
Dynamic Programming with Spiking Neural Computing
James B. Aimone

Sandia National Laboratories
Albuquerque, NM, USA
jbaimon@sandia.gov

Ojas Parekh
Sandia National Laboratories

Albuquerque, NM, USA
odparek@sandia.gov

Cynthia A. Phillips
Sandia National Laboratories

Albuquerque, NM, USA
caphill@sandia.gov

Ali Pinar
Sandia National Laboratories

Livermore, CA, USA
apinar@sandia.gov

William Severa
Sandia National Laboratories

Albuquerque, NM, USA
wmsever@sandia.gov

Helen Xu
Massachusetts Institute of Technology

Cambridge, MA, USA
hjxu@mit.edu

ABSTRACT
With the advent of large-scale neuromorphic platforms, we seek
to better understand the applications of neuromorphic comput-
ing to more general-purpose computing domains. Graph analysis
problems have grown increasingly relevant in the wake of readily
available massive data. We demonstrate that a broad class of com-
binatorial and graph problems known as dynamic programs enjoy
simple and efficient neuromorphic implementations, by developing
a general technique to convert dynamic programs to spiking neu-
romorphic algorithms. Dynamic programs have been studied for
over 50 years and have dozens of applications across many fields.

ACM Reference Format:
James B. Aimone, Ojas Parekh, Cynthia A. Phillips, Ali Pinar, William
Severa, and Helen Xu. 2019. Dynamic Programming with Spiking Neural
Computing. In ,. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3354265.3354285

1 INTRODUCTION
Graph algorithms continue to play a large role in high performance
and data-center computing, but existing parallel designs may not be
well-suited for the eccentricities of large-scale graph problems [16].
Furthermore, this difficulty is compounded by the increasing global
power costs of computation [3, 10]. And while current efforts have
brought high-performance graph analytics to graphics process-
ing units (GPUs) [19, 31], these efforts are limited in scope, and
GPUs still carry a substantial power budget. For large-scale sys-
tems and graphs, these methods alone may be not be sufficient
in an increasingly energy-limited application. This motivates the
need to explore graph algorithms on additional exotic computing
platforms, in particular neural-inspired or neuromorphic computer
architectures.

Recently, there has been a massive resurgence in interest in neu-
romorphic computing architectures [22]. These architectures take

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/3354265.3354285

structural inspiration from biological neural systems, and their pop-
ularity has largely tracked alongside the growth of deep learning
artificial neural network use [15]. The proimse is that neuromor-
phic platforms, such as IBM’s TrueNorth [17], Intel’s Loihi [5],
and SpiNNaker [7], can act as a potential future-computing plat-
form as we approach limits on traditional vonNeumann process-
ing [13, 26, 28]. We now see several methods of achieving state-of-
the-art in performance/Watt for deep learning tasks on neuromor-
phic platforms [21, 25], but we instead focus on a growing interest
in using neuromorphic systems for numerical or otherwise direct
computation. While unconventional, this method of treating neu-
rons as computational elements in their own right has seen the
development of a number of algorithms in applications such as
arithmetic, image processing, diffusion equations, and, of course,
graph algorithms [2, 12, 14, 18, 20, 23, 24, 27].

We remark, however, that little work has been done to charac-
terize the families of algorithms suitable for efficient neuromorphic
implementation. This is perhaps surprising given benefits of neuro-
morphic systems are readily available, including

(1) High levels of parallelism; Potentially asynchronous execu-
tion,

(2) High fan-in/fan-out of the node,
(3) Co-located processing and memory.

Furthermore, spiking neural architectures (the subclass of neuro-
morphic architectures with which we concern ourselves; details
below) share many similarities with well-characterized threshold
gate circuits [8]. These two facts combined suggest that a formal ex-
ploration of neuromorphic graph algorithms may be both possible
and fruitful, and we begin that exploration by recognizing (rather
than an individual algorithm) a large class of suitable programs.

The goal of this paper is to help fill this characterization by
demonstrating that a broad class of dynamic programs enjoy ef-
ficient and relatively simple neuromorphic implementations. Dy-
namic programming is a general method for expressing and effi-
ciently solving certain kinds of combinatorial and graph problems.
Dynamic programming addresses a range of applications in linear
algebra, economics, bioinformatics, databases, computer graphics,
and machine learning [4, 29]. We give a general method for convert-
ing certain kinds of dynamic programs to neuromorphic algorithms.
We also demonstrate that more sophisticated dynamic programs
may be implemented neuromorphically by doing so for the longest
increasing subsequence problem.

https://doi.org/10.1145/3354265.3354285
https://doi.org/10.1145/3354265.3354285
https://doi.org/10.1145/3354265.3354285

ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019 Aimone, Parekh, Phillips, Pinar, Severa, and Xu

The remainder of the paper is organized as follows. In Section 2,
we detail the spiking neuron model and connectivity model we use
to develop and analyze the algorithms. In Section 3, we illustrate the
concept of a spiking graph algorithm through the problem of com-
puting shortest paths in an edge-weighted graph. In Section 4, we
introduce dynamic programming and described a generic spiking
framework to solve some classes of dynamic programs. Section 5
provides a concluding discussion and outlook for future work.

2 BASIC COMPONENTS OF NEURAL
ALGORITHMS

2.1 Spiking Neural Architectures
The neural architectures we are concerned with in this paper are
specifically spiking neural architectures. While there are different
implementations of these platforms, we focus on a discrete leaky-
integrate and fire or LIF description of a neuron that is common to
spiking neuromorphic hardware and can be considered as entirely
parallel in neural operations.

The basic LIF dynamics are as follows. A neuron starts with a
voltage of v = vreset. At each time step, the voltage, v of a neuron
is updated with a decay from the previous time-step and a voltage
change due synaptic inputs (Eq. 1). In continuous time, this would
be an exponential decay, but in discrete time implementations, this
amounts to a fractional step of the v towards vreset of a magnitude,
τ . (Note: if τ = 1, this model becomes equivalent to a threshold
gate circuit). After the voltage update, v is compared to a threshold
voltage, vthreshold to determine if the neuron spikes (f (t + 1) = 1
in Eq. 2, and if so, the voltage resets according to Eq. 3). Finally, the
synaptic inputs for the neuron are computed by summing all of the
weightswi of active (fi (t −di) = 1) upstream neurons, offset by an
appropriate delay, di , which represents the delay for that spike to
arrive from neuron i (Eq. 4). Furthermore, if learning is available
and used, the weights can be themselves considered functions of
timew (t).

v̂ (t + 1) = v (t) − (v (t) −vreset) · τ +vsyn (t) (1)

f (t + 1) =

1, if v̂ (t + 1) > vthreshold
0, if v̂ (t + 1) ≤ vthreshold

(2)

if f (t + 1) = 1 then v (t + 1) = vreset else v (t + 1) = v̂ (t + 1) (3)

vsyn (t + 1) =
N∑
i=1

(fi (t + 1 − di) ·wi) (4)

This LIF model is a common abstraction of biological neuron
dynamics, and it represents a common target for proposed neu-
romorphic hardware. While mathematically compact, it also has
useful similarity to even simpler neural computing models such as
threshold gates (TGs), which have been the focus of more exten-
sive theoretical analysis, while also representing the key feature
of energy-efficient communication—the limitation of communica-
tion in architectures to cases where f (t) = 1, which is commonly
referred to as a spike. In this case we say that a neuron has spiked
or fired at time t . Indeed, the promise of spiking neuromorphic
hardware in large part can be attributed to this event-driven com-
munication and the unbounded fan-in / fan-out of TG circuits.

While even these simple LIF neurons provide some configura-
bility, spiking neural algorithms are primarily defined by the exis-
tence of synapses between different neurons. Each synapse defines
a directed connection between a pair of neurons i and j, with inde-
pendently programmable weightwi, j and delay di, j . The neurons
and synaptic connections are collectively referred to as a spiking
circuit. Computation is initiated in such a circuit by the simulta-
neous spiking of a designated set of start nuerons, and execution
proceeds for a fixed amount of time or until a designated terminal
neuron first spikes. The output of the computation is typically the
state of the set of output neurons at the time of termination.

2.2 Relationship of neural algorithms and
graphs

Taking the description above, spiking neural circuits can be thought
of as directed, weighted graphs, and can also contain other at-
tributes that pertain to delays, learning, or more complex synaptic
dynamics. Neural algorithms are not necessarily acyclic; indeed,
cycles if constructed appropriately can be useful for timing and
coordination. In addition to small circuits that can be constructed
for such control purposes; other neurons are often dedicated to
receiving inputs or providing outputs.

The relationship of neural circuits and graphs has been recog-
nized for a number of years, and there has long been work in using
neural approaches to address graph problems. Much of this work
has focused on artificial neural network learning algorithms to
solve problems, such as the Hopfield-Tank model for problems such
as Traveling Salesman [11], however this application’s value has
been debated [30]. More recent research, especially through the
successes of deep learning, has focused on learning algorithms,
and indeed many problems addressed by modern neural networks
can be equated to classic graph problems. For example, a lot of the
AlphaZero work is learned graph search.

There has been less, but an increasingly growing, body of work
considering the direct implementation of graph problems onto
spiking neuromorphic hardware, such as the work of Hamilton et
al. [9], that considers spiking implementations of an algorithm by
Aibara et al. from 1991 [1]. This recent work focuses on directly
implementing a graph within a neural substrate and using delays to
represent the original edge weights of the graph. Such a mapping
affords a natural implementation of Dijkstra’s celebrated algorithm
for computing shortest paths in graphs on neuromorphic substrates.

The present work was initiated with an independent rediscovery
of Aibara et al.’s implementation of Dijkstra’s algorithm and culmi-
nates in the observation that this approach can be generalized to
solve a plethora of discrete optimization and graph problem by way
of dynamic programming. We observe that some of the best-known
dynamic-programming approaches are not directly addressed by
our general framework, yet in Section 4.3 we demonstrate that
spiking algorithms may be attainable in such cases by develop-
ing a refined spiking implementation of the best-known dynamic
programming approach for the longest increasing subsequence
problem. In the next section we employ the aforementioned prob-
lem of computing shortest paths to illustrate elements of designing
spiking graph algorithms.

Dynamic Programming with Spiking Neural Computing ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019

3 SPIKING GRAPH ALGORITHMS
In this section we describe the single-source shortest path prob-
lem on graphs and describe a natural and elegant spiking graph
algorithm to solve it. This algorithm will serve as the basis for our
neuromorphic dynamic programming approach and illustrates the
basic techniques we will use.

3.1 Shortest paths and Dijkstra’s Algorithm
A fundamental problem in graphs is finding a shortest path between
two nodes s and t (an s-t path) in a graph that has non-negative
weights associated with its edges. Problems of this type are solved
routinely by Google Maps in finding short navigation routes be-
tween two places on a map. In this case, the nodes of the graph
represent locations of interest on a map, while edges indicate viable
direct routes, with each weights indicating traversal times.

Dijkstra’s algorithm is an elegant approach to finding shortest
paths that is typically one of the first graph algorithms taught in
algorithms courses [4, Ch. 24]. Some algorithms that are theoreti-
cally efficient are not so in practice, due to large constant factors in
execution time. Yet, Dijsktra’s algorithm affords efficient practical
implementations. Such implementations of it can find an s-t path in
a graph with n vertices andm edges in O (m logn) steps, with each
step a primitive computational operation [4]. Implementations with
an asymptotic running time ofO (m +n logn) are known, but these
do not tend to perform as well in practice, due to large constant
factors hidden by the O () notation. In fact, Dijkstra’s algorithm
solves a more general graph problem: that of finding shortest paths
between a specific vertex s and every other vertex in the graph
(i.e., a shortest s-v path for every node v). This is known as the
single-source shortest paths (SSSP) problem.

A reason that an algorithm seeking to find a shortest path be-
tween s and t might indeed need to discover shortest paths between
s and every other vertex, including t , is as follows. A shortest path,
P between s and t must contain a shortest path between s and every
vertex, vi that is part of the path, P . If there were any shorter path,
Q between s and some such vi , then one would have a shorter path
between s and t by going from s to vi using Q and then continuing
from vi to t as P does. This is known as the optimal substructure
property, and is a key ingredient in dynamic programming, as will
be discussed in the next section. Thus it is difficult to imagine a
shortest s-t path algorithm that does not also solve the SSSP prob-
lem in the process.

3.2 Spiking graph algorithm for shortest paths
Dijkstra’s algorithm inspires a simple and natural spiking graph al-
gorithm (SGA) to solve this problem, first published in 1991 [1]. As
discussed in Section 2.1, our model of spiking neural architectures
(SNA) includes programmable spike delay times on links. By this
we mean that one may, independently for each link, specify how
long a spike should take to traverse it. As communication in spik-
ing architectures is typically asynchronous, delays are a powerful
resource spiking algorithm design.

The SGA we describe assumes that the nodes and edges of the
input graph can be mapped on the neurons and links of the SNA.
One way to relax this assumption is by embedding an input graph
into the neuron connectivity graph of an SNA; a detailed discussion

of such techniques is beyond our scope. We program delay times
so that the time required for a spike to traverse a link in the SNA is
proportional to the weight of the corresponding graph edge. The
SGA commences by sending spikes from a source neuron, corre-
sponding to the vertex s , to all of its outgoing neighbors. Every
other SNA neuron is programmed to simply propagate the first
incoming spike it receives to all its outgoing neighbors. The SGA
terminates when every neuron has received a spike, or it can be
programmed to terminate early as soon as the neuron correspond-
ing to a particular node of interest, t has received a spike. This is a
complete high-level description of an SGA for the SSSP problem.

Computational complexity of the algorithm. One may view this SGA
as employing spikes to explore a graph. Initial spikes are generated
at node s and propagated to its neighbors, each of whom then
propagates copies of incoming spikes to their neighbors, and so on.
When a spike reaches some node v , this corresponds to a specific
path that a sequence of spikes, starting at s, followed to reach v .
Moreover, due to link delays, the time when the spike reaches v is
proportional to the length of this path. Thus the time v receives its
first spike is proportional to the length of the shortest path from s
tov . This argument can be made precise to show that correctness of
this SGA, in much the same vein as one may prove the correctness
of Dijkstra’s algorithm.

The running time of the algorithm isO (L+n+m), where L is the
length of the shortest path from s to t , and n andm are the number
of nodes and edges in the input graph, G, respectively. We include
the O (n +m) term to account for the time required to load G into
the SNA, which involves identifying the nodes and edges of G to
neurons and links present in the SNA. This factor also accounts
for the readout time of a solution. Thus far we have only discussed
computing a number that is proportional to the length of a shortest
path; in practice, we also seek to output a shortest path. We will
discuss techniques for doing so in the next section.

How does this compare with Dijkstra’s algorithm running on a
conventional computer? The SGA may be viewed as a Dijkstra-like
algorithm; however, it is far simpler than conventional pseudocode
for Dijkstra’s algorithm. More concretely, let τv be the time when
the neuron v first spikes in the SGA. Dijkstra’s algorithm also com-
putes quantities proportional to τv ; however it does this indirectly
using a data structure called a priority queue. This allows Dijkstra’s
algorithm to avoid having to simulate sending spikes; however,
building and maintaining the priority queue incurs extra overhead.

As stated above, a conventional practical implementation of Dijk-
stra’s algorithm requiresO (n logm) time. The SGA offers an advan-
tage when one seeks to find relatively short paths in large graphs,
which is the case for practical applications such as computer-assisted
navigation. However, another advantage is that once a graph is
loaded onto an SNA, one may modify some link delays and execute
the SGA again without loading the graph again. This can prove
advantageous over conventional Dijkstra implementations that, in
the worst case, may have to perform O (n logm) steps to re-run the
algorithm, even if only a few edge weights have changed. Another
advantage is that the SGA is likely to incur less computational
overhead during execution than a conventional algorithm, leading
to practical advantages in execution time and energy expenditure,
even when asymptotic analysis may suggest otherwise.

ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019 Aimone, Parekh, Phillips, Pinar, Severa, and Xu

3.3 Constructing a shortest path
In order to compute actual shortest paths within the SGA, for each
neuron v that spikes, we must keep track of the neuron u that
caused v to first spike, at time τv (see the discussion of shortest
path trees in [4, Ch. 24] for why this suffices). We sketch a scheme
for accomplishing this. The first requires a total of O (n logn) neu-
rons andO (m logn) links. The modified SGA is structured similarly
to the original, except that each neuron u is represented with neu-
rons u0,u1, . . . ,uk where k = ⌊logn⌋ + 1. For each edge uv in G
we include a link from each ui to vi , for i = 0, . . . ,k , whose delays
are all set to the same value, proportional to the weight of uv . We
assume that each node has an integer id between 1 and n and that s .
The neuron v0 takes the place of neuron v from the original SGA,
and the population of neurons V = {v1, . . . ,vk } acts a memory,
recording a binary encoding of the id of the neuron u0 that sent the
spike causing v0 to spike for the first time. To illustrate, suppose
n = 7, node u has an id of 5, and nodes v andw are its neighbors.
Wheneveru0 spikes, it sends a binary encoding of its id on the links
from {u1, . . . ,uk } to {v1, . . . ,vk } and those from {u1, . . . ,uk } to
{w1, . . . ,wk }. Since the ids are fixed, this is easy to do, by including
links with negligible delay from u0 to u1 and u3 (this is because
(1, 0, 1) is the binary encoding of 5, represented by u1 and u3 firing
and u2 not firing). Finally, for each node u there is additional neu-
romorphic circuitry that “latches” the values of the population U
when u0 first spikes, so thatU represents a binary encoding of the
node id that caused it to first spike.

The above approach uses an additional O (logn) neurons for
each of the n nodes of the graph as a memory. We note that other
approaches for storing the shortest path information are possible,
including using learning on synaptic connections to store this in-
formation. Next, we generalize the SGA described here to address
solving dynamic programs. Although our treatment of this topic
will be at a higher level, the details discussed here for shortest paths
will implicitly apply.

4 SPIKING ALGORITHMS FOR DYNAMIC
PROGRAMMING

In this section we demonstrate how to use neuromorphic architec-
tures for solving a large class of classical dynamic programs. We
begin by describing how dynamic programming uses the “optimal
substructure property” and “overlapping subproblems” to recur-
sively solve a problem without recomputing its subproblems. In
section 4.1 we identify several main categories of problems that can
be solved by dynamic programming and propose neuromorphic
solutions. These involve problems where the the optimal solution
can be found by taking simple maximums or minimums over input
optimal subproblems, perhaps with some linear constraints. Finally,
we introduce a neuromorphic circuit for solving the longest increas-
ing subsequence (LIS) problem using dynamic programming. That
circuit uses a more complex relationship between input optimal
subproblems than those described in Section 4.1. We conclude by
showing neuromorphic circuits to find a longest path in a directed
acyclic graph, a problem closely related to shortest paths. This gives
an alternative solution to LIS that requires classical pre-processing,
but then fits the characteristics of the dynamic-programming prob-
lems described in Section 4.1.

4.1 An Overview of Dynamic Programming
Dynamic programming is a fundamental algorithmic paradigm for
solving combinatorial algorithms in polynomial (efficient) time.
Generally, dynamic programming is a useful approach when a
problem can be solved optimally by breaking it into sub-problems
and then combining optimal solutions to the sub-problems. It has
been adopted in many different application domains. A Google
scholar search on “dynamic programming” has 3.2 million hits,
including general papers on the topic and specific applications.

Two fundamental concepts underlie dynamic programming: the
optimal substructure property and overlapping subproblems. The
optimal substructure property applies when an optimal solution to
a problem can be expressed in terms of optimal solutions for smaller
subproblems. For instance, the shortest path problem illustrates
this property. Consider the problem of finding a shortest path from
a source vertex s to a terminal vertex t in a graph. Assume we
know that a third vertex v is part of an optimal solution. Then we
can reduce the problem to two independent problems: finding a
shortest path from s to v and finding a shortest path problem from
v to t . We can prove that merging optimal solutions to these two
problems gives an optimal solution to original problem of finding
a shortest path from s to t . Observe that the optimal substructure
property does not apply in many other problems. Consider the path
version of the traveling salesperson problem, where we try to find
a shortest path from s to t that visits each vertex once. This time,
we cannot break the problem into two independent subproblems
finding s to v and v to t , since it is not clear whether the remaining
vertices are part of the first subproblem or the second subproblem.

The optimal substructure property allows us to compute the
optimal solution recursively by breaking the problem down into
smaller problems. Recursively investigating many solutions leads
to many subproblems being investigated multiple times. The trick
in dynamic programming is to define this space of overlapping
subproblems and avoid solving them more than once. Subsequently,
the efficiency of dynamic programming depends on the number
of subproblems that need to be solved. In practice, we avoid re-
cursion in implementations of dynamic programming algorithms
by maintaining a table that stores values of optimal solutions to
subproblems, and filling in the entries of this table in a bottom-up
fashion. That is, we compute the solution to a subproblem when
all the subproblems it depends on have been solved.

4.2 Neuromorphic Computing for Dynamic
Programming

We propose a generalized approach to solving dynamic program-
ming problems using neuromorphic computing. In our approach,
each subproblem is represented by a neuron or a group of neurons
and neurons are connected if the solution of one is affected by the
other. Neurons communicate the optimal value of their respective
subproblems by their firing times. As we discuss later, in some cases
neurons fire multiple times for maximization problems, as better
solutions become available.

With this neural-network structure, each neuron has enough
information from optimal subproblems to compute its own solution
value. The challenge is in how to compute this value given values of
optimal solutions to the subproblems. We describe generic solutions

Dynamic Programming with Spiking Neural Computing ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019

Name Symbol
Optimal solution value for parameters x Sx
Incoming neighbors of node i N (i)
Cost of edge between nodes i and j eci j
Cost of node i nci
Reward for edge between nodes i and j eri j
Reward for node i nri

Table 1: A reference table of the notation used in analyzing
neuromorphic dynamic programs.

to a broad class of problems, based on the structure of the recursive
formulation in the dynamic programming solution. Specifically,
we describe generic solutions for constrained and unconstrained
versions of maximization and minimization problems as long as the
optimal solution value depends only on the minimum/maximum of
subproblems.

At a high level, we define dynamic programming problems in
terms of graph constructions and explain how to solve them neuro-
morphically. In our discussions, we use the notation described in
Figure 1. When we describe neuromorphic circuits, we sometimes
use the same notation Sx to refer to a circuit node that represents a
subproblem.
Case 1a: Minimization problem with fixed costs.
First, we consider minimization problems where each node and
edge has a fixed cost that fit the following minimization framework:

Si = min
k ∈N (i)

{Sk + ecik } + nci

Example: Shortest Path: The shortest path is a path between two
vertices that minimizes the sum of the weights of edges on the path.

Definition 4.1 (Shortest Path). Given a graph G = (V ,E), a cost
function on edgesw : E → R≥0, and two vertices s, t ∈ V . Find a
sequence of vertices ⟨vϕ1 ,vϕ2 , . . .vϕn ⟩, such that s = vϕ1 , t = vϕn ,
and (vϕi ,vϕi+1) ∈ E for i = 1, . . . ,n − 1 that minimizes

n−1∑
i=1

w (vϕi ,vϕi+1)

Neuromorphic solution: The same recursive formulation can
describe many problems. We describe a construction that only
relies on the equations and is independent of the details of the
underlying application. Let each subproblem Si be represented by a
neuron and connect each neuron to other neurons if the associated
problems are dependent. In the formulation above, the neuron
representing Si receives spikes from all neurons in N (i). Once a
neuron receives a spike, it is activated. It waits for nci units of time,
and then sends signals to each neighbor k with a delay of ecik . Each
neuron is activated only once, and the time of activation defines the
optimal solution value. For the shortest-path problem, we have a
subproblem (shortest-path to a graph vertex) for each circuit vertex,
circuit vertex cost zero, and circuit edge costs correspond to graph
edge weights.
Case 1b: Maximization problem with fixed costs.
Next, we consider maximization problems with fixed costs using

the following formulation:

Si = max
k ∈N (i)

{Sk + erik } + nri

Example: Longest Increasing Subsequence: The longest in-
creasing subsequence problem aims to find a longest subsequence,
not necessarily contiguous, within a given sequence in which the
subsequence’s elements are increasing.

Definition 4.2 (Longest Increasing Sequence). Given a sequence
of real numbers ⟨x1, . . . xn⟩, find a subsequence ⟨xϕ1 ,xϕ2 , . . . xϕk ⟩
that maximizes k such that for all i , 1 ≤ i ≤ k , we have 1 ≤ ϕi <
ϕi+1 ≤ n and xϕi < xϕi+1 .

In Section 4.3 we consider a simpler problem, the original prob-
lem definition, which is to just find k , the length of the longest
increasing subsequence. In Section 4.4 we show a way to convert
the LIS problem into one of the form above, though it requires
preprocessing to create the circuit.
Neuromorphic solution: Again, we describe a construction that
only relies on the equations and is independent of the details of the
underlying application. Let each subproblem Si be represented by
a neuron and connect each neuron to other neurons if the associ-
ated problems are dependent. In the formulation above, a neuron
representing Si receives spikes from all neurons in N (i). Once a
neuron receives a spike, it is activated. It waits for nri units of time,
and then sends signals to each neighbor k with a delay of erik .
The construction so far is the same as the construction above. The
difference is that the neuron keeps firing for each new spikes it
receives, Each new spike corresponds to the identification of a new
solution that is better than the previous solution, since this is a
maximization problem. And discovery of a better solution should
be communicated to the neighbors.

Case 2a: Constraint Satisfaction problem.
We can also solve constraint satisfaction problems with the follow-
ing format:

Si j = max
k ∈N (i);j−ecik

{Sk, j−ecik + ecik } for j ≤ B,

where B is a given bound. Example: Number-partitioning: In
the number-partioning problem, we are given set of positive inte-
gers. We wish to partion that set into two subsets to minimize the
difference between the sum of the numbers in the two subsets.

Definition 4.3 (Number Partitioning). Given a set of positive in-
tegers, A ⊂ Z, find A1 and A2 that form a bipartition of S that
minimize �������

∑
ai ∈A1

ai −
∑

ai ∈A2

ai

�������
Although the partition problem is NP-complete, there is a pseudo-

polynomial-time dynamic-programming solution. A variant of the
number-partitioning problem is to find a subset of a given set of
integers whose sum is as close as possible to, but no greater than, a
given bound B.

To put the number-partition problem into the above form, let
G =
∑
ai ∈A ai . Then we wish to find a subset A1 of maximum sum

G1 provided that sum obeys the constraint G1 ≤ G/2.

ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019 Aimone, Parekh, Phillips, Pinar, Severa, and Xu

Neuromorphic solution: The circuit for this problem has a node
Si j for all 1 ≤ i ≤ n. The j value (at most G/2) represents the
sum of values from a subset of the first i numbers in set A. The
circuit will add elements fromA in an arbitrary but fixed order. The
start node is S00. Then there is an edge from Si j to all Sk, j+ak , for
i < k ≤ n provided j + ak ≤ G/2. This edge represents adding the
kth element of A next, skipping elements between the ith and kth.
Node Si j fires at time j if there is a subset of the first i elements
whose sum is exactly j . The last node to fire gives the solution. The
constraint is satisfied by the construction of the circuit. Then the
circuit functions by nodes firing to all outgoing neighbors when
activated.

Case 2b: Constrained minimization problem with fixed
costs
The neuromorphic approach also extends to a specific class of con-
straint minimization problems with the following cost formulation:

Si j = min
k ∈N (i);j−nci ≤B

{Sk, j−nci + ecik }.

Example: Shortest path from node s to node t , whose node
cost is at most B:
Neuromorphic solution: This is like the regular shortest-path
circuit except that now each circuit node Si j has a second subscript
denoting the cost of the path from graph node s to graph node i .
Edges from neighbors are constructed to correctly match that cost
subscript. So node Sk,q is an input to node Si, j if and only if node
k is a neighbor of node j in the input graph and q + nci = j. The
neural circuit starts at node Ss,ncs , provided ncs ≤ B and the first
time a circuit node associated with graph node t fires represents
the shortest constrained path.

Case 2c: Constrained maximization problem with fixed
costs.
Problem Formulation:

Si j = max
k ∈N (i);j−ecki

{Sk, j−ecki + nci } for j ≤ B

Example: Knapsack: The knapsack problem is: given a set of
objects x1, . . . ,xn . Object xi has a weight wi and a value vi . The
goal is to pick a subset of objects X such that ∑xi ∈X wi ≤W , for a
knapsack capacityW and set X has maximum value ∑xi ∈X vi .
Neuromorphic solution: In our neural circuit, the last time node
Si j activates represents the highest-value subset of the first i items
with weight exactly j. As with the partition problem, we consider
adding or not adding elements to the knapsack in an arbitrary fixed
order: x1,x2, . . . ,xn . Neural circuit node Si j represents a subset
of the first i items whose total weight is exactly j. As before, we
consider the knapsack capacity constraints when constructing the
neural circuit. Node Sk,q is an input to node Si, j if and only if i > k
and q +wi = j . The delay on the edge is vi . So a time that node Si, j
activates is the value of a subset of the first i nodes with weight
exactly j. The last activation indicates the optimal solution value.

Other problems that fit this basic form include longest increasing
sequence, whose cost is ≤ B and finding a longest path (maximizing
scenery) provided the arrival time is at most B.

4.3 Longest increasing subsequence
Recall this definition from Section 4.2. The longest increasing subse-
quence problem (LIS) accepts a list ofn positive integersx1,x2, . . . ,xn

and returns the longest strictly increasing (not necessarily contigu-
ous) subsequence. In Section 4.4, we give a method to transform
the input sequence into a directed-acyclic graph (DAG) where the
longest path gives the LIS. However, that method might require
Θ(n2) time to create a graph with Θ(n2) edges during a required
classical-computing preprocessing step. The circuit in this section
uses the sequence input directly and is based on a more efficient
classical algorithm.

In this section, we give a circuit for a simpler problem: just
computing the length of the LIS. The circuit can mark information
for recovering the full sequence, which we do not describe in this
paper. Fredman [6] describes anO (n logn)-time solution, which he
attributes to Knuth, for a classical computer. This classical algorithm
processes the input string left to right. It maintains an array L
where the ith entry Li holds the value of the last element in the
best sequence of length i seen so far. The best sequence is the
one with the smallest last element since it is the easiest to build
upon. In the array, Li = ∞ if there is no increasing subsequence
of length i . At the time the algorithm is about to process element
x j , the information in the array L represents the best subsequences
possible using only the first j−1 elements. After processing element
x j , the array L then represents the best subsequences possible using
the first j elements. After the nth element has been processed, the
answer is the largest value ℓ such that Lℓ is finite.

To process element x j , the algorithm finds the indexm such that
Lm < x j < Lm+1. If x j = Lk for some k , then indexm does not
exist, and x j is processed. Otherwise there is only one such indexm.
The algorithm sets Lm+1 = x j , indicating that x j is the last element
of a new best sequence of lengthm + 1. Element x j can extend the
subsequence of lengthm because it is larger than the last element.
It is an improvement, since x j < Lm+1. In the example in Figure 1,
we show the full subsequence represented by each entry in array L
at three points in the algorithm. This example contains additional
information not present in L. Our array L contains only the last
element of the best subsequence of each length, while Figure 1
depicts the entire best subsequence of each length. Figure 1(b)
shows the list after processing the first seven elements, so the next
element is 3. Since 2 < 3 < 6, we create a new best sequence of
length three by adding 3 to the best current sequence of length two.

We now describe a neuromorphic circuit to compute the length
of an LIS using the above algorithm. We assume zero delay through
a node for this discussion. We discuss node delays at the end of this
section. The nodes do not leak (τ = 0 in the model of Section 2).
The circuit for LIS has a column for each sequence element x j and
a row for each possible sequence length i , as shown in Figure 2.
There is a single node, labeled “start” that is active at the beginning
of the circuit execution. When it fires, it sends a spike to a local
node, "x j ," for each column j with a delay equal to the value of the
jth sequence element, x j and a weight sufficient to trigger node
x j immediately. Figure 3 shows the circuit for a column. In each
column j, there are two nodes for each row Li , called vit (top)
and vib (bottom). The spike from the “x j ” node in Figure 2, which
we call the “alarm” for column j, is an input to each of the nodes
in column j (these inputs are labeled “A” in Figure 3). The alarm
applies a weight of 1 to the top nodes vit and a weight of −1 to
the bottom nodes vib . Alternatively, the local nodes “x j ” may be

Dynamic Programming with Spiking Neural Computing ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019

Figure 1: An example of solving the longest-increasing sub-
sequence problem. Although our neural circuit only tracks
the last item for the best sequence of each length, we show
the sequences themself for clarity. A list preceeded by “1:” is
the best sequence of length 1 so far; “2:” is the best sequence
of length 2, etc. (a) shows the best sequences after process-
ing the first 3 elements, going left to right. (b) is after the
first 7 elements and (c) is the final set of lists. The longest
increasing sequence has length 5.

Figure 2: The overall circuit for LIS. Each column corre-
sponds to a string element and row i corresponds to the last
element in the best sequence so far of length i. The node
labeled “start” is the only one active at the start. It sends a
spike to each column j with a weight of 1 and a delay of x j ,
which is the value of the jth sequence element. Because col-
umn j cannot participate in rows greater than j, we could
remove unneeded nodes, giving a triangular circuit, saving
about a factor of 2 in circuit size. Given an upper bound on
LIS, we can reduce the number of rows.

replaced by direct connections from the “start” node to the nodes
in each column, each with appropriate weight.

Consider the processing that occurs in some column j, corre-
sponding to sequence element x j . The spike coming from the left
on row Li ∈ {L1,L2, . . . ,Ln } arrives at time Li , the value of the last
element of the best sequence of length i . Consistently, any Li = ∞
never arrives. The Li are always in sorted order: L1 < L2 < L3 <
See the example in Figure 1 and observe that the sorted property
comes from the way the Li are updated. So the first signal from the

Figure 3: The LIS circuit for one column of the overall cir-
cuit associatedwith awith string element. For column j with
string element x j , “A” represents an alarm that arrives at
time x j .

left arrives on edge L1. If it arrives before the alarm, then we must
have L1 < x j . In this case, the spike from the left activates node
v1t , which fires the spike leaving the column on row L1 to the right
at time L1. The self edge on node v1t with weight −2 sets the node
weight atvit to −1. this prevents nodev1t from firing again at time
x j , when the alarm spike arrives. Also, the spike L1 activates node
v1b . This fires an input into the third node v2t , which is the first
node for row 2. Effectively, this reduces the threshold of that node
to 1 (since nodes have no leakage), so row 2 now acts the same way
the first row did. Thus the processing when a spike arrives on line
L2, L3, . . . operates in the same manner until the alarm at time x j
occurs before the incoming spike on some line Li . This includes
the case where there is no spike on edge Li (i.e. edge Li = ∞).

We now focus on the case when the alarm at time x j occurs
before a spike arrives on line Li , and spikes have already arrived
on lines L1, . . . ,Li−1, before time x j . Then the effective threshold
at node vit is 1, since node vi−1,b has already fired. The alarm at
x j with weight 1 meets the threshold on node vit , activating node
vi,t and sending a spike rightward on row i at time x j . The alarm
also fires an input with weight −1 into node vib , setting the node
weight to −1. This means that any later signal coming in on row i
can not cause node vib to fire again. The alarm fires a spike with
weight −1 into all the nodes vpb for 1 ≤ p ≤ n. So none of these

ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019 Aimone, Parekh, Phillips, Pinar, Severa, and Xu

“bottom” nodes will fire after the alarm. There is insufficient weight
on the incoming Li signals to hit the new threshold. The alarm
spike also reduces the threshold of the nodes vqt for all q > i in
column j , from 2 to 1. Thus when any spike arrives on line q > i , it
meets the threshold for node vqt and the spike passes through the
column. That is, any incoming spike on Li+k for k = 1, . . . ,n − i
leaves the circuit immediately, going to the right.

Correctness: This circuit does exactly the step for the jth element
described above for the classical algorithm. The spikes arriving from
the left continue to the right with no delay, that is, with the same
value, for all rows except for possibly one. If Lm < x j < Lm+1,
then the spike on row Lm+1 exits the column circuit at time x j .
Thus x j replaces the value for Lm+1. All initial values Li = ∞. Thus
the correctness of the circuit follows from the correctness of the
classical circuit.

The circuit, however, it does not look like a left-to-right scan
since the activity is determined by the values of the sequence el-
ements. The smallest element, say at column c , causes the first
activity, going all the way to the right and exiting the circuit on line
one at time xc (assuming delays of 0 on all nodes and all links other
than the links from the start node). Subsequent columns activate in
order of their values, exit on the appropriate line, and travel to the
right until they exit the circuit or are stopped by a blocking node at
a column with an element that is smaller (arrived earlier) and gives
a better final sequence value for that sequence size.

This algorithm runs in time Lmax , the last element of the longest
increasing subsequence. It usesO (ℓun) nodes and edges, where ℓu is
an upper bound on the length of the longest increasing subsequence
(n suffices, but is likely conservative) and n is the length of the input
sequence.

A real neuromorphic circuit has a non-zero delay through a node.
We expect it to be small compared to edge delays in general. Our
circuit works as long as the number of node delays for a signal does
not change the order of the comparisons at the column nodes. If the
node processing time is fixed, or has an upper bound D, we must
scale the edge delays so that a one-unit edge delay is greater than
nD, where n is the length of the input sequence.

4.4 Longest path in a directed-acyclic graph
(DAG)

The neuromorphic circuit to find the longest path in a DAG has a
circuit equal to the DAG. That is, there is a node for each DAG node
and a directed edge for each DAG edge. If the DAG is unweighted,
each edge has weight 1 and delay 1. A vertex is a source if it has no
incoming directed edge. All source vertices of the DAG are active
at the beginning of the algorithm. A sink, or terminal vertex has
no outgoing edges. We read the output at these sink vertices.

The algorithm is similar to the shortest path algorithm, as we
start with spikes on the source vertices. Whenever a node receives
any spike, it sends a spike to all of its (outgoing) neighbors. Unlike
the shortest-paths algorithm, circuit nodes keep firing each time
they receive a signal. Delays in the spikes mean that arrival of a
new spike correspond to a longer path before this vertex. Subse-
quently, this node must update its neighbors about this discovery.
The algorithm can terminate after n steps, where n is the number
of vertices.

Weighted version. If the DAG has edge weights, we add a delay
to each edge equal to its weight.

An alternative LIS algorithm. We can also solve the LIS problem
by creating a DAG and running the longest-path-in-a-DAG circuit.
This requires classical pre-processing to create the DAG. Each se-
quence entry, xi is represented by a vertex vi . We add a directed
edge from vi to vj if and only if i < j and xi < x j . An edge (vi ,vj)
means sequence entries i and j can potentially occur (in that order)
in a feasible solution to the LIS problem. We can reduce the number
of edges by more carefully defining edges. We add a directed edge
from vi to vj if and only if i < j and xi < x j , and there is no k such
that i < k < j and xi < xk < x j .

5 CONCLUSIONS AND FUTUREWORK
We present a general method for converting dynamic programs
into efficient spiking neuromorphic algorithms. This enables new
neuromorphic algorithms for a wide variety of problems of different
flavors. The most pressing open question is whether our approach
can be extended to address more general kinds of dynamic pro-
grams. Our spiking algorithm for finding longest increasing subse-
quences suggests that efficient neuromorphic implementations of
more sophisticated dynamic programs are possible.

This paper omits some lower-level technical details that will be
more extensively presented in a longer format. It is important to
note that the high-level algorithms presented here hinge on precise
spike timing and delays, which will inevitably result in modifica-
tions that are tailored to specific hardware platforms. These modifi-
cations notwithstanding, our results demonstrate that the structure
of neuromorphic architectures may have advantages for graph
analysis, even when moving beyond straightforward algorithms
such as shortest paths to more complex dynamic programming
applications.

ACKNOWLEDGEMENTS
Supported by the Laboratory Directed Research and Development
program at Sandia National Laboratories, a multimission laboratory
managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA-0003525.

REFERENCES
[1] R. Aibara, Y. Mitsui, and T. Ae. 1991. A CMOS chip design of binary neural

networkwith delayed synapses. In 1991., IEEE International Sympoisum on Circuits
and Systems. 1307–1310 vol.3. https://doi.org/10.1109/ISCAS.1991.176611

[2] James B. Aimone, Ojas Parekh, and William Severa. 2017. Neural computing for
scientific computing applications: more than just machine learning. In NCS.

[3] Anders Andrae and Tomas Edler. 2015. On global electricity usage of communi-
cation technology: trends to 2030. Challenges 6, 1 (2015), 117–157.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[5] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning.
IEEE Micro 38, 1 (2018), 82–99.

[6] Michael L. Fredman. 1975. On computing the length of the longest increasing
subsequences. Discrete Mathematics 11, 1 (1975), 29–35.

[7] Steve B Furber, David R Lester, Luis A Plana, Jim D Garside, Eustace Painkras,
Steve Temple, and Andrew D Brown. 2013. Overview of the spinnaker system
architecture. IEEE Trans. Comput. 62, 12 (2013), 2454–2467.

https://doi.org/10.1109/ISCAS.1991.176611

Dynamic Programming with Spiking Neural Computing ICONS ’19, Intl. Conf. Neuromorphic Systems, July 23–25, 2019

[8] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán.
1993. Threshold circuits of bounded depth. J. Comput. System Sci. 46, 2 (1993),
129–154.

[9] Kathleen E Hamilton, Tiffany M Mintz, and Catherine D Schuman. 2019. Spike-
based primitives for graph algorithms. arXiv preprint arXiv:1903.10574 (2019).

[10] Scott Hemmert. 2010. Green hpc: From nice to necessity. Computing in Science &
Engineering 12, 6 (2010), 8–10.

[11] John J Hopfield and David W Tank. 1985. “Neural” computation of decisions in
optimization problems. Biological cybernetics 52, 3 (1985), 141–152.

[12] Zeno Jonke, Stefan Habenschuss, and Wolfgang Maass. 2016. Solving constraint
satisfaction problems with networks of spiking neurons. Frontiers in neuroscience
10 (2016), 118.

[13] Jeffrey L. Krichmar, William Severa, Muhammad S. Khan, and James L. Olds. 2019.
Making BREAD: Biomimetic Strategies for Artificial Intelligence Now and in the
Future. Frontiers in Neuroscience 13 (2019), 666. https://doi.org/10.3389/fnins.
2019.00666

[14] Xavier Lagorce and Ryad Benosman. 2015. Stick: spike time interval compu-
tational kernel, a framework for general purpose computation using neurons,
precise timing, delays, and synchrony. Neural computation 27, 11 (2015), 2261–
2317.

[15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[16] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry.
2007. Challenges in parallel graph processing. Parallel Processing Letters 17, 01
(2007), 5–20.

[17] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun
Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Naka-
mura, et al. 2014. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345, 6197 (2014), 668–673.

[18] John V Monaco and Manuel M Vindiola. 2017. Integer factorization with a
neuromorphic sieve. In Circuits and Systems (ISCAS), 2017 IEEE International
Symposium on. IEEE, 1–4.

[19] NVIDIA. 2019. nvGraph. https://developer.nvidia.com/nvgraph
[20] Ojas Parekh, Cynthia A Phillips, Conrad D James, and James B Aimone. 2018.

Constant-Depth and Subcubic-Size Threshold Circuits for Matrix Multiplica-
tion. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and

Architectures. ACM, 67–76.
[21] Daniel Rasmussen. 2018. NengoDL: Combining deep learning and neuromorphic

modelling methods. arXiv preprint arXiv:1805.11144 (2018).
[22] Catherine D Schuman, Thomas E Potok, Robert M Patton, J Douglas Birdwell,

Mark E Dean, Garrett S Rose, and James S Plank. 2017. A survey of neuromorphic
computing and neural networks in hardware. arXiv preprint arXiv:1705.06963
(2017).

[23] William Severa, Richard Lehoucq, Ojas Parekh, and James B. Aimone. 2018.
Spiking Neural Algorithms for Markov Process Random Walk. In International
Joint Conference on Neural Networks 2018. IEEE.

[24] William Severa, Ojas Parekh, Kristofor D Carlson, Conrad D James, and James B
Aimone. 2016. Spiking network algorithms for scientific computing. In Rebooting
Computing (ICRC), IEEE International Conference on. IEEE, 1–8.

[25] William Severa, Craig M. Vineyard, Ryan Dellana, Stephen J. Verzi, and James B.
Aimone. In Press. Training deep neural networks for binary communication
with the Whetstone method. Nature: Machine Intelligence (In Press).

[26] John M Shalf and Robert Leland. 2015. Computing beyond moore’s law. Computer
48, 12 (2015), 14–23.

[27] Stephen J Verzi, Fredrick Rothganger, Ojas D Parekh, Tu-Thach Quach, Nadine E
Miner, CraigMVineyard, Conrad D James, and James BAimone. 2018. Computing
with spikes: The advantage of fine-grained timing. Neural computation (2018),
1–31.

[28] M Mitchell Waldrop. 2016. The chips are down for Moore’s law. Nature News
530, 7589 (2016), 144.

[29] Wikipedia. 2019. Dynamic programming. https://en.wikipedia.org/wiki/
Dynamic_programming

[30] GV Wilson and GS Pawley. 1988. On the stability of the travelling salesman
problem algorithm of Hopfield and Tank. Biological Cybernetics 58, 1 (1988),
63–70.

[31] Haoduo Yang, Huayou Su, Mei Wen, and Chunyuan Zhang. 2018. HPGA: A
High-Performance Graph Analytics Framework on the GPU. In 2018 International
Conference on Information Systems and Computer Aided Education (ICISCAE).
IEEE, 488–492.

https://doi.org/10.3389/fnins.2019.00666
https://doi.org/10.3389/fnins.2019.00666
https://developer.nvidia.com/nvgraph
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Dynamic_programming

	Abstract
	1 Introduction
	2 Basic components of neural algorithms
	2.1 Spiking Neural Architectures
	2.2 Relationship of neural algorithms and graphs

	3 Spiking Graph Algorithms
	3.1 Shortest paths and Dijkstra's Algorithm
	3.2 Spiking graph algorithm for shortest paths
	3.3 Constructing a shortest path

	4 Spiking Algorithms for Dynamic Programming
	4.1 An Overview of Dynamic Programming
	4.2 Neuromorphic Computing for Dynamic Programming
	4.3 Longest increasing subsequence
	4.4 Longest path in a directed-acyclic graph (DAG)

	5 Conclusions and Future Work
	References

