, Voice Script provides an interface for merging changes
into the master-script. The fact that we represent all recorded
audio as text allows us to use standard text differencing to
identify conflicts and execute merges. One key difference be-
tween our scenario and standard text merging is that recorded
audio cannot simply be cut and merged into the master-script
at any arbitrary word boundary. In many cases, the temporal
gap between spoken words is not big enough to produce a
seamless edit in the final track. Our merge interface takes this
into account and helps the user execute merges that are likely
to be artifact-free.

Typical Usage Scenarios
The rest of this section describes our interface through typical
usage scenarios of how users might create an audio recording.

One-pass authoring. Typically, the user begins by writing
an outline of points to record in the master-script. The text
appears in light grey to indicate that these parts have not been
recorded yet (Figure 1 left). At this stage, the master-script is
like an ordinary, editable text document.

Once the user starts recording, the audio is transcribed in real
time and verbatim text corresponding to each take appears in
a separate transcript tab (Figure 1 right). Each transcript is
time-aligned with the corresponding recording, so the user can
quickly navigate to specific parts of the audio by clicking on a
word in the transcript.

The next task is to cut and merge parts of the recording into
the final track. The user needs to compare the recording to
the original outline, replace parts of the outline with the corre-
sponding recording, and/or insert improvised speech. To this
end, we provide a compare-view that aligns segments of the
recording transcript to corresponding segments in the master-
script and shows them side-by-side. To indicate improvised
portions of the audio, any segment of the transcript that does
not correspond to any part of the master-script is highlighted in
yellow. To indicate missing portions in the audio, any segment
of the master-script that does not correspond to any part of the
transcript is highlighted in red. To view more detailed discrep-
ancies between the script and recording, the user can enable
a diff-view that displays per-word differences using standard
track change markers (i.e., strikethroughs for missing words
and highlighting for added words).

To add recorded audio to the final track, the user can accept
any portion of the recording by clicking a button next to the
appropriate transcript segment. If there is a corresponding
segment in the master-script, the accepted transcript segment
replaces it. If there is no corresponding master-script segment,
the accepted transcript segment is simply inserted into the
master-script. Within the master-script, accepted segments
appear in black to indicate that these are recorded portions of
text that have been added to the final track.

If the user records more than one take, the user has to compare
and select between multiple versions of the same segment. In
addition to each of the transcript tabs, the all tab provides a
summary of all of the takes. For each segment in the master
script, this tab displays all the corresponding transcript seg-

ments from all of the audio takes. A drop-down button next to
a transcript segment indicates that there are multiple versions
(or takes) of the segment. Clicking on the button opens a
list showing the alternative versions (Figure 1-5). The user
can listen to any of these takes and select one without having
to search through individual takes. Finally, the user has to
determine which parts of the outline is still missing. When
the all tab is in focus, any part of the master-script that has
not been recorded in any of the takes is highlighted in red. In
this way, the user can tell at a glance what has already been
recorded and what still needs to be recorded. All of the dark
(i.e. recorded) text in the master-script represents the current
state of the final audio track; all of the grey text has not been
recorded or is recorded but the author has not yet accepted it
into the final track.

Iterative and collaborative authoring. The final recording is
rarely produced in a single pass. Instead, the user often iterates
back and forth between editing the master-script, recording
audio takes, and merging audio segments into the final track. It
is also common for multiple people to collaborate on a single
voice-over. For example, a narrator who records the voice-
over may work with others who write/edit the script, or several
people may work on a recording with multiple voices.
During any point in the process, users can edit the master-script
like a text document. For example, a user can simply insert
more text to record or make changes to unrecorded text to
flesh out the original outline. These edits can include verbatim
script as well as comments or stage directions (e.g., "include
examples" or "speak softer"). A user can also edit or delete
recorded portions of the text. Deleting recorded text from the
master-script will remove the corresponding portion of the au-
dio from the final track. Altering recorded text can introduce
audio artifacts (e.g., when a word is deleted mid-sentence),
or it could mean that the corresponding text no longer match
the underlying audio. When the user edits a recorded word
without completely deleting it, the word is flagged as dirty
(italicized and marked blue) to remind the user to review or
re-record relevant portions. Finally, the user has an option to
correct the transcription of recorded words without affecting
the underlying audio or flagging it as dirty.
In both iterative and collaborative editing, users need to iden-
tify (1) new content that needs to be recorded for the first
time, and (2) existing content that needs to be re-recorded af-
ter the script edits. To visualize this information, Voice Script
keeps track of per-word metadata about whether a word is
unrecorded (grey), recorded and unedited (black), or recorded
and edited (blue italics). For collaboration, this metadata is
passed between users with the script and recordings. The
visualization and the text-based editing/merging interface fa-
cilitates audio editing even when different persons work on
different parts of editing the script, recording the audio and/or
re-arranging the recorded audio.

Other workflows. One key benefit of our interface is that it
supports a wide range of workflows for different users and
scenarios. For instance, instead of starting with a written
outline, the user can begin with an empty master-script, start
recording, and then use the initial recording as an outline.
The user can also record the entire script in a single take, or

Master-script

Audio
Transcript

Most existing tools treat script and audio completely separate.
Most Existing tools typically treat the script and the audio
as completely separate entities

Figure 2. In the diff-view, users can view detailed, per-word discrepan-
cies between the master-script and audio transcript.

work on a single section at a time. To create the voice-over
for the supplementary video to this paper, two of the paper
authors collaborated on Voice Script. We also look at various
workflows in our informal user evaluation.

ALGORITHMIC METHODS
Our authoring interface relies on audio transcription and text
alignment algorithms to link the master-script to the audio
recordings.

Transcribing the audio recording
We use IBM Speech to Text Service [11] to obtain a verbatim
transcript of each audio recording in real-time. The service
outputs a time stamp for each word indicating its start and
end time within the audio. It also segments the transcript into
utterances where each utterance is separated by a longer silent
gap in the speech (longer than 500 ms). While automatic
speech recognition is imperfect, we have found that in most
cases the results were accurate enough for the purpose of
alignment (described below) and for users to understand the
transcript.

Aligning the transcript to the master-script
To support our side-by-side compare-view as well as the All
tab view, we must identify corresponding parts of the master-
script and recording transcripts. Moreover, we must partition
these corresponding parts into segments that users can eas-
ily compare and merge into the master-script. Ideally, our
segments should respect natural boundaries such as punctu-
ations and line breaks in written text to aid readability. As
discussed earlier, the segment boundaries should also align
with longer pauses in the audio so that merge operations do
not introduce obvious audio artifacts. Finally, we also want
to separate parts of the transcript that generally agree with
the master-script (i.e., planned speech) from parts that do not
(i.e., improvised speech). We designed a scoring function that
optimizes for these requirements and use an iterative algorithm
to co-segment the two texts. We first explain the algorithm
and then describe the scoring function in detail.

Iterative co-segmentation. Before running our co-
segmentation algorithm, we first compute the global word-
to-word alignment between each recording transcript and the
master-script using the Needleman-Wunsch (NW) algorithm
[17]. NW allows for insertions and deletions, which account
for differences in the two texts, for example, due to rough
scripts, inaccurate speech, or transcription errors. The seg-
mentation of the master-script depends on the segmentation
of the transcript and vice versa. Our iterative algorithm alter-
nates between optimally segmenting the master-script and the
transcript independently using the result from one to segment
the other. We initialize the segment boundaries at punctuation

Segmentation using only punctuations
master-script: Dark matter is spread throughout space.
 transcript: Dark matter is spread throughout the galaxy (pause)

Segmentation using only utterance boundaries
master-script: Consider the galaxy like a giant merry-go-round.
 transcript: A galaxy is like a giant merry-go-round (pause)

a	

b

Figure 3. Co-segmentation of master-script and transcript texts. (a) Seg-
mentation using only punctuation marks results in abrupt cuts in the
audio. (b) Segmentation using only utterance boundaries produces un-
natural cuts in mid-sentence. Our scoring function takes into account
both sentence punctuation marks and audio pauses.

marks (.!?:;) in the unrecorded text and silent gaps (> 500ms)
in the recorded text. In practice, we found that two iterations
were sufficient to converge to a solution.

For each optimization step, we use the classic optimal line-
breaking algorithm by Knuth and Plass [20]: The algorithm
takes an input text T and a reference text R, and outputs an
optimal segmentation for T . Given the input text as a sequence
of n words T = {w0, . . . ,wn}, the algorithm finds the optimal
set of inter-word boundaries that break the text into segments.
We refer to the boundary between wi and wi+1 as bi. The al-
gorithm iterates through each word, and for each wi computes
and records the optimal set of text segments Si for words up
to bi, along with the total score E(Si) of this partial solution.
Si = {s0, ...si} is a sequence of segment labels, where si is the
index of the segment that word wi belongs to. To determine
the optimal partial solution for wi, it considers each previ-
ous boundary b j (j < i), and evaluates two possible ways of
segmenting the text Tji = {wj+1, . . . ,wi}: (1) appending Tji
to the last segment in S j, or (2) forming a new text segment
with Tji. The algorithm selects the better (lower) of the two
scores for Tji and adds it to E(S j) to obtain the total score for
the proposed segmentation. After considering all candidate
boundaries b j, the partial solution with the minimum segmen-
tation score is stored as the optimal partial solution. Once the
algorithm iterates through all the words, Sn is the optimal set
of segments for the entire text T .

Scoring function. The dynamic programming algorithm de-
scribed above requires a scoring function (E) that evaluates the
goodness of a candidate segmentation. E is a sum of the scores
(e) for individual segments in the candidate segmentation. We
define the scoring function based on three terms:

1. Punctuation and silent gaps: We prefer segment boundaries
after sentence punctuation marks, and in case of recorded
text, where there is a longer silent gap. Placing cuts at
silent gaps allows audio segments from different takes or
different parts of a single take to be joined seamlessly. More
precisely, we define the boundary score (eb) for a single text
segment Tji = {wj+1 . . . ,wi} as:

eb(Tji)=

1.0, if wi is unrecorded w punctuation (.!?:;)
−1.0 if wi is unrecorded w/o punctuation
tgap(wi) if wi is recorded

(1)

where tgap(w) is the silence gap in seconds after a recorded
word, w, and is equal to 1.0 for w that is at the end of
a recording. It is important to consider both the sentence
punctuation and the silent gaps. As the examples in Figure 3
illustrate, considering only punctuation can result in audio
artifacts when merging recordings. Similarly, considering
only utterance boundaries can produce unnatural cuts in the
middle of a scripted sentence.

2. Global alignment: We try to separate transcript segments
that have a counterpart in the master-script (planned) from
those that do not (improvised). Likewise, for the master-
script, we want to separate segments that have a match in the
transcript (recorded) from those that do not (unrecorded).
We utilize the global alignment output from the Needleman-
Wunsch (NW) algorithm. For each word wi in the input
text (T) NW outputs a mapping to the reference text (R),
and vice versa. For instance, mi is the index of the word in
R that matches wi. mi < 0 if the word has no match. We
prefer text segments that have the proportion of matching
words close to 0 or 1. The alignment score (ea) for a single
text segment Tji is:

ea(Tji) = 2×
∣∣∣∣ i

∑
n= j+1

match(wn)
/
(i− j)−1/2

∣∣∣∣ (2)

where match(wi) is 1 or 0, depending on whether mi ≥ 0 or
not (whether the word has a match or not).

3. Consistency with the other text: Since the end goal is to
align the segments from both texts, we would like the
segment boundaries from the input text to align with the
segment boundaries in the reference text even when the
punctuation and utterance boundaries do not coincide. Let
S′ = {s′0, . . . ,s′n} be the segmentation of text R. Given this
segmentation and the mapping of T to R from NW, the
consistency score (ec) for a text segment Tji is:

ec(Tji)=

{
1.0, if s′mi

, s′mk
for the smallest k > i,mk ≥ 0

−1.0 otherwise
(3)

s′mi
is the index of the segment which w′mi

belongs to and
likewise for s′mk

. w′mk
is the closest word after w′mi

that has
a match in T .

We combine these terms into a single scoring function e as
follows.

e(Tji) = ea(Tji)+ eb(Tji)+0.5ec(Tji) (4)

The goodness score for a set of text segments S is:

E(S) = ∑
Tji∈S

e(Tji)−
∣∣S∣∣ (5)

where
∣∣S∣∣ is the number of segments in S and is a normaliza-

tion term. For notational convenience, we use Tji ∈ S to refer
to the set of contiguous words in T that are assigned to the
same segment in S.

We iteratively segment the master-script and the transcript
texts. In practice, we found that 2 iterations was sufficient to
converge to a final co-segmentation of the two texts.

Alignment. Given a co-segmentation of the master-script and
the transcript text, we then compute the best matching master-
script segment for each transcript segment. The match score
between two text segments T1 and T2 is defined as the propor-
tion of words in those segments that have a match between
each other (from the NW output). The result is an alignment
between the master-script and transcript segments.

We use this alignment to facilitate syncing and merging of
script/audio by presenting tools similar to common text differ-
encing and merging tools. The compare-view displays match-
ing segments side-by-side. Our color-coded visualization in-
dicates which portions of the master-script is missing from
the transcript, and which parts of the transcript are improvised
(parts that do not have matching segments). In the all tab,
segments from separate transcripts that match similar portions
of the master-script are grouped together so that users can
quickly compare and select between one of them. Similar to
text or code merging, users can select a transcript segment to
overwrite the matching master-script segment.

INFORMAL USER EVALUATION
To assess the overall usability of Voice Script and to observe
how users leverage various features of the interface, we con-
ducted an informal evaluation with 4 users (U1-4). We started
each session with a 10-minute demonstration of our interface.
Then, we gave users a short article about a technical subject:
What is a Decibel? from howstuffworks.com [19] or How
Lasers Work from David Macaulay’s illustrated book, The
Way Things Work [21]. The users’ task was to create an ex-
planatory audio recording about the subject using our interface.
Users were allowed to refer to the article during the authoring
process or to take notes on the master-script, but they were
discouraged from recording the article by reading it out loud.
We examined the users’ workflow and solicited written quali-
tative feedback about the authoring experience at the end of
the session. Each session lasted about 40 minutes.

Findings
While the size of our user evaluation is small, the initial find-
ings are extremely encouraging. All users successfully pro-
duced a complete audio recording summarizing the article.

Voice Script supports various workflows. Interestingly, each
user adapted a very different workflow. For example, U1
started by writing a complete list of main points. For each
take, U1 recorded a few points from the list, merged them into
the master-script, and then continued to record the next points
on a separate take. In contrast, U2 wrote part of the script,
recorded that portion, and moved on to write the script of the
next part. U3 did not write an initial script, but improvised
the recording and used that as a starting point to edit and
re-record afterwards. Similar to U1, U4 started by writing
a rough outline. But, instead of recording a few points, U4
recorded the full script at each take and merged the best parts
to get the final track. Sometimes users typed verbatim script
to read aloud during the recording, and other times they wrote

rough outlines. For example, U2 noted, “For the introduction,
I had a pretty good idea of what I wanted to say, so it saved
me time to use only bullet points. [For the second part] I wrote
full sentences, as I was not familiar with all the technical
details and it would have been more difficult to improvise.
I enjoyed being able to use the master-script in both ways.”
The differences in the workflows could be due to personal
preference, and/or to the article content. In any case, our
interface was able support various workflows.

The master-script facilitates iterative workflows. As the
above examples also demonstrate, users took advantage of
the master-script to go back and forth between scripting and
audio recording. For instance, U2 initially wrote a very rough
outline for the script. After recording and merging the first
take based on this rough script, U2 refined the master-script,
and then recorded more takes. Similarly, after recording and
merging audio takes into the final track, U1 noticed a mistake
in the speech (i.e., instead of saying 140 decibels, U1 had said
40 decibels). U1 corrected the corresponding recorded text
in the master-script, re-recorded the relevant portion part by
reading out the edited master-script, and replaced it. During
the back-and-forth iteration, users took advantage of our color-
coded visualization that indicated sections of the mater-script
that required recording (grey) or re-recording (blue italics).

Users found the master-script to be helpful. All users of-
fered strong positive feedback about our authoring interface,
and said they would use it to create speech recordings. They
were most enthusiastic about the integration of the script and
the recordings in the master-script document, and the ability
to align the master-script to the transcripts. To quote from one
user, “Writing the script on the same interface and having
that integrated with the audio was most helpful.” Another user
noted that the “compare-view helped to keep track of what
pieces of information was already recorded and which ones
were still needed.”

Users were satisfied with the final voice-over quality. Par-
ticipants were satisfied with the overall quality of the final
recording. One user wrote, “I was surprised how the final
recording from the multiple takes was seamless.” Users noted
that while speech recognition was imperfect, “the transcrip-
tions were accurate enough to understand and easy to check
[by clicking to listen to the corresponding audio].”

COMPARATIVE STUDY
One of the main tasks in creating audio recordings is cutting
and merging multiple audio takes. Many existing software
specifically assist this task (see Related Work). We separated
out this audio editing task, and conducted a small comparative
study to explore whether our master-script view facilitates
the task compared to a state-of-the-art transcript-based speech
editing interface [23].

Similar to Voice Script, Rubin et al.’s interface (shown in
Figure 4, and referred to as Interface-R hereafter) also uses
time-aligned transcripts to support text-based editing. In both
systems, users can edit the transcript like a text document
using operations such as copy-and-paste, insert, or delete, and
the edits are propagated to the audio. Both systems also detect

Speech Track 1 / Take 1

Speech Track 2 / Take 2
Waveform View

Transcript View

Alternate Sentences

Figure 4. Rubin et al.’s text-based audio editing tool (Interface-R). For
the purpose of our comparative study, each audio take was loaded as a
separate speech track.

alternate takes of the same sentence and groups them together
so that users can easily compare and select between them.
However, unlike Voice Script , Interface-R does not have a
master-script that integrates multiple audio recordings with a
script. In fact, Interface-R does not explicitly handle multiple
recordings. To simulate multiple recorded takes, we took
advantage of their multiple speech tracks, so that each take
appeared in a separate speech track (i.e., separate columns).

We recruited 4 participants, none of whom had prior experi-
ence using text-based audio editing systems. We gave them
a script with bullet points outlining a mini lecture on a tech-
nical subject (Gravity and Dark matter) and two audio takes
roughly corresponding to the script. In Voice Script, the script
was contained in the initial master-script. Since Interface-R
does not have a notion of a script separate from the transcripts,
we gave users a hard copy of script. The task was to cut and
merge the two pre-recorded takes to produce a recording that
contained all the contents listed in the script and only those
contents. The two takes were similar, but each take had some
missing content and some extra content. The participants had
to choose parts from each take and combine them to get the
final result. We encouraged the users to focus on having the
complete content rather than on the details of the audio quality
(e.g. tempo, diction, flow of speech).

Each participant completed the task twice, once on each inter-
face using different scripts. The subject of the lecture and the
order of the interface were counter-balanced. We examined
the time users spent to complete the task, the number/type
of functions they used, and the quality of the final recording.
After each task, participants gave written qualitative feedback
about their experience. In total, each session lasted about 1
hour.

Findings
Users completed the task faster using Voice Script. All
participants completed the task 25% faster using our interface
(average 7.4 vs 9.9 min), and also preferred it to Interface-R.
The difference may be explained by the different workflow
that each interface affords. In Interface-R, users effectively
started with both recordings in the final track. They applied
copy-and-paste to cut and merge the two takes, and deletion to
remove redundant or superfluous content. In contrast, in Voice

Audio Editing Session
User Time spent Total Accept View Text

ours (Rubin) cuts ind / all alternate edit
A 5:58 (08:10) 3 4 / 3 - 2
B 6:40 (11:10) 3 3 / 4 - 1
C 9:37 (11:05) 2 7 / - 1 7
D 7:25 (09:10) 6 10 / 1 3 -

Table 1. Four participants created audio recordings from two pre-
recorded takes, using our interface and Rubin et al.’s interface. Usage
statistics pertain to our interface. Accept ind / all are number of seg-
ments accepted from the individual transcript view and the all tab view
respectively.

Script, users started with an empty final track. Then, using the
compare-view they accepted parts that matched the script from
either of the takes. Although copy-and-paste and deletion were
also available in Voice Script these operations were used only
rarely, for example to delete a mistakenly accepted segment, to
delete individual words, or to change the ordering of accepted
segments (Table 1) .

The master-script facilitates merging. Users appreciated
having the master-script view. First, the master-script served
to integrate the script outline and the recordings into a single
comprehensive document. To quote from one user, “The
master view integrated the two takes into an almost seamless
whole that I just had to edit, as opposed to presenting two
separate draft from which I had to generate a third and final
story.” Secondly, the master-script helped users keep track
of the status of the final track compared to the planned script.
One user noted that “The outline [in the master-script] made
it easier to find what I had accepted to the final track and what
was still missing, instead of making notes on the paper outline
and going back-and-forth between it and the recordings.”

The compare-view facilitates merging. All 4 participants
mentioned the align function in the compare-view as the most
helpful feature in Voice Script. First, as one user noted, the
segmentation in “the alignment view made editing much faster
by visually breaking the script and the transcript into corre-
sponding parts. I found I had to read much less.” Also users
found it “easier to click than to copy and paste” in order to
merge portions of recordings into the final track.

LIMITATIONS
We rely on automatic speech recognition to transcribe the au-
dio recordings in real time. Despite recent improvements in
speech recognition [18], its performance varies widely. Tran-
scription errors can affect the user’s performance negatively
(e.g., in navigating the audio, or if the user has to spend time
correcting the errors) [16]. In Voice Script, users can click on a
word to listen to its corresponding audio and manually correct
the transcription without affecting the audio. Taking advantage
of the written script to fix or reduce speech recognition errors
is an interesting area for future work.

Voice Script supports asynchronous collaboration to create
voice recordings. Additional features are required in order
to support synchronous collaboration, in particular, conflict
resolution and version control.

Our interface focuses on the content of the speech recordings
but does not consider editing details for audio quality. As one
user mentioned in the feedback, we could integrate editing
tools such as the ones in Rubin et al. [23] or [22] to fine-
tune audio quality. Speech recordings often accompany visual
footage or other sound effects such as music that is also closely
related to the script/audio. Future work could investigate how
to integrate these contents in the workflow.

CONCLUSION AND FUTURE WORK
To create speech recordings, people iterate back and forth
between script writing or editing and audio recording or edit-
ing. It is also common for several people to collaborate in the
authoring workflow. Unfortunately, most existing tools treat
the script and the audio as completely separate entities, which
makes the dynamic workflow between them very tedious. We
presented Voice Script, an authoring interface that facilitates
iterative workflows for script writing and audio recording or
editing. We used our system to collaborate asynchronously
to create a voice-over. Through an informal user study, we
demonstrated that our interface supports a wide range of work-
flows, and that our master-script seamlessly integrates script-
ing and recording. A comparative study showed that our
system facilitates novice users editing speech recordings.

ACKNOWLEDGMENTS
We would like to thank Adriana Schulz and Sylvain Paris for
their helpful feedback and discussions. We also thank Steve
Rubin for making available the implementation of his work
for our comparative study. This project is partially funded by
Royal Dutch Shell and Samsung Scholarship.

REFERENCES
1. 2016a. Adobe Audition.
http://www.adobe.com/products/audition.html. (April
2016). Accessed: 2016-04-02.

2. 2016. Adobe Premier.
http://www.adobe.com/products/premiere.html. (April
2016). Accessed: 2016-04-11.

3. 2016b. Adobe Story. https://story.adobe.com/en-us/.
(Apr 2016). Accessed: 2016-04-02.

4. 2016. Audacity. http://www.audacityteam.org/. (April
2016). Accessed: 2016-04-02.

5. 2016. Avid Protools. http://www.avid.com/en/pro-tools.
(April 2016). Accessed: 2016-04-02.

6. 2016. Celtx. https://www.celtx.com/index.html. (April
2016). Accessed: 2016-04-02.

7. 2016. Final Draft. https://www.finaldraft.com/. (April
2016). Accessed: 2016-04-02.

8. 2016. GarageBand.
http://www.apple.com/mac/garageband/. (April 2016).
Accessed: 2016-04-02.

9. 2016. Google Docs. https://www.google.com/docs/about/.
(April 2016). Accessed: 2016-04-02.

10. 2016. Hindenburg Journalist Pro. http:
//hindenburg.com/products/hindenburg-journalist-pro.
(April 2016). Accessed: 2016-04-02.

11. 2016. IBM Speech to Text Service.
https://www.ibm.com/smarterplanet/us/en/ibmwatson/

developercloud/doc/speech-to-text/. (April 2016).
Accessed: 2016-04-02.

12. 2016. Micorsoft Word.
https://products.office.com/en-us/word. (April 2016).
Accessed: 2016-04-02.

13. 2016. Screen Flow.
https://www.telestream.net/screenflow/. (April 2016).
Accessed: 2016-04-11.

14. Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala.
2012. Tools for placing cuts and transitions in interview
video. ACM Transactions on Graphics (TOG) 31, 4
(2012), 67.

15. Juan Casares, A Chris Long, Brad A Myers, Rishi
Bhatnagar, Scott M Stevens, Laura Dabbish, Dan Yocum,
and Albert Corbett. 2002. Simplifying video editing using
metadata. In Proceedings of the 4th conference on
Designing interactive systems: processes, practices,
methods, and techniques. ACM, 157–166.

16. Yashesh Gaur. 2015. The Effects of Automatic Speech
Recognition Quality on Human Transcription Latency. In
Proceedings of the 17th International ACM SIGACCESS
Conference on Computers & Accessibility. ACM,
367–368.

17. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. 1970.
Journal of molecular biology 48, 3 (1970), 443–453.

18. Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior,
Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, and
others. 2012. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine 29, 6 (2012),
82–97.

19. HowStuffWorks.com. 2000. What is a decibel, and how is
it measured?
http://science.howstuffworks.com/question124.htm,
(2000). Accessed: 2016-04-11.

20. Donald E Knuth and Michael F Plass. 1981. Breaking
paragraphs into lines. Software: Practice and Experience
11, 11 (1981), 1119–1184.

21. David Macaulay. 1999. The new way things work.
Scholastic.

22. Steve Rubin, Floraine Berthouzoz, Gautham J Mysore,
and Maneesh Agrawala. 2015. Capture-Time Feedback
for Recording Scripted Narration. In Proceedings of the
28th Annual ACM Symposium on User Interface Software
& Technology. ACM, 191–199.

http://www.adobe.com/products/audition.html
http://www.adobe.com/products/premiere.html
https://story.adobe.com/en-us/
http://www.audacityteam.org/
http://www.avid.com/en/pro-tools
https://www.celtx.com/index.html
https://www.finaldraft.com/
http://www.apple.com/mac/garageband/
https://www.google.com/docs/about/
http://hindenburg.com/products/hindenburg-journalist-pro
http://hindenburg.com/products/hindenburg-journalist-pro
https://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/doc/speech-to-text/
https://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/doc/speech-to-text/
https://products.office.com/en-us/word
https://www.telestream.net/screenflow/
http://science.howstuffworks.com/question124.htm

23. Steve Rubin, Floraine Berthouzoz, Gautham J Mysore,
Wilmot Li, and Maneesh Agrawala. 2013. Content-based
tools for editing audio stories. In Proceedings of the 26th
annual ACM symposium on User interface software and
technology. ACM, 113–122.

24. Steve Whittaker and Brian Amento. 2004. Semantic
speech editing. In Proceedings of the SIGCHI conference
on Human factors in computing systems. ACM, 527–534.

	Introduction
	Related Work
	Creating Speech Recordings
	VOICE SCRIPT Authoring Interface
	Typical Usage Scenarios

	Algorithmic Methods
	Transcribing the audio recording
	Aligning the transcript to the master-script

	Informal User Evaluation
	Findings

	Comparative study
	Findings

	Limitations
	Conclusion and future work
	Acknowledgments
	References

