
A Fill Estimation Algorithm for Sparse Matrices and Tensors in Blocked Formats

Peter Ahrens, Helen Xu, and Nicholas Schiefer
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, Massachusetts USA
pahrens@mit.edu, hjxu@mit.edu, and schiefer@mit.edu

Abstract—Many sparse matrices and tensors from a variety
of applications, such as finite element methods and computa-
tional chemistry, have a natural aligned rectangular nonzero
block structure. Researchers have designed high-performance
blocked sparse operations which can take advantage of this
sparsity structure to reduce the complexity of storing the
locations of nonzeros. The performance of a blocked sparse
operation depends on how well the block size reflects the
structure of nonzeros in the tensor. Sparse tensor structure
is generally unknown until runtime, so block size selection
must be efficient. The fill is a quantity which, for some block
size, relates the number of nonzero blocks to the number of
nonzeros. Many performance models use the fill to help choose
a block size. However, the fill is expensive to compute exactly.

We present a sampling-based algorithm called PHIL to
estimate the fill of sparse matrices and tensors in any format.
We provide theoretical guarantees for sparse matrices and
tensors, and experimental results for matrices. The existing
state-of-the-art fill estimation algorithm, which we will call
OSKI, runs in time linear in the number of elements in the
tensor. The number of samples PHIL needs to compute a fill
estimate is unrelated to the number of nonzeros and depends
only on the order (number of dimensions) of the tensor, desired
accuracy of the estimate, desired probability of achieving this
accuracy, and number of considered block sizes. We compare
PHIL and OSKI on a suite of 42 matrices. On most inputs,
PHIL estimates the fill at least 2 times faster and often more
than 20 times faster than OSKI. PHIL consistently produced
accurate estimates — in all cases that we tested PHIL was
faster and/or more accurate than OSKI. Finally, we find that
PHIL and OSKI produce comparable speedups in multicore
blocked sparse matrix-vector multiplication (SpMV) when the
block size was chosen using fill estimates in a model due to
Vuduc et al.

Keywords-Fill Estimation; Sparse Matrix; Sparse Tensor;
Block Sparse; Block Size Selection; Randomized Algorithm;
Sampling Algorithm; Autotuning; Performance Engineering;
Performance Model; Numerical Linear Algebra; Phil

I. INTRODUCTION

Matrices and tensors (multidimensional generalizations
of matrices) are considered sparse when they contain far
more zero entries than nonzero entries. Sparse matrices and
tensors allow performance engineers to write algorithms and
data structures with complexity proportional to the number
of nonzero entries, leading to substantial improvements in
performance over dense implementations.

Sparse matrices and tensors have applications across a
diverse range of domains [1], [2]. For example, sparse

tensors have applications in review systems [3], quantum
chemistry [4], and natural language processing [5]. Sparse
matrix-vector multiplication is one of the most heavily
used numerical kernels in scientific computing. Parallel
implementations of this numerical kernel are usually limited
by memory bandwidth [6], [7].

Sparse storage formats provide benefits over dense storage
by only storing and operating upon the nonzeros. The
increased complexity of data structures that can describe
the irregular locations of nonzeros in these formats, however,
poses a significant challenge to algorithm designers and
performance engineers. Several storage formats for matrices
and tensors reduce this complexity by taking advantage of
structural patterns in the locations of nonzeros [2], [7]–[10].

We focus on regular blocked formats, which store aligned
rectangular dense blocks of nonzeros instead of storing the
nonzeros individually. Blocked formats reduce memory traffic
and improve the efficiency of parallel sparse operations.
Computations over dense blocks also admit more performance
optimizations than computations over individual nonzeros [9].
Several sparse matrices and tensors in scientific computing
lend themselves naturally to blocked structures. For example,
sparse matrices arising from finite element methods [11] and
sparse tensors arising in quantum chemistry [12] both exhibit
regular block structure.

The performance of a blocked sparse operation depends on
how the architecture responds to a block size and how well
the block size reflects the structure of the sparse tensor. Thus,
block size choice is critical to the performance of any blocked
storage format. Vuduc et al. show that choosing the correct
blocking can speed up sparse matrix-vector multiplication
by a more than a factor 2 on matrices with a blocked
structure [13]. Since zeros in the dense blocks must be
stored explicitly, an ideal blocking scheme would perform
well on the given architecture while minimizing the “filling
in”, or explicit representation, of zeros. Im et. al. proposed a
performance model of blocked sparse matrix multiplication
which depends on a quantity called the fill, or the ratio of
introduced zeros to the original number of nonzeros [14].
Many subsequent performance models for matrices have been
formulated in terms of the fill or directly related quantities [6],
[11], [13]–[20]. In the absence of an efficient fill estimation
algorithm, block size selection for sparse tensors has been
limited to empirical search [21].

c©2018 IEEE. Reprinted, with permission, from, “A Fill Estimation Algorithm for Sparse Matrices and Tensors in Blocked Formats,”
by Peter Ahrens, Helen Xu, and Nicholas Schiefer in IEEE International Parallel and Distributed Processing Symposium May 2018.

The structure of the sparse tensor is generally not known
before runtime. Thus, block size selection must occur
at runtime and therefore be efficient. Computing the fill
dominates the cost of block size selection and is too costly
to compute exactly for all potential block sizes, taking
more than hundreds of times the cost of a sparse matrix-
vector multiplication. Previously, Vuduc et. al. described an
algorithm, which we call OSKI, for estimating the fill of a
sparse tensor [11]. OSKI estimates the fill by computing the
exact fill on a random selection of rows and then averaging.
However, the fill may vary substantially between rows,
leaving OSKI vulnerable to several cases of pathological
inputs. No theoretical analysis of OSKI has been given,
and we show several real-world example matrices on which
OSKI consistently produces erroneous results.

A. Contributions

We describe PHIL, the first fill estimation algorithm with
provable guarantees for sparse matrices and tensors. At a high
level, PHIL repeatedly samples a nonzero entry in the tensor,
finds neighboring nonzeros, then computes the number of
nonzero elements each block containing that entry for all
relevant block sizes.

OSKI runs in time linear in the number of nonzeros and
is described only for matrices in CSR format. We provide an
exact bound on the number of samples that does not depend
on the number of nonzeros in the tensor. As long as the
tensor storage format allows fast (sublinear in the size of the
input) access to elements of the tensor, PHIL runs in time
sublinear in the number of nonzeros. However, PHIL does
not require a specific tensor storage format.

Given a tensor of order R (a tensor with R dimen-
sions) and a maximum block size B, PHIL only needs
B2R ln(2BR/δ)/(2ε2) samples to compute a result to within
ε relative error with probability at least 1 − δ. In addition
to the time taken to find the neighboring nonzeros, each
sample (for all BR block sizes) can be processed with
(R + 1)(2B)R integer additions and BR floating point
divisions and additions. We later explain how PHIL can be
extended to consider arbitrarily large block sizes by limiting
attention to multiples of some base block size.

We experimentally evaluate PHIL and OSKI on a suite
of sparse matrices. We demonstrate that in almost all cases
PHIL provides more accurate estimates than OSKI in half
the time, often outperforming OSKI by more than a factor
of 20. PHIL consistently provided accurate results even
when OSKI produced results with a complete loss of
accuracy. In all cases we tested, PHIL was faster and/or more
accurate than OSKI. We used the Tensor Algebra Compiler
(TACO) to generate parallel blocked sparse matrix vector
multiplication kernels [22]. PHIL and OSKI produced fill
estimates that resulted in almost identical sparse matrix-vector
multiplication times when the performance model proposed
by Vuduc et al. was used to select a block size [13].

II. BACKGROUND

In this section we introduce tensor notation, various sparse
tensor representations, and blocking schemes. We conclude
the section by describing the fill estimation problem and
related previous work.

A. Tensors

Throughout this paper, we discuss order-R tensors in a
particular orthogonal basis. That is, tensors are R-dimensional
arrays of elements over some field F, usually the real or
complex numbers. We denote tensors by capital script letters
A and vectors by lowercase boldface letters a.

The element of a order-R tensor A ∈ FI1×I2×···×IR ad-
dressed by a coordinate made up of R indices (i1, i2, . . . , iR)
where 1 ≤ ir ≤ Ir is denoted A[i1, i2, . . . , iR]. For
compactness of notation, we sometimes specify a coordinate
as an R-component vector i = (i1, i2, . . . , iR). We represent
the range of indices i, i + 1, . . . , i′ with the syntax i : i′.
We represent a range of coordinates with the syntax i : i′,
meaning (i1 : i′1)× · · · × (iR : i′R). Subtensors are formed
when we fix a subset of coordinates. We also use : without
bounds to indicate all elements along a particular dimension.
Thus, the middle n/2 columns of a matrix A ∈ Fn×n would
be written A[:, n/4 : 3n/4].

We denote the number of nonzero entries in a tensor A as
k(A). When we compare a vector to a scalar, our comparison
is true if and only if the comparison is true for each entry
of the vector pointwise. For convenience, we occasionally
redefine the starting coordinate of a tensor. Thus, A ∈ FI:I′

is an (I ′1−I1+1)×· · ·×(I ′R−IR+1) tensor whose smallest
coordinate is I and largest coordinate is I′.

B. Sparse Tensor Representations

Most sparse formats store only the coordinates which
correspond to nonzeros and the nonzero values themselves.
While we discuss a few specific formats, note that our
algorithm applies to any sparse tensor format which admits
iteration over nonzero coordinates.

The simplest sparse matrix and tensor format is Coordinate
(COO) [2]. In this format, all coordinates which correspond
to nonzeros are stored in an unordered list. Entries are stored
in sorted order of their coordinates.

Perhaps the most popular sparse matrix format is the
Compressed Sparse Row (CSR) [8] sparse matrix format.
In CSR format, the indices of nonzeros in each row are
stored in sorted order. Each row has an associated list of
coordinates of nonzeros. The nonzeros are stored in a single
array with the same ordering as their coordinates. CSR can
be extended to a tensor format in many ways [2], such as
Compressed Sparse Fiber (CSF) [22], [23]. In CSF format,
each coordinate i is stored in a tree structure where a node
in level r represents an index ir which corresponds to a set
of nonzeros. CSR is the matrix case of CSF.

To decrease the complexity of storing the coordinates
of individual nonzeros, performance engineers may store
blocks of nearby nonzeros together. Blocked formats can
reduce the memory usage of sparse operations by reducing the
complexity of locating nonzeros. Programmers and compilers
can optimize linear algebra on small dense blocks using
standard techniques such as loop unrolling, register and cache
blocking, and instruction-level parallelism. The effectiveness
of these optimizations depends heavily on the structure of
the tensor and the blocked storage format [9], [24].

Proposed blocked storage formats are diverse, altering
parameters such as the size and alignment of blocks, or the
storage format for locations of blocks and nonzeros within
blocks [9]. Some formats involve reordering to improve the
block structure of the tensor (in this case, blocks may not
represent contiguous entries in the original tensor) [8], [10].

In this paper, we focus on regular blocking for simplicity,
where the aligned rectangular blocks are of equal size and
represent contiguous entries in the original tensor. For our
experiments, we will use a simple variant of CSR called
Blocked Compressed Sparse Row (BCSR) [8], where the
locations of the nonzero blocks are recorded using CSR
format. The BCSR format can be extended naturally to
(BCSF) format to support higher-dimensional tensors as
well [21], [22]. In BCSR and BCSF, each block is stored in
a dense format, with zeros represented explicitly, and only
blocks which contain nonzeros are stored.

C. Regular Blocking

Definition II.1. A blocking scheme b of a tensor
A ∈ FI1×I2×···×IR is parameterized by a vector b =
(b1, b2, . . . , bR) of block sizes. The blocking scheme induced
by b is a partition ofA into R-dimensional subtensors with br
entries along the rth dimension. Thus, a nonzero at coordinate
i would be stored at the block coordinate(⌈

i1
b1

⌉
,

⌈
i2
b2

⌉
, . . . ,

⌈
iR
bR

⌉)
.

We present an example of a blocking scheme in a sparse
matrix in Figure 1. Blocked formats like BCSR may fill in
the empty slots of nonempty blocks with explicit zeros.

D. Fill Estimation

Since the performance of blocked sparse tensor operations
depends on the block size and the structure of the tensor,
our goal is to choose the block size that gives the best
performance for our given tensor. In blocked sparse formats
that store dense blocks, larger blocks generally allow more
opportunities for performance optimization. However, if the
blocks do not capture the structure of the tensor, we will
waste time computing with explicitly represented zeros.

We want to find a blocking scheme that includes all of
the nonzero entries of A in very few blocks. Thus, we are
interested in the number of blocks containing a nonzero under

Figure 1. On the left, a sparse matrix before blocking. On the right, the
same sparse matrix after blocking. The squares denote nonzero elements and
circles are explicit zeros that are introduced due to the storage format. In this
example, the blocking scheme b = (2, 3) and kb(A) = 12. The number of
nonzero elements k(A) = 30, so the fill fb(A) = (2×3×12)/30 = 2.4.

the blocking scheme b, which we denote kb(A). Notice that
k1(A) = k(A), since tiling A into unit-size blocks will have
exactly one non-empty block for every nonzero. The fill is a
metric which uses the number of nonzero blocks to formally
express this notion of blocking scheme quality:

Definition II.2 ([14]). The fill of a tensor A with respect
to a particular blocking scheme b is the ratio

fb(A) =
b1b2 · · · bRkb(A)

k(A)
.

That is, the fill is the ratio of the number of entries in
nonempty blocks in the blocking scheme b of A to the
number of nonzeros in A. Where it is clear which tensor we
refer to, we often write the fill as fb. For a fixed number
of nonzeros, the fill fb(A) is directly proportional to the
number of nonzero blocks kb(A).

The fill was first defined by Im et. al., and later used in
several BCSR matrix-vector multiply performance prediction
models [11], [13]–[18]. The fill has also been used to select
block sizes for sparse triangular solve and sparse ATAx [11].
The number of nonzero blocks (proportional to the fill) has
been used in performance models for general blocked format
sparse matrix-vector multiply [6], [19], [20]. Block size
selection remains a difficult problem for tensors as it is
difficult to estimate the fill, so developers have adopted
empirical search techniques [21]. An estimate of the fill
could easily be added as an additional feature in feature-based
machine learning approaches to sparse kernel performance
modeling [25].

As an example, we explain the simple performance model
for blocked sparse matrix-vector multiply given in [13]. There
are more accurate performance models which still depend on
the fill, but our focus is on fill estimation and not performance
modeling. It was later shown that, when the fill was known
exactly, performance of the resulting blocking scheme was
optimal or near-optimal (within 5%) [11].

Once per machine, we compute a profile of how the
machine performs for each block size. Let Pb be the

performance of the machine (in flop/s) on a dense matrix
stored with blocking scheme b. Pb is a measure of how
efficiently we can process nonzeros when nonzeros are stored
in blocks of size b. We can estimate the performance of the
machine on the BCSR format ofA as Pb/fb(A), then choose
a block size which maximizes the estimated performance.

For dense blocks in matrices, we care only about block
sizes b1 × b2 that are small enough to fit b1 input, b2 output,
and at least one matrix element in registers. This usually
limits our attention to b1, b2 ≤ 12 [11]. Thus, our problem
is to quickly compute an estimate of the fill for these block
sizes with reasonable accuracy.

Problem II.1 (Fill Estimation). Given a tensor A and a max-
imum block size B, compute a (randomized) approximation
Fb(A) with error at most ε > 0 such that

(1− ε)fb(A) ≤ Fb(A) ≤ (1 + ε)fb(A)

for all (square or rectangular) block sizes b ≤ B, with
probability at least 1− δ where 0 < δ < 1. Equivalently, we
want to compute a random variable Fb(A) such that

Pr

[
max
b≤B

|fb − Fb|
fb

> ε

]
≤ δ .

Since fb(A) differs from kb(A) by a multiplicative
factor of b1b2 · · · bR/k(A) (which can easily be computed in
constant time), estimating the fill is equivalent to estimating
the number of nonzero blocks.

E. Previous Work

Exact computation of the fill for many block sizes is
computationally intractable in comparison to the cost of a
sparse matrix-vector multiplication. There has been a recent
attempt to parallelize the computation on matrices [26].
However, it was only able to provide competitive results
by drastically reducing the number of quantities estimated.

To our knowledge, only one previously proposed algorithm
estimates the fill instead of computing it exactly [11], [15].
Since the algorithm is implemented in the Optimized Sparse
Kernel Interface (OSKI) library, we will refer to it as
OSKI [17]. For each block row size 1 ≤ b1 ≤ B, OSKI
samples a fraction of block rows. For each sampled block row,
OSKI computes the fill exactly for all block column sizes
1 ≤ b2 ≤ B simultaneously. OSKI does this by iterating
through coordinates i of nonzeros in the block row and using
a perfect hash table for each block column size to record
the number of unique block column coordinates di2/b2e
seen. The fraction of block rows evaluated is specified by a
parameter σ which is usually set to 0.02.

Although OSKI can estimate the fill of most matrices, it
does not give predictable results. In our work, we show that
it is vulnerable to special cases. To our knowledge, there are
no theoretical guarantees on the accuracy of OSKI, and no
existing algorithm which estimates the fill of tensors.

III. THE ALGORITHM

We begin with a high-level summary of PHIL, our
sampling-based fill estimation algorithm. Suppose we want
to estimate the fill of a sparse tensor A given a maximum
block size B. PHIL repeatedly samples a coordinate i of a
nonzero with replacement from A. For each blocking scheme
b ≤ B, it computes the number zb(A, i) of nonzero entries
in the block that i appears in under the blocking scheme b,
which it uses to estimate the fill.

PHIL computes zb(A, i) efficiently by using prefix sums
to minimize redundant work. Once we find the coordinates
of all nonzeros near i, we use multidimensional prefix sums
(cumulative sums) to compute zb(A, i) for all blocking
schemes b ≤ B in less than (R+1)(2B)R integer additions.
Note that B and R are both expected to be small, and we
are computing BR separate quantities.

We define Fb, a quantity proportional to the average of
the reciprocals 1/zb(A, i), and show that Fb is an unbiased
estimator for the fill fb (a random variable with expectation
equal to the fill). In Theorem III.1 we give a concentration
bound for Fb, showing that PHIL solves the fill approximation
problem as long as we use enough samples. We include a
proof and discussion of Theorem III.1 in Section IV.

Theorem III.1. If we sample at least

S ≥ S0 =
B2R

2ε2
ln

(
2BR

δ

)
samples with replacement, then

Pr

[
max
b≤B

|fb − Fb|
fb

≤ ε
]
≥ 1− δ .

The required number of samples S0 is independent of the
number of nonzeros k(A). S0 depends only on the desired
accuracy and desired probability of attaining such accuracy.
The required number of samples is constant with respect to
the problem size. This is a clear advantage for large tensors
where performance engineering matters the most.

A. Fill Estimation

We describe how PHIL computes an unbiased estimator
for the fill. First, we introduce a few important definitions
for working with blocking schemes on tensors:

Definition III.1. The head of a block is the unique coordi-
nate in the block with the lowest index along all dimensions.
For any coordinate i, let hb(i) denote the head of i’s block
under the blocking scheme b. Similarly, the tail of a block
is the unique coordinate in the block with the highest index
along all dimensions. For any coordinate i, let tb(i) denote
the tail of i’s block under b.

Let xb(A, i) be defined on each coordinate i of a nonzero
of A as:

xb(A, i) =
1

zb(A, i)
=

1

k(A[hb(i) : tb(i)])
,

where zb(A, i) is the number of nonzeros in the block of i
under blocking scheme b. Thus, xb(A, i) is the reciprocal
of the number of nonzeros in i’s block.

PHIL averages xb(A, i) over S coordinates i1, i2, . . . , iS
sampled with replacement from the set of coordinates of
nonzeros in A. The average of xb(A, i) over all i is closely
related to the fill, so we compute the fill estimate Fb as:

Definition III.2. For all b ≤ B:

Fb :=
b1b2 · · · bR

S

S∑
j=1

xb(A, ij)

Theorem III.2. For any blocking scheme b, the random
variable Fb is an unbiased estimator for the fill: that is,
E[Fb] = fb(A).

Proof: Notice that the sum of xb(A, i) over all of the
nonzeros i within a particular block is 1 if the block is not
empty. Thus, the sum of xb(A, i) over all nonzeros i in A is
equal to kb(A), the number of blocks that contain nonzeros.
Thus, we may multiply the average of xb(A, i) over i by
b1b2 · · · bR to obtain an estimator of fb(A, i), by definition.

Next, we describe how PHIL computes Fb in Algo-
rithm III.1.

Algorithm III.1. Given a sparse tensor A ∈ FI1×I2×···×IR ,
i, and B, compute an approximation to fb(A, i) for all block
sizes b ≤ B. Note that A may be stored in a sparse format,
whereas all other tensors are stored in a dense format.
Require:

0 ≤ δ ≤ 1 , ε > 0 , B ≥ 1
1: function ESTIMATEFILL(A, B, ε, δ)
2: Y ∈ RB×···×B
3: F ∈ RB×···×B
4: S ←

⌈
B2R

2ε2 ln
(

2BR

δ

)⌉
.

5: Y ← 0
6: for i ∈ sample of size S with replacement from the

nonzero coordinates of A do
7: Y ← Y + COMPUTEX (A, B, i)
8: for b ∈ B × · · · ×B do
9: F [b]← b1b2···bRY[b]

s

10: return F
Ensure:

(1− ε)fb(A) ≤ F [b] ≤ (1 + ε)fb(A) with probability
at least (1− δ).

B. COMPUTEX
We could compute xb(A, i) for a sample coordinate i by

looking up how many nonzeros are in the block corresponding
to i and returning the reciprocal. However, finding the number
of nonzeros in a block takes time linear in the number of
nonzeros in that block (in addition to the cost of finding

these coordinates) and therefore could potentially take time
BR in an order-R tensor.

PHIL reuses the computations of xb(A, i) for the same i
over different blocking schemes b. After finding the locations
of all the nonzeros within a B radius of a nonzero at
coordinate i, we can compute xb(A, i) for all b ≤ B at
the same time. This is described in Algorithm III.2 and
illustrated in Figure 2.

Algorithm III.2. Given a sparse tensor A ∈ FI1×I2×···×IR ,
i, and B, compute xb(A, i) for all blocking schemes b ≤ B.
Note that A may be stored in a sparse format, whereas all
other tensors are stored in a dense format.
Require:
A[i] 6= 0 , B ≥ 1

1: function COMPUTEX (A, i, B)
2: Z0 ∈ Ni−B:i+B−1

3: Z0 ← 0
4: for j ∈ NONZEROSINRANGE(A, i−B, i+B−1) do
5: Z0[j]← 1

6: for r ∈ 1 : R do
7: for j ∈ ir −B + 1 : ir +B − 1 do
8: Z0[:, . . . , :, j︸ ︷︷ ︸

r

, :, . . . , :]← Z0[:, . . . , :, j︸ ︷︷ ︸
r

, :, . . . , :]+

Z0[:, . . . , : j − 1︸ ︷︷ ︸
r

, :, . . . , :]

9: for b1 ∈ 1 : B do
10: Z1 ← Z0[tb1(i1), :, . . . , :︸ ︷︷ ︸

r−1

]−Z0[hb1(i1)−1, :, . . . , :︸ ︷︷ ︸
r−1

]

11: for b2 ∈ 1 : B do
12: Z2←Z1[tb2(i2), :, . . . , :︸ ︷︷ ︸

r−2

]−Z1[hb2(i2)−1, :, . . . , :︸ ︷︷ ︸
r−2

]

...

13: for bR ∈ 1 : B do
14: ZR ← ZR−1[tbR(iR)]−ZR−1[hbR(iR)− 1]
15: X [b]← 1

ZR

Ensure:
X [b]← xb(A, i)

The main idea behind COMPUTEX is to create a tensor Z0

corresponding to the number of nonzeros of A in subtensors
surrounding i. We can use the differences in the number of
nonzeros in the subtensors to find the number of nonzeros
in the desired block.

More formally, we construct some Z0 ∈ Ni−B:i+B−1 such
that Z0[j] is equal to the number of nonzeros in the subtensor
A[i − B : j]. In one dimension, we can compute zb(A, i)
as Z0[tb(i)] − Z0[hb(i) − 1]. In two dimensions, we can
compute zb(A, i) as Z0[tb(i)]− Z0[tb1(i1), hb2(i2)− 1]−
Z0[hb1(i1)− 1, tb2(i2)] + Z0[hb(i)− 1].

The core of COMPUTEX is the computation of Z0. We
initialize Z0[j] to 1 if A[j] 6= 0 and 0 otherwise. Then, we

take a prefix sum along each dimension in turn. After the first
prefix sum, Z0[j] is the number of nonzeros in A[i1 − B :
j1, j2, . . . , jR]. After the rth prefix sum, Z0[j] is the number
of nonzeros in A[i1 −B : j1, . . . , ir −B : jr, jr+1, . . . , jR].
After the Rth prefix sum, we have computed Z0.

We find the number of nonzeros in each block (zb(A, i))
using differences between elements of Z0. For each value of
b1, we set Z1[j2, . . . , jR] to the number of nonzeros in the
subtensor A[hb1(i1) : tb1(i1), i2 − B : j2, . . . , iR − B : jR]
as Z0[tb1(i1), j2, . . . , jR]−Z0[hb1(i1)− 1, j2, . . . , jR].

Having computed Z1 for a particular value of b1, then
for each value of b2 we take differences between elements
of Z1 to compute Z2, where Z2[j3, . . . , jR] is the number
of nonzeros in the subtensor A[hb1(i1) : tb1(i1), hb2(i2) :
tb2(i2), i3−B : j3, . . . , iR−B : jR]. Continuing in this way,
ZR is just the scalar zb(A, j).

Each prefix sum takes at most (2B)R additions to compute,
and we compute R prefix sums. In the final loop, Zr is of size
(2B)R−r. We must compute Zr exactly Br times. Therefore,
the block difference computation incurs

∑R
r=1 2

−r(2B)R

subtractions. Thus, COMPUTEX uses at most (R+1)(2B)R

integer additions to compute Z .

C. NONZEROSINRANGE

Since A may be stored in an arbitrary sparse format, we
abstract the process of finding the coordinates of nonzeros
within a certain range into an algorithm called NONZEROS-
INRANGE. NONZEROSINRANGE(A, j, j′) returns a list of
all i ∈ j : j′ such that A[i] 6= 0.

The implementation of NONZEROSINRANGE depends on
the initial format of the sparse matrix A. We discuss two
implementations to show why this routine should not be
costly in theory or practice.

If A is a matrix in CSR format (where coordinates of
nonzeros in each row are stored in sorted order of their
column index), then using a binary search within each
row provides an O(B log2(I2) + B2) time implementa-
tion, where the B2 term reflects the maximum number
of coordinates that may need to be returned. This search
technique generalizes to tensors in CSF format, yielding an

O

(
R∑
r=2

Br−1 log2(Ir) +BR
)

time implementation.

We now describe an implementation of NONZEROSIN-
RANGE for a tensor A stored in any other format (e.g. COO).
Before we run ESTIMATEFILL, we block the entire tensor
A into blocks of size B × · · · × B and store the blocks
in a sparse format (without explicit zeros). We store each
block that contains at least one nonzero in a hash table.
NONZEROSINRANGE is only ever called with ranges of size
2B×· · ·×2B and only needs to look up the 3R blocks which
might contain zeros in the target range, scan through these
blocks to find nonzeros which are actually in the target range,
and return these nonzeros. The entire algorithm has a setup
time of O(k(A)) and an individual query time of O(3RBR).

Figure 2. Here we visualize the execution of COMPUTEX as it computes
one element of its output X . Specifically, we show how it computes
xb(A, i) = X [b]. In this example, our maximum block size is B = 3 and
our nonzero of interest is i = (7, 8). Continuing our example in Figure 1,
we will show computation of X only for the blocking scheme b = (2, 3).
Our goal is to compute the reciprocal of the number of nonzero elements
in i’s block (depicted by the shaded region).

1 1 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 1 0

0 1 0 1 0 0

0 0 0 1 1 0

(a) First, COMPUTEX uses NONZEROSINRANGE to find the nonzeros within
a box of size 2B around i. Then, it creates a matrix of the same size as the
box and fills it with 0 where there are zeros in the original matrix and 1 where
there are nonzeros.

1 2 2 2 2 2

0 0 0 0 0 0

0 1 1 1 1 1

0 0 1 2 3 3

0 1 1 2 2 2

0 0 0 1 2 2

1 2 2 2 2 2

1 2 2 2 2 2

1 3 3 3 3 3

1 3 4 5 6 6

1 4 5 7 8 8

1 4 5 8 10 10

(b) Next, COMPUTEX performs a prefix sum on the rows and then columns
of the matrix. Notice that element j of the matrix is now equal to the number
of nonzero elements in the box extending from the upper left of the matrix to
element j.

1 2 2 2 2 2

1 2 2 2 2 2

1 3 3 3 3 3

1 3 4 5 6 6

1 4 5 7 8 8

1 4 5 8 10 10
(c) Finally, COMPUTEX computes the number of elements in the desired
block by subtracting the number of nonzeros in each medium sized box from
the large box, and adding back in the small box to avoid double-counting.
Since all of these boxes begin in the upper left corner of our matrix, the
number of nonzeros in these boxes are given by the prefix sum results in
their lower right corners. The difference operation tells us that the shaded
region contains 8 − 4 − 3 + 3 = 4 nonzeros. Thus, xb(A, i) = 1/4. At
this point, it is easy to compute xb(A, i) for different b by repeating the
difference operation with different blocks.

IV. ANALYSIS

We want to select the number of samples, S, as small
as possible for efficiency while still having provable guar-
antees on the concentration of our unbiased estimator∑
j xb(A, ij)/S. We use Hoeffding’s inequality [27] as a

concentration bound for sampling with replacement.

Theorem IV.1 (Hoeffding’s inequality). Let
X1, X2, . . . , XM be M independent random variables
bounded such that 0 ≤ Xj ≤ 1. Let X = 1

M

∑M
j=1Xj be

their mean. Then for any t ≥ 0,

Pr
[∣∣X − E[X]

∣∣ ≥ t] ≤ 2 exp(−2Mt2) .

For any blocking scheme b and any tensor element
i, the value xb(A, i) is a random variable bounded be-
tween 0 and 1. Furthermore, since the entries i1, i2, . . . , iS
are sampled independently from among the nonzeros, the
random variables xb(A, i1), xb(A, i2), . . . , xb(A, iS) are
independent. Therefore, we obtain our concentration bound
from Theorem IV.1:

Theorem IV.2 (Restatement of Theorem III.1). If we sample
at least

S ≥ S0 =
B2R

2ε2
ln

(
2BR

δ

)
samples with replacement, then

Pr

[
max
b≤B

|fb − Fb|
fb

≤ ε
]
≥ 1− δ .

Proof: We have Fb = b1b2 · · · bR(1/S)
∑S
j=1 xb(A, ij)

by definition. By Theorem III.2, E[Fb] = fb. Since each
examined block contains at least 1 and at most BR nonze-
ros, xb(A, i1), xb(A, i2), . . . , xb(A, iS) are independent and
bounded between 1/BR and 1. Similarly, kb(A)/k(A) in
Definition II.2 is bounded to the same range. By Theo-
rem IV.1,

Pr

[
|fb − Fb|

fb
≥ ε
]
= Pr

[∣∣∣∣Fb − E[Fb]

b1b2 · · · bR

∣∣∣∣ ≥ ε fb
b1b2 · · · bR

]
≤ 2 exp

(
−2S

(
εkb(A)
k(A)

)2
)
≤ 2 exp

(
−2Sε2

B2R

)
,

since Fb is b1b2 · · · bR times an average of S values, each
of which is at least 1/BR. By the union bound over the BR

possible blocking schemes b,

Pr

[
max
b≤B

|fb − Fb|
fb

≥ ε
]
≤ 2BR exp

(
−2Sε2

B2R

)
.

Therefore, if S ≥ S0 = B2R

2ε2 ln
(

2BR

δ

)
,

Pr

[
max
b≤B

|fb − Fb|
fb

≥ ε
]
≤ δ .

Note that this bound is constant with respect to the number
of nonzeros k(A), which is highly advantageous when S �
k(A). Obtaining a high probability bound with δ ≤ 1/k(A)w
for some w would indeed require dependence on k(A), albeit
only logarithmically. However, in practice a small constant
δ such as 0.01 likely suffices.

If strong guarantees are desired, such as with matrix (R =
2) settings of B = 12, ε = 0.1 and δ = 0.01, it is possible
that the number of required samples (10,645,998) exceeds the
number of nonzeros in smaller matrices. This is fundamental
to bounds based on sampling with replacement. If we sample
without replacement, we can apply a recent result using
the Hoeffding-Serfling inequality to obtain a bound which
scales with the number of nonzeros [28]. This bound is more
complicated to describe, and requires the implementation
to generate samples without replacement. Furthermore, this
bound would still require sampling a significant fraction of
the nonzeros.

Instead, we suggest that implementers who need strong
guarantees on small problems use an efficient exact algorithm
or lower the maximum block size B (in our example, B = 4
needs only 103,308 samples). We show in the next section
that PHIL empirically provides far more accurate estimates
than the worst-case guaranteed theoretical bound. In practice,
for B = 12, running PHIL with ε = 3 and δ = 0.01 (11,829
samples) results in a mean maximum relative error of at most
0.05 for all cases we tested. PHIL still produces an accurate
estimate even when run with relaxed guarantees.

V. RESULTS

We implemented1 PHIL for sparse matrices in CSR format
in C, which can efficiently execute the dense integer and
floating point operations in Algorithm III.2. We compare
PHIL to the competing algorithm described in [11], which
we will refer to as OSKI. We use a test suite inspired
by matrices from [11] designed to test fill estimation.
We also include some synthetic matrices we generated
to test worst-case behavior. Our test suite is summarized
in the first few columns of Table 3. We find that PHIL
computes the fill more accurately in much less time than
OSKI for a wide range of matrices in our test suite. We
also find that when using optimized BCSR matrix-vector
multiplication routines generated by the Tensor Algebra
Compiler (TACO) [22] and the performance model given
in [13] (described in Section II), the estimates produced
by PHIL yield BCSR matrix-vector multiply performance
comparable to the performance obtained using estimates from
OSKI.

A. System

We ran all of our experiments on a node with two sockets,
each with a 12-core Intel R© XeonTM Processor E5-2695 v3

1Our code is available under the BSD 3-clause license at
https://github.com/peterahrens/FillEstimation/releases/tag/IPDPS2018

“Ivy Bridge” at 2.4 GHz. Each core has 32 KB of L1 cache
and 256 KB of L2 cache. Each socket has 30 MB of shared
L3 cache.

TACO generates parallel BCSR kernels for each block size
which we ran on one socket with 12 threads. Both PHIL and
OSKI implementations run serially and use the mt19937
random number generator from the C++ Standard Library.

B. Test Cases

In Figure 3, we test our implementation on a suite of 42
matrices inspired by the test set in [11]. All but two are from
the University of Florida Sparse Matrix Collection [1]. These
matrices were chosen to represent a variety of application
domains and block structures.

In Figure 4, we focus on four of these matrices, two of
which were used by Vuduc et al. to measure OSKI [11].
We describe two pathological cases we invented to induce
worst-case behavior in PHIL and OSKI, respectively.
pathological_PHIL is a matrix designed to bring out

the worst in our PHIL algorithm. Let A be a worst case tensor
for some blocking scheme b. Assume for contradiction that
there are nonzero blocks which are not completely full and
contain more than one nonzero. We can add nonzeros to more
than half full blocks and remove nonzeros from more than
half empty blocks to increase the variance of each of each
sample xb(A, i). This increases the variance of the PHIL
estimator Fb(A), which increases the probability that it will
lie farther from its mean. Thus, our worst case matrix has
only completely full blocks and blocks with only one nonzero.
One can show formally that the variance of Fb is maximized
when these two types of blocks occur in equal number. For
our concrete test case, we create a 10, 000× 10, 000 matrix
with 10, 000 full 12× 12 blocks and 10, 000 sparse 12× 12
blocks. PHIL should perform poorly on this matrix.
pathological_OSKI is a matrix designed to bring out

the worst in the OSKI algorithm. Because OSKI samples
rows with equal probability, hiding many blocks which
look different from the rest of the matrix in a single row
should cause OSKI to perform poorly. This matrix is of size
100, 000× 100, 000, and the first 6 rows are dense, while all
other rows have only a single nonzero in the first column.

C. Metrics

Since autotuning algorithms typically run at runtime before
execution of the tuned operation, the speedups gained by
autotuning must be weighed against the execution time of the
algorithm. Since our example operation to autotune is sparse
matrix-vector multiplication, we normalize the time taken
to perform fill estimation by the time it takes to perform a
parallel CSR matrix-vector multiply without blocking.

We use the simple performance model described by Vuduc.
et al. in [13] and summarized in Section II to select a block
size. Since the modeled performance is proportional to the

fill, we judge the quality of a fill estimate using the maximum
relative error.

Definition V.1. The maximum relative error of a fill estimate
f is

max
b≤B

|fb − Fb|
fb

.

Assume that for some fill estimates f the maximum relative
error is ε. Since the performance model is proportional to the
fill, our approximate performance model is accurate to within
a factor of (1+ ε) from the true performance model that uses
the true fill F . We choose the block size maximizing our
approximate model. Consider the best guess block size which
maximizes the true model. Since our approximate models
of both the chosen block size and the best guess is accurate
to within a factor of (1 + ε) from the true model, the true
modeled performance of our chosen block size is at most
a factor of (1 + ε)2 from the true modeled performance of
the best guess. We therefore measure the mean over several
trials of the maximum relative error over all block sizes.
Note that if the maximum relative error is greater than 1, this
represents a complete loss of accuracy, as a bogus algorithm
which returns 0 for the estimated fill of all block sizes would
achieve a better maximum relative error.

D. Experiments

Figure 3 compares the the estimation algorithms in terms
of runtime, mean maximum relative error, and the resulting
BCSR matrix-vector multiply time of the selected block
sizes on our suite of 42 matrices with fixed values of ε, δ,
and σ. The block sizes are chosen using the performance
model in [13] and all blocked and non-blocked matrix-vector
multiplies are performed using TACO [22]. The data shows
that in most cases, PHIL was more accurate and much faster
than OSKI. PHIL always produced results with a mean
maximum relative error less than .05, while in a few cases
OSKI produced results with a mean maximum relative error
which was worse or much worse than 1.

Since PHIL uses a fixed number of samples, normalizing
the runtime of PHIL shows that PHIL takes longer relative to
the parallel CSR matrix-vector multiplication time on smaller
matrices. However, on the larger matrices (when autotuning is
most important) PHIL usually takes at most 10 matrix-vector
multiplies, outperforming OSKI by factors of 10 to 40.

Both the PHIL and OSKI estimates led to remarkably
similar BCSR matrix-vector multiplication times. It may be
possible to improve the chosen block sizes with a more
complex performance model [18], but our focus is on
estimating the fill and not on modeling the performance
of sparse kernels.

Figure 3 also shows that for a fixed setting of parameters,
the runtime and relative error of our fill estimation algorithms
varies substantially from matrix to matrix (although the
relative error of PHIL is consistently small). We wish to

compare the algorithms across all settings of parameters.
Therefore, Figure 4 shows the mean maximum relative error
as a function of the runtime of the estimation algorithm on
four different matrices. Both axes use logarithmic scale.

Figure 4 shows that PHIL provides better estimates of
the fill than OSKI for any amount of time invested. On
these four matrices, PHIL is both more efficient and more
accurate than OSKI. We ran both PHIL and OSKI for longer
on the pathological cases in order to see them produce
good estimates. On pathological_PHIL, PHIL performs
better than OSKI, but the difference is smaller than on the
practical matrices. On pathological_OSKI, OSKI fails
to estimate the fill in any reasonable time.

VI. CONCLUSION

PHIL estimates the fill of a sparse matrix at least 2 times
faster than OSKI on most of our real-world inputs and
provides useful estimates of the fill even in pathological test
cases. We found that PHIL and OSKI produced comparable
speedups in blocked sparse matrix-vector multiply in most
cases using their recommended parameters. PHIL produced
far more accurate estimates of the fill than its worst-case
accuracy guarantee.

Sampling techniques are useful in autotuning since we
can often sacrifice some accuracy in the heuristics for a
faster autotuner. As libraries for numerical computation
evolve and autotuning moves from compile-time to run-time
implementations, developers will need efficient heuristics [29].
This work indicates broader potential for sampling techniques
in the design of autotuned numerical software. The creation
of faster sampling algorithms with provable guarantees will
allow library developers to write software that can more
accurately specialize to user data and provide the best possible
performance for their application and hardware.

A. Future Work

A major motivation in the design of our algorithm was
to express the problem as a dense set of operations that
can be computed efficiently. Future work includes a parallel,
optimized implementation of PHIL and an extension to handle
sparse tensors in multiple storage formats. COMPUTEX
should benefit from instruction-level parallelism. PHIL should
also easily extend to a multicore implementation. Because
PHIL computes different samples independently and PHIL
only reads from the sparse tensor, each thread can compute
a local sum of xb(A, i) which we can reduce at the end.

B. Extensions

Some formats store their blocks in a sparse format [7],
[10]. These blocks are usually much larger than the blocks
mentioned in this paper, but we can extend an algorithm
for Problem II.1 to estimate the fill of larger block sizes by
limiting our attention to multiples of some base block size.

Problem VI.1 (Coarse Fill Estimation). Given a tensor A ∈
FI1×I2×···×IR , a base block size q, and a maximum multiplier
B, compute an approximation Fb(A) accurate to within a
factor of ε for all b where br = b′rqr and 1 ≤ b′ ≤ B with
probability 1− δ.

We can create a tensor A′ ∈ FI′1×I′2×···×I′R where A′[j] is
the number of nonzeros in block j of A under the blocking
scheme q. Notice that fb′(A′) = fb(A), so a solution to
Problem II.1 on A′ is a solution to Problem VI.1 on A.
Since k(A′) ≤ k(A), I′ ≤ I, and we can construct A′ in
O(k(A)) time, most algorithms (including PHIL) that solve
Problem II.1 can solve Problem VI.1 with an addition of
O(k(A)) to their asymptotic running time.

ACKNOWLEDGMENT

This research was supported in part by an Intel ISTC grant,
a Darpa XDATA grant, Aramco, NSF Grants DMS-1312831,
1314547 and 1533644, as well as a DOE Computational Sci-
ence Graduate Fellowship DE-FG02-97ER25308, a National
Physical Sciences Consortium Fellowship, and an Akamai
Presidential Fellowship. Thanks to Jiajia Li, Richard Vuduc,
Charles Leiserson, Saman Amarasinghe, and David Karger
for the helpful discussions.

REFERENCES

[1] T. A. Davis and Y. Hu, “The university of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software,
vol. 38, no. 1, pp. 1–25, Nov. 2011.

[2] B. W. Bader and T. G. Kolda, “Efficient MATLAB Compu-
tations with Sparse and Factored Tensors,” SIAM Journal on
Scientific Computing, vol. 30, no. 1, pp. 205–231, Jan. 2008.

[3] J. McAuley and J. Leskovec, “Hidden factors and hidden
topics: understanding rating dimensions with review text.”
ACM Press, 2013, pp. 165–172.

[4] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and
J. Demmel, “A massively parallel tensor contraction framework
for coupled-cluster computations,” Journal of Parallel and
Distributed Computing, vol. 74, no. 12, pp. 3176–3190, Dec.
2014.

[5] A. Carlson, J. Betteridge, B. Kisiel, and B. Settles, “Toward
an Architecture for Never-Ending Language Learning.” vol. 5,
2010, p. 3.

[6] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and
J. Demmel, “Optimization of sparse matrixvector multiplica-
tion on emerging multicore platforms,” Parallel Computing,
vol. 35, no. 3, pp. 178–194, Mar. 2009.

[7] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E.
Leiserson, “Parallel sparse matrix-vector and matrix-transpose-
vector multiplication using compressed sparse blocks.” ACM
Press, 2009, p. 233.

[8] A. Pinar and M. T. Heath, “Improving Performance of Sparse
Matrix-Vector Multiplication,” in Supercomputing, ACM/IEEE
1999 Conference, Nov. 1999, pp. 30–30.

B = 12 B = 4

Matrix Information

Normalized
Time to
Estimate

Fill

Mean
Maximum
Relative

Error

Normalized
TACO SpMV
Time (Vuduc
et al. Model)

Normalized
Time to
Estimate

Fill

Mean
Maximum
Relative

Error

Normalized
TACO SpMV
Time (Vuduc
et al. Model)

Name NNZ (k) Size (m + n) PHIL OSKI PHIL OSKI PHIL OSKI PHIL OSKI PHIL OSKI PHIL OSKI

Domain: 2D/3D Problem
nd24k 28,715,634 144,000 8.707 104.8 0.030 0.014 0.710 0.710 3.126 9.740 0.007 0.002 0.715 0.715
BenElechi1 13,150,496 491,748 9.983 88.40 0.022 0.011 0.761 0.761 3.286 11.33 0.003 0.003 0.766 0.766
kim2 11,330,020 913,952 10.55 99.07 0.033 0.006 1.0* 1.0* 3.481 14.33 0.010 0.002 1.0* 1.0*
nd6k 6,897,316 36,000 21.32 77.71 0.031 0.027 0.702 0.702 6.693 8.896 0.006 0.004 0.726 0.726
nd3k 3,279,690 18,000 46.77 83.11 0.030 0.038 0.704 0.704 14.23 9.505 0.006 0.007 0.573 0.573

Domain: Computational Fluid Dynamics
atmosmodl 10,319,760 2,979,504 7.232 99.00 0.023 0.007 1.0* 1.0* 2.483 20.88 0.008 0.001 1.0* 1.0*
3dtube 3,213,618 90,660 42.54 93.89 0.022 0.069 0.566 0.566 12.30 11.37 0.008 0.015 0.571 0.571

Domain: Graph
hugetric-00010 19,771,708 13,185,530 1.180 52.72 0.009 0.005 1.0* 1.0* 0.474 15.72 0.004 0.001 0.996 0.996
kron g500-logn17 10,228,360 262,144 4.256 35.95 0.004 0.045 1.0* 1.0* 1.642 4.537 0.001 0.012 1.0* 1.0*
flickr 9,837,214 1,641,756 0.975 9.203 0.006 0.038 1.0* 1.0* 0.370 1.636 0.002 0.012 0.743 0.743
pdb1HYS 4,344,765 72,834 29.52 76.72 0.024 0.040 0.523 0.523 8.821 9.095 0.006 0.012 0.514 0.514
fl2010 2,346,294 968,962 9.022 28.63 0.006 0.009 1.0* 1.0* 3.129 7.381 0.002 0.003 0.486 0.486
in2010 1,281,716 534,142 27.90 48.48 0.008 0.015 1.000 1.000 10.14 13.13 0.002 0.004 1.0* 1.0*
ok2010 1,274,148 538,236 37.00 62.39 0.007 0.012 1.000 1.000 13.08 17.45 0.002 0.004 1.0* 1.0*

Domain: Linear Programming
spal 46,168,124 331,899 1.991 35.54 0.015 0.025 0.948 0.948 0.848 3.779 0.005 0.008 0.575 0.575
rail4284 11,284,032 1,101,178 6.869 47.63 0.017 0.375 1.0* 1.0* 2.567 4.960 0.007 0.124 1.0* 1.0*
degme 8,127,528 844,916 11.14 77.90 0.017 0.082 1.0* 1.0* 3.655 9.981 0.005 0.074 1.0* 1.0*
gupta1 2,164,210 63,604 34.21 51.24 0.024 0.516 1.0* 1.0* 11.46 6.641 0.008 0.215 1.0* 1.0*
pds-100 1,096,002 670,820 57.17 78.18 0.004 0.027 1.0* 1.0* 20.55 19.81 0.002 0.010 1.0* 1.0*

Domain: Mathematical Optimization
largebasis 5,560,100 880,040 15.62 86.99 0.025 0.015 1.0* 1.0* 4.572 15.14 0.008 0.004 1.0* 1.0*
exdata 1 2,269,501 12,002 24.40 33.45 0.033 4.518 0.539 0.533 7.181 3.575 0.004 0.019 0.565 0.545

Domain: Power Network
TSOPF RS b2383 16,171,169 76,240 8.238 63.53 0.034 0.072 0.782 0.750 3.417 6.908 0.005 0.007 0.791 0.791
kkt power 14,612,663 4,126,988 3.591 66.57 0.008 0.014 1.000 1.000 1.458 15.00 0.004 0.003 1.0* 1.0*

Domain: Structural
af shell10 52,672,325 3,016,130 2.664 101.3 0.026 0.004 0.859 0.859 1.236 19.79 0.007 0.002 1.0* 1.0*
ldoor 46,522,475 1,904,406 2.946 90.50 0.024 0.011 0.817 0.817 1.154 12.47 0.007 0.005 1.0* 1.0*
Emilia 923 41,005,206 1,846,272 3.402 94.47 0.021 0.010 0.812 0.812 1.330 13.16 0.006 0.003 0.795 0.795
inline 1 36,816,342 1,007,424 3.299 71.53 0.019 0.014 0.757 0.757 1.304 9.360 0.007 0.004 0.786 0.786
F1 26,837,113 687,582 2.917 46.61 0.018 0.019 0.923 0.923 1.136 6.089 0.006 0.006 0.640 0.640
af shell9 17,588,875 1,009,710 6.927 88.24 0.024 0.007 0.808 0.808 2.386 12.44 0.007 0.004 0.955 0.955
halfb 12,387,821 449,234 10.77 89.29 0.026 0.029 0.949 0.951 3.637 11.60 0.007 0.009 0.933 0.938
troll 11,985,111 426,906 12.16 95.70 0.024 0.029 0.786 0.786 4.125 12.42 0.006 0.008 0.824 0.824
pwtk 11,634,424 435,836 10.73 86.56 0.035 0.018 0.883 0.883 3.478 10.75 0.007 0.007 0.887 0.887
fcondp2 11,294,316 403,644 10.54 79.80 0.022 0.029 0.669 0.669 3.579 10.14 0.005 0.008 0.697 0.697
crankseg 1 10,614,210 105,608 11.69 71.01 0.023 0.050 0.808 0.808 4.290 8.386 0.008 0.018 0.915 0.914
m t1 9,753,570 195,156 14.52 92.26 0.020 0.039 0.754 0.754 4.880 10.64 0.005 0.013 0.726 0.726
gearbox 9,080,404 307,492 13.45 82.71 0.022 0.034 0.717 0.717 4.475 10.60 0.007 0.009 0.693 0.693
ship 001 4,644,230 69,840 27.40 85.27 0.029 0.062 0.984 0.988 8.653 9.923 0.008 0.024 1.0* 1.0*
s3dkt3m2 3,753,461 180,898 33.18 94.30 0.034 0.021 0.876 0.875 9.185 12.36 0.007 0.009 0.864 0.863
ct20stif 2,698,463 104,658 46.08 88.01 0.025 0.069 0.770 0.773 14.24 11.76 0.008 0.022 0.821 0.824
nasasrb 2,677,324 109,740 46.92 88.56 0.019 0.042 0.616 0.617 13.89 11.60 0.005 0.018 0.735 0.735

Domain: Synthetic
pathological PHIL 1,449,856 239,988 61.10 79.58 0.045 0.073 0.983 0.983 18.88 15.84 0.006 0.010 1.0* 1.0*
pathological OSKI 699,994 200,000 22.98 14.93 0.013 3.666 0.634 0.634 8.548 4.483 0.005 1.800 0.794 0.800

Figure 3. Over 42 different matrices, we show the mean estimation time, mean maximum relative error (Definition V.1), and the resulting mean parallel sparse
matrix-vector multiply (SpMV) time in BCSR format when the performance model in [13] is used to select a block size. Times are normalized to the mean
time taken to perform one parallel sparse matrix-vector multiply (SpMV) on the unblocked CSR matrix. All means are the average of 100 trials. All blocked
and non-blocked matrix-vector multiplies are performed using TACO [22]. Highlighted cells show the better result between PHIL and OSKI. The left group of
columns corresponds to a maximum considered block size B = 12. The right group of columns corresponds to a maximum considered block size of B = 4.
The parameters to PHIL are ε = 3 and δ = 0.01 when B = 12, and they are ε = 0.25 and δ = 0.01 when B = 4. The parameters to OSKI are σ = 0.02
(the recommended setting) for all cases. To create the performance matrix P for the performance model, we timed BCSR matrix-vector multiplication
performance for 100 trials on a 1000× 1000 dense matrix. The matrices are organized by application domain and described in more detail in Section V-B.
* Results with an asterisk are cases where a slowdown was observed when the performance model was used with the given estimates. Since most autotuners
will try both an unblocked CSR format and the predicted best block size with BCSR format, they may choose to use CSR if no speedup is observed and so
these results are listed as 1.0.

0
0.1
0.2
0.3
0.4
0.5

0 50 100 150 200 250 300
0

0.2
0.4
0.6
0.8
1

1.2
1.4

0 20 40 60 80 100 120 140 160
0

0.5
1

1.5
2

2.5
3

3.5
4

0 50 100 150 200 250 300 350 400
0

0.1
0.2
0.3
0.4
0.5

0 500 100
0

150
0

200
0

M
ea
n
M
ax
im

um
Re

la
tiv

e
Er
ro
r ct20stif

Phil
OSKI

gupta1 pathological_OSKI

Normalized Time to Estimate

pathological_PHIL

Figure 4. Mean maximum relative error (Definition V.1) as a function of mean estimation time (normalized to the mean time it takes to perform a parallel
sparse matrix-vector multiplication in CSR format using TACO [22]) for four matrices. Both axes use logarithmic scale. All means are the average of 100
trials. The error bars reflect one standard deviation above and below the mean. The blue solid line represents PHIL and the orange dotted line represents
OSKI. Each point is a separate setting for the parameters. 3dtube is a matrix arising from the application of finite element analysis to a computational
fluid dynamics problem. This matrix consists mostly of 3× 3 dense blocks (96% of nonzeros reside in these blocks). gupta1 is the matrix representation
of a linear programming problem, and has no obvious block structure. The pathological matrices are described in more detail in Section V-B. Note that
errors above 1 represent a complete loss of accuracy.

[9] V. Karakasis, G. Goumas, and N. Koziris, “A Comparative
Study of Blocking Storage Methods for Sparse Matrices on
Multicore Architectures.” IEEE, 2009, pp. 247–256.

[10] A. N. Yzelman, “Generalised Vectorisation for Sparse Matrix:
Vector Multiplication,” in Proceedings of the 5th Workshop
on Irregular Applications: Architectures and Algorithms, ser.
IA3 ’15. New York, NY, USA: ACM, 2015, pp. 6:1–6:8.

[11] R. W. Vuduc, “Automatic performance tuning of sparse matrix
kernels,” Ph.D. dissertation, University of California, Berkeley,
CA, USA, Jan. 2004.

[12] J. A. Calvin, C. A. Lewis, and E. F. Valeev, “Scalable
task-based algorithm for multiplication of block-rank-sparse
matrices.” ACM Press, 2015, pp. 1–8.

[13] R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, and
B. Lee, “Performance Optimizations and Bounds for Sparse
Matrix-Vector Multiply.” IEEE, 2002, pp. 26–26.

[14] E.-J. Im and K. Yelick, “Optimizing Sparse Matrix Compu-
tations for Register Reuse in SPARSITY,” in Computational
Science ICCS 2001, G. Goos, J. Hartmanis, J. van Leeuwen,
V. N. Alexandrov, J. J. Dongarra, B. A. Juliano, R. S. Renner,
and C. J. K. Tan, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, vol. 2073, pp. 127–136.

[15] E.-J. Im, “Optimizing the Performance of Sparse Matrix-
Vector Multiplication,” Ph.D. dissertation, EECS Department,
University of California, Berkeley, Jun. 2000.

[16] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization
Framework for Sparse Matrix Kernels,” International Journal
of High Performance Computing Applications, vol. 18, no. 1,
pp. 135–158, Feb. 2004.

[17] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library
of automatically tuned sparse matrix kernels,” Journal of
Physics: Conference Series, vol. 16, pp. 521–530, Jan. 2005.

[18] A. Buttari, V. Eijkhout, J. Langou, and S. Filippone, “Perfor-
mance Optimization and Modeling of Blocked Sparse Kernels,”
The International Journal of High Performance Computing
Applications, vol. 21, no. 4, pp. 467–484, Nov. 2007.

[19] V. Karakasis, G. Goumas, and N. Koziris, “Perfomance Models
for Blocked Sparse Matrix-Vector Multiplication Kernels,” in
2009 International Conference on Parallel Processing, Sep.
2009, pp. 356–364.

[20] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven
autotuning of sparse matrix-vector multiply on GPUs,” ACM
SIGPLAN Notices, vol. 45, no. 5, p. 115, May 2010.

[21] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis,
“SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multi-
plication.” IEEE, May 2015, pp. 61–70.

[22] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe,
“The Tensor Algebra Compiler,” Proc. ACM Program. Lang.,
vol. 1, no. OOPSLA, pp. 77:1–77:29, Oct. 2017.

[23] S. Smith and G. Karypis, “Tensor-matrix products with a
compressed sparse tensor.” ACM Press, 2015, pp. 1–7.

[24] R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick,
“When cache blocking of sparse matrix vector multiply works
and why,” Applicable Algebra in Engineering, Communication
and Computing, vol. 18, no. 3, pp. 297–311, May 2007.

[25] J. Li, G. Tan, M. Chen, and N. Sun, “SMAT: an input
adaptive auto-tuner for sparse matrix-vector multiplication,”
ACM SIGPLAN Notices, vol. 48, no. 6, p. 117, Jun. 2013.

[26] D. Langr, I. Šimeček, and T. Dytrych, “Block Iterators for
Sparse Matrices,” Oct. 2016, pp. 695–704.

[27] W. Hoeffding, “Probability Inequalities for Sums of Bounded
Random Variables,” Journal of the American Statistical
Association, vol. 58, no. 301, p. 13, Mar. 1963.

[28] R. Bardenet and O.-A. Maillard, “Concentration inequalities
for sampling without replacement,” Bernoulli, vol. 21, no. 3,
pp. 1361–1385, Aug. 2015.

[29] J. Dongarra and V. Eijkhout, “Self-Adapting Numerical
Software for Next Generation Applications,” The International
Journal of High Performance Computing Applications, vol. 17,
no. 2, pp. 125–131, May 2003.

