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ABSTRACT
As FPGAs have grown in size and capacity, FPGA memory sys-
tems have become both richer and more diverse in order to sup-
port the increased computational capacity of FPGA fabrics. Using
these resources, and using them well, has become commensurately
more difficult, especially in the context of legacy designs ported
from smaller, simpler FPGA systems. This growing complexity
necessitates resource-aware compilers that can make good use of
memory resources on behalf of the programmer. In this work, we
introduce the LEAP Memory Compiler (LMC), which can synthe-
size application-optimized cache networks for systems with multiple
memory resources, enabling user programs to automatically take
advantage of the expanded memory capabilities of modern FPGA
systems. In our experiments, the optimized cache network achieves
up to 49% performance gains for throughput-oriented applications
and 15% performance gains for latency-oriented applications, while
increasing design area by less than 6% of the total chip area.

1. INTRODUCTION
FPGAs have become increasingly popular as accelerators be-

cause of their energy-efficiency and performance characteristics. To
maximize efficiency and performance, FPGA programmers have
traditionally utilized low-level primitives and programming mod-
els, explicitly customizing their implementation both to the target
application and to the target platform. This approach, while ef-
fective, has made FPGA programs difficult to write, limiting both
developer productivity and portability across FPGA platforms. As
a result, recent research in both FPGA-oriented programming lan-
guages [26] [8] [5] [3] and architecture [20] [7] [13] has focused
on raising the level of abstraction available to FPGA programmers,
with the goal of reducing programmer design efforts.

High-level abstractions provide clearly-defined, generic interfaces
that separate user programs from underlying infrastructure imple-
mentations. These fixed interface layers allow users to write portable
programs, which can run on different FPGA platforms without re-
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designing the application code. Low-level platform implementation
details are handled by a combination of compilers and system de-
velopers. Such abstractions present a significant opportunity for
compilers since the extra resources available on modern FPGAs can
be used to improve program performance without perturbing the
original user program. This is especially the case for coarse-grained
resources like board-level memories, the integration of which have
traditionally required significant architectural consideration at de-
sign time.

To produce efficient, performant, portable FPGA designs, we
argue that automated, resource-aware optimization of abstract in-
terfaces is essential for modern FPGAs. In this work, we focus on
one aspect of resource-aware optimization: FPGA memory systems.
As the availability of more transistors makes it feasible to build
both larger, bandwidth-hungry designs and the memory controllers
necessary to feed them, modern FPGA boards have begun to in-
clude multiple DDR and HBM memories [2]. Moreover, the number
of memory controllers appears to be increasing rapidly as vendors
move to harden memory interfaces [1] [2]. To improve FPGA system
performance, it is critical to enable integration of these increasingly
rich and varied memory systems into user programs without drasti-
cally increasing design burden.

To allow programs to automatically make use of available mem-
ory resources, we propose the LEAP Memory Compiler (LMC), an
augmentation to the LEAP compilation flow [13]. Unlike general-
purpose processors where the memory hierarchy is fixed at design
time based on a set of expected workloads, LMC tailors FPGA
memory systems to different applications at compilation time based
on the properties of those specific applications. LMC presupposes
user programs described in terms of high-level memory interfaces
[4] [29], which hide memory implementation details from applica-
tion designers. In order to improve the performance of user programs,
LMC incorporates several optimizations that take advantage of both
interface abstraction and the availability of extra memory resources.

LMC operates in three phases: instrumentation, analysis, and syn-
thesis. In the first phase, LMC injects instrumentation infrastructure
into the baseline memory system. This instrumentation is used to
collect runtime information about the way the program uses mem-
ory. Subsequently, LMC analyzes these metrics and applies various
optimization techniques to improve the performance of the memory
subsystem specific to the application and the target platform. Finally,
LMC emits an optimized memory system implementation which
passes through a standard tool flow to produce an FPGA image.

The main contribution of our work is in the automated optimiza-
tion of memory systems. LMC produces as output an optimized
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cache network, connecting single or multiple user-level caches to
the available on-board memory resources. We introduce optimiza-
tions for both private and shared memories based on the available
on-board memory resources in the system, the number of FPGAs,
as well as the user program’s bandwidth, which we derive from
runtime instrumentation. In support of and in conjunction with our
optimizing compiler, we introduce several new memory microar-
chitectures that enable existing client memory primitives to target
multiple board-level memories.

For private memories, we partition the user-level private caches
into disjoint groups and connect each group to a shared cache im-
plemented on top of each on-board memory bank. Each partition
is connected using a separate, dedicated network, which serves to
increase memory throughput while simultaneously reducing mem-
ory latency. To improve memory bandwidth, LMC implements an
intelligent memory interleaving mechanism, which enables individ-
ual private memories to utilize multiple board-level memories. In
interleaved memory systems, portions of the memory address space
are routed to different memory resources at a relatively fine grain.

For applications using shared memory, we apply memory inter-
leaving techniques to partition the shared memory address space
into multiple disjoint regions. We adopt a hierarchical-ring topology
in the partitioned coherent cache network. This hierarchical topol-
ogy reduces the latency of coherence messages, which is essential
if designs are spread across several networked FPGAs. Since the
coherent memory hierarchy is integrated with the private memory
hierarchy, our private memory optimizations can be directly com-
posed with our coherent memory optimizations to further improve
overall system performance.

We evaluate LMC using both hand-assembled and HLS-compiled
applications by targeting several single-board and networked multi-
board FPGA deployments. Our optimizations cost less than 6% of
the total chip area. For hand-assembled, throughput-oriented appli-
cations, the partitioned network achieves up to 49% performance
improvement because of the increased memory bandwidth. For the
HLS-compiled application, which involves pointer-chasing and is
latency-oriented, the partitioned network provides about 15% per-
formance improvement because of the reduced network latency.

2. BACKGROUND
LMC produces program-optimized memory hierarchies. To pro-

duce these hierarchies, LMC requires a collection of primitive ele-
ments from which a memory system can be constructed. As a base
for LMC, we adopt the primitives and compiler of the LEAP [13]
memory hierarchy. In particular, we leverage two prior memory
primitives: LEAP private memories [4] and coherent memories [29].
Both of these memory primitives are built on top of LEAP’s latency-
insensitive channels [11], named communications primitives that are
instantiated within user programs and implemented by the compiler
at compilation time.

LEAP latency-insensitive channels provide named point-to-point
communications for hardware programs. At compilation time, send
and receive endpoints in the user program are matched, and a flow-
controlled channel implementation is instantiated between them.
Additionally, LEAP supplies a ring primitive, in which the com-
piler assembles all similarly named ringstops into a network. Unlike
traditional hardware programming, LEAP named channels enable
communication between any two points in a design without explic-
itly connecting wires through the module hierarchy. This channel
construction primitive greatly simplifies tasks such as restructuring
memory topologies and instantiating counters for feedback directed
compilation. LMC makes use of channel and ring renaming as a
mechanism for constructing application-specific memories.

interface MEM_IFC#(type t_ADDR, type t_DATA);
method void readRequest(t_ADDR addr);
method t_DATA readResponse();
method void write(t_ADDR addr, t_DATA data);

endinterface

Figure 1: A general memory interface for hardware designs.

LEAP private memories provide a general, in-fabric memory
abstraction for FPGA programs. Programmers instantiate private
memories with a simple read-request, read-response, write interface,
shown in Figure 1. Each memory represents a logically private
address space, and a program may instantiate as many memories
as needed. Memories may store arbitrary data types and support
arbitrary address space sizes, even if the target FPGA does not have
sufficient physical memory to cover the entire requested memory
space. To provide the illusion of large address spaces, LEAP backs
the FPGA memory with host virtual memory, while FPGA physical
memories, including on-chip and on-board memories, are used as
caches to maintain high performance.

LEAP coherent memories [29] extend the baseline LEAP mem-
ory interface to support shared memory. Similar to LEAP private
memories, LEAP coherent memories provide a simple memory in-
terface and the illusion of unlimited virtual storage. In addition,
LEAP coherent memories permit applications to declare multiple,
independent coherent address spaces using a compile-time speci-
fied name. Cache coherency and weak consistency are maintained
among coherent memories that share the same address space.

LEAP’s memory system resembles that of general-purpose ma-
chines, both in terms of its abstract interface and its hierarchical
construction. Like the load-store interface of general-purpose ma-
chines, LEAP’s abstract memory interfaces do not specify or imply
any details of the underlying memory system implementation, such
as how many operations can be in flight and the topology of the mem-
ory. This ambiguity provides significant freedom of implementation
to the compiler. For example, a small memory could be implemented
as a local SRAM, while a larger memory could be backed by a cache
hierarchy and host virtual memory. LEAP exploits abstraction to
build complex, optimized memory architectures on behalf of the
user, bridging the simple user interface and complex physical hard-
ware. In this work, we leverage the freedom of abstraction to target
systems with multiple on-board memory banks.

LEAP organizes the various memory primitives in the user pro-
gram into a memory hierarchy with multiple levels of cache. Like
memory hierarchies in general-purpose computers, the LEAP mem-
ory organization provides the appearance of fast memory to pro-
grams with good locality. Figure 2 shows an example of a typical
LEAP memory hierarchy which integrates one private memory and
three coherent memories instantiated in the user program. LEAP
coherent memories are built on top of LEAP private memories both
literally and figuratively: each LEAP shared address space is backed
by two LEAP private memories as data and coherence ownership
stores. As a result of this layering, both types of memories share
large portions of the memory hierarchy. LEAP memory clients op-
tionally receive a local cache, which is implemented using on-chip
SRAMs. A snoopy-based coherence protocol is implemented to
maintain cache coherency among LEAP coherent memory clients’
local caches.

The board-level memory, which is typically an off-chip SRAM
or DRAM, is used as a shared cache or central cache. The central
cache controller manages access to a multi-word, set-associative
board-level cache with a configurable replacement policy. Within
the cache, each private memory space and shared memory domain is
uniquely tagged, enforcing a physical separation. Previously, LEAP
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Figure 2: An example of LEAP memory hierarchy

aggregated all board-level memory resources into a single larger-
capacity cache handled by a single central cache controller. In this
work, we introduce the capability to treat each board-level memory
resource as an independent cache, thereby creating the opportunity
for program-specific memory hierarchy organization and partition-
ing, which we examine in detail in Section 5.

LEAP’s compilation flow is shown in Figure 3. The compiler
gathers the various LEAP memories in the user program and as-
sembles them into a memory hierarchy, as in Figure 2. By default,
the compiler assembles the various memory interfaces into ring
networks. For example, coherent memories in each coherence do-
main are connected via three rings: the unactivated request ring,
the activated request ring, and the response ring. These rings are
used to implement the channels required by the snoopy coherence
protocol. Lower levels of the memory hierarchy are self-assembled
in a similar manner, integrating successive backing stores into the
hierarchy. In this work, we augment LEAP’s name-based network
assembly mechanism with a compiler-generated indirection layer
which influences the construction of the memory network based on
memory system properties and program characteristics.

3. RELATED WORK
Our work presumes the existence of a basic memory abstraction

for FPGAs, which we then back with a custom memory network.
In this work, we build on the LEAP memory framework, but other
frameworks are compatible with our approach. CoRAM [7] advo-
cates memory interaction using control threads programmed with
a C-like language. CoRAM does not define the memory hierarchy
or network backing its interface, and therefore could use our opti-
mization approach, a work that is ongoing. FPGA-based processor
infrastructures [23] [21] [24], especially multicore systems, could
also make use of our networks, though the benefit of optimizing
such symmetric systems is less obvious.

Much recent work has gone into the microarchitecture of memory
systems on FPGAs [9] [6] and the construction of multiple-level
memory hierarchies [4] [6] [16] [22], all of which build user-level
memory interfaces backed by some off-chip storage. Generally, the
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Figure 3: The LEAP compilation flow [14], with our augmentations
highlighted. We add a memory optimization phase that performs
memory network analysis and synthesis. Memory network analysis
is optionally feedback driven.

memory networks used by these systems are symmetrical and do
not explicitly take into account program behavior.

Our technique of memory address interleaving across multiple
memory controllers has been used extensively in general-purpose
computer architecture to maximize available memory bandwidth and
to simplify the microarchitecture of elements of the memory system,
like coherency. Memory interleaving dates to early IBM mainframes.
An example of memory interleaving is the SGI Challenge [15] line
of supercomputers. Challenge’s memory subsystem is comprised
of multiple leaf memory controllers which were aggregated and
interleaved in large systems using direct address partitioning. As
transistor density has improved, most modern systems have opted to
include multiple memory channels and controllers, most of which
use various interleaving techniques to improve workload memory
bandwidth and latency.

Hierarchical, ring-based coherence protocols also have a long
history in computer architecture. Our work resembles some of the
coherence architectures developed as part of the Hector project [10].
In this work, sets of processors are connected on coherent buses
forming a collection called a station. The station controller serves to
interface the processor collection to other stations on a local ring and
filters messages not needed by the station. Local rings are aggregated
to form a global ring. This arrangement of hierarchical rings helps
reduce latency and overall network traffic by eliminating irrelevant
messages on the local and station networks.

Since the memory networks of traditional computer architectures
must be fixed or largely fixed at manufacture, previous work in
the area of memory networks has largely focused on symmetric
architectures, which are likely to handle a broad class of workloads
reasonably well. Our per-program analysis permits us to leverage
memory partitioning asymmetrically, if such asymmetry benefits a
particular program.

4. LEAP MEMORY COMPILER
To automate the construction of optimized memory systems tai-

lored for different applications, we extend the LEAP compilation
flow [14] by adding a series of compilation phases, which we refer
to as the LEAP Memory Compiler (LMC). Figure 3 shows the ex-
tended compilation flow incorporating LMC. LMC operates in three
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phases: instrumentation, analysis, and synthesis. The combination
results in an application-specific memory hierarchy.

The first phase of LMC is program instrumentation. For many
FPGA applications, there are multiple memory clients in the sys-
tem and the memory clients may have highly asymmetric behaviors
and implementation needs. For example, a memory client produc-
ing a large number of cache misses within a short period of time
may require more memory bandwidth from the next-level memory,
while a memory client with high cache hit rate may be able to tol-
erate a larger miss penalty. Evenly distributing memory resources
among asymmetric clients without knowing their memory utiliza-
tion properties may cause bandwidth waste. To understand program
behavior, static program analysis may be tractable, especially for
HLS-compiled applications [28]. However, in order to target more
general and more complicated programs including hand-assembled
applications, we resort to FPGA-based runtime instrumentation.

Figure 4 describes our program instrumentation mechanism, which
is built on top of the LEAP statistics collection service. Program
instrumentation logic is inserted at each memory client to monitor
various runtime memory utilization properties, such as the number
of cache misses, the number of outstanding requests, and the request
queueing delay. These instrumentation results are recorded in local
counters at each memory client during program execution. We utilize
the LEAP statistics service to collect instrumentation results at the
end of the execution. LEAP statistics counters communicate using
the standard LEAP named channels and rings. The LEAP compiler
automatically connects the instrumentation logic to a centralized
statistics controller via a LEAP latency-insensitive ring. When the
controller receives a statistics-collection command from the host
processor, it forwards the command to the clients and asks them
to send back the instrumentation results. The host processor then
records the collected results in a statistics file, which can be used in
LMC’s analysis phase in subsequent compilations.

During the analysis phase LMC analyzes program information,
such as the number of memory clients, as well as platform informa-
tion, including the number of FPGAs and the number of board-level
memories. LMC then optimizes the memory hierarchy by assigning
memory clients to available memory controllers associated with
board-level memories. This phase is optionally feedback-driven: the
instrumentation results obtained from previous program execution
can be utilized for further optimizations, such as bandwidth-aware
partitioning, which we will discuss in Section 5. The output of the
analysis phase is an abstract representation of the memory hierarchy,
which is passed to the synthesis phase.

The final phase of LMC is the synthesis phase, which produces
an implementation of the application-specific memory hierarchy.
To construct the synthesized memory hierarchy we leverage the
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Figure 5: LEAP private memory system with a compiler-optimized
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name-based channel assembly mechanism provided by the baseline
LEAP compiler, as mentioned in Section 2. Based on the abstract
representation of the memory hierarchy obtained from the analysis
phase, LMC generates a renaming function as the final output, which
maps each client’s memory connection to its automatically chosen
memory controller. If no optimizations are applied in the analysis
phase, we supply identity as the renaming function. After LMC is
complete, we leverage the existing network synthesis capabilities of
the RTL-generation phase in the baseline LEAP compiler to generate
physical networks by matching the newly assigned channel names.

5. CACHE NETWORK OPTIMIZATION
This section introduces the analysis and mechanisms by which

we synthesize platform-optimized and program-optimized cache
networks for both private and shared memory services. In this work,
we target the cases when there is more than one board-level memory
controller. Operating from a high-level specification of a memory
system, our optimizations produce cache networks that utilize in-
creased memory bandwidth as well as reduce cache network latency.

5.1 Private Cache Network Optimization
To utilize the bandwidth of multiple on-board memories effi-

ciently, we begin by constructing a central cache controller for each
memory bank, as shown in Figure 5. The result is a set of distributed
caches. Each central cache uses an on-board memory bank to store
cache data and tags. The private memory controller, which offers a
read/write interface to address spaces, is also duplicated per central
cache. The memory controllers are responsible for accessing central
cache banks for the associated private memory clients as well as
communicating with the host memory backing store.

Since LEAP private memories have disjoint address spaces, they
can be freely separated and mapped to different controllers and
central caches without any changes in the private memory design.
There are many possible mechanisms for assigning clients to mem-
ory controllers. A simple solution is random partitioning: we ran-
domly separate private memory clients into (roughly) equal-sized
groups, assign a memory controller to each group, and synthesize
separate rings to connect all the nodes within the same group. For
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Algorithm 1 Private Cache Network Partitioning

1: procedure PARTITION(clientList, controllerList, statsFile)
2: Initialize controller bandwidth to be zero
3: if statsFile exists then � Load-balanced partitioning
4: clientBandwidth← Parse statsFile
5: while clientList not empty do
6: s← Memory client with maximum clientBandwidth
7: c← Controller with minimum bandwidth
8: Connect s to c
9: Add s’s bandwith to c’s bandwidth

10: Remove s from clientList
11: else � Random partitioning
12: n← Length of controllerList
13: sLists← Randomly separate clientList into n lists
14: for i in 1 to n do
15: Connect sLists[i] to controllerList[i]

applications with largely homogeneous memory clients, random
partitioning effectively reduces network latency and balances the
traffic among multiple controller networks. However, if the behavior
of private memories is heterogeneous, i.e., the memory clients have
different cache properties and different bandwidth demands, random
partitioning may not achieve the best performance.

To improve performance of applications with heterogeneous clients
we adopt feedback-driven load-balanced partitioning to separate
memory clients into groups. Load-balancing is especially important
for throughput-oriented applications, whose memory clients issue
multiple outstanding requests to hide long-latency misses and there-
fore are more sensitive to the available bandwidth in the associated
controller network. We utilize LMC’s instrumentation mechanism
to track the total number of messages sent from each memory client
and use this metric as the first-order approximation of the client’s
bandwidth requirement. We then partition the memory clients based
on their bandwidth estimation.

Algorithm 1 describes how we partition the private cache network
on a single FPGA. We adapt the classical longest-processing-time
(LPT) algorithm [17] to memory bandwidth partitioning. This algo-
rithm approximates optimal load balancing by assigning new mem-
ory traffic to the least-loaded memory controller. To partition the
cache network across multiple FPGAs, private memories are routed
to one of the controllers on the same FPGA using our load balancing
algorithm, avoiding long inter-FPGA communication latency.

A weakness of the load-balanced partitioning approach is that
a single bandwidth-intensive memory client cannot utilize the full
bandwidth of the memory system. To remedy this, LMC implements
a memory interleaving mechanism that enables a single memory
client to connect to multiple memory controllers. Memory inter-
leaver logic is instantiated to partition a single private memory’s
address space into multiple, variable-sized interleaved regions. Re-
quests targeting different regions are forwarded to different con-
troller networks, allowing more physical bandwidth and more inde-
pendent, parallel requests.

When memory clients consume a large amount of bandwidth
or when it is difficult to perform load-balanced partitioning, for
example, when there is only one private memory in the system,
LMC constructs interleaved memories. Individual clients access-
ing interleaved memories are mapped to multiple controllers by
injecting memory interleaver logic. Private memory interleaving is
combined with the partitioning method described in Algorithm 1:
LMC first deals with the memory clients whose memory needs to
be interleaved, connecting them with multiple controllers, and then
apportions the remaining non-interleaved memory clients.
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Figure 5 shows an example of a compiler-optimized cache net-
work with two on-board DRAM banks in the system. In this ex-
ample, there is one private memory that connects to two controller
networks via the memory interleaver logic. Figure 6 shows the mi-
croarchitecture of the private memory interleaver logic. When the
memory interleaver receives a request from the associated private
memory, it forwards the request to one of the controller rings based
on the target request’s word-level address. We route consecutive
addresses to the same controller to take advantage of spatial locality
available at the central cache: each central cache line is comprised
of multiple private memory’s cache words. We use the mid-order
bits in the address field and the memory partition table to select
the destination controller. The memory partition table records the
portion of the address space assigned to each controller. The address
space can be split into non-equal-sized banks, enabling fine-grained
load-balanced partitioning. Since some strided access patterns may
introduce controller selection conflicts and cause serialization at the
memory controllers, we introduce a hashing function to apportion
requests in a static but random fashion in order to balance requests
between controllers.

5.2 Coherent Cache Network Optimization
Since LEAP coherent memories are built on top of LEAP pri-

vate memories, applications that use LEAP coherent memories can
benefit from previously described private cache partitioning opti-
mizations. However, the optimization space is limited, since each
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coherence domain only uses two private memories as data and own-
ership stores (see Figure 2).

To efficiently utilize the underlying memory resources in the case
of coherent memories, we introduce a memory interleaving tech-
nique for a coherence domain. Coherent memory interleaving is
conceptually similar to the private memory interleaving technique
described above. The coherent memory address space is partitioned
into disjoint regions and assigned to a distributed set of coherence
controllers, each handling coherence for a separate region. Figure 7
shows an example of the partitioned coherent cache network that
connects four coherent memory clients in a single coherence domain
to dual interleaved coherence controllers. Coherent caches and inter-
leaved controllers are connected via a hierarchy of ring networks,
which reduces network latency and improves scalability. Although
similar to the private memory optimization, the separation of the
address spaces for coherent memories is complicated by the need to
maintain coherency guarantees.

Within an interleaved coherence domain, each coherence con-
troller is responsible for a portion of the domain address space. The
controller connects to the next-level memory by instantiating two
LEAP private memories, one to store data and the other to track
coherence ownership information for the associated address region.
The controller snoops every local request, whose target block ad-
dress belongs to the controller’s associated memory region, and
responds to the requester if none of the coherent cache clients owns
the data block.

Each controller has an address mapping function that determines
whether an incoming request is local or not. The address mapping
function is also responsible for converting the address of an incom-
ing request from the global address space to the controller’s local
address space before the controller accesses the next-level memory.
For coarse-grained memory interleaving, the address mapping func-
tion can be as simple as an address range filter. For fine-grained
memory interleaving, the mapping function can be implemented as
a look-up table.

Each coherence controller also serves as a distributed ordering
point. In the original ring-based snoopy protocol [29], there is a
single, global ordering point on the memory network (see Figure 2).
To ensure all coherent memories see coherence requests in the same
order, all requests must first go to the global ordering point before
being broadcast in a global order, creating congestion at the single
ordering point. To improve network performance for an interleaved
shared memory system, each coherence controller gathers requests
that are local to its memory bank and broadcasts them on the ring
separately. Requests targeting different memory banks may be seen
in a different order by different coherent memory clients. Coherency
is maintained under this optimization because all clients agree with
the ordering of operations on a single memory location. As for
memory consistency, which specifies the memory ordering behav-
ior for operations on multiple memory locations, coherent memory
clients in the original protocol [29] perform out-of-order execution
to achieve higher parallelism and thus only provide weak consis-
tency guarantees. Introducing multiple ordering points does not
weaken memory consistency. The LEAP coherent memory interface
supports fences which can be invoked by clients that require stronger
memory consistency to ensure the ordering of operations.

To improve network bandwidth, we partition the original ring
network into hierarchical rings as shown in Figure 7. As a baseline,
coherent memory clients are partitioned into equal-sized groups in
lexical order, but other feedback driven partitioning algorithms can
also be applied. Coherent memory clients in the same partition are
connected to one of the coherence controllers via local client rings,
and the controllers are connected together with global controller

rings. As in the original protocol, three LEAP latency-insensitive
rings are constructed for three types of coherence messages in each
local and global ring network to prevent deadlocks: the unactivated
request ring, the activated request ring, and the response ring. The
global request and response rings can be viewed as express links that
shorten the longest distance between the responder and requester.
When memory clients are spread across multiple FPGAs, the hier-
archical ring structure further improves network latency since the
frequency of long-latency inter-FPGA communication is reduced.

6. EVALUATION
The majority of our evaluation targets the Xilinx VC709 platform.

The Virtex-7 FPGA on the VC709 includes two physical memory
controllers, each connected to 4GB DDR3 memories. We use these
to implement two board-level caches per VC709. We also test two
networked FPGA deployments: a dual VC707 and a dual VC709
configuration, to demonstrate how our techniques can be applied to
cloud-based networks of FPGAs. We network our FPGAs using two
bidirectional 10Gbps SERDES channels. Frequencies are normal-
ized to 100MHz on all platforms to ensure performance results are
comparable. For the HLS benchmark [27], we utilize Vivado HLS.
We make use of Xilinx Vivado 2015.1 for all synthesis and physical
implementation.

We examine a set of benchmarks with different memory access
patterns in order to evaluate the benefit of LMC:

Memperf: A kernel that measures the performance of the LEAP
memory hierarchy by testing various data strides and working set
sizes on a single private memory. Memperf is throughput-oriented
and can issue as many outstanding requests as the memory system
permits.

Heat: A two-dimensional stencil code that models heat transfer
across a surface. Heat is embarrassingly parallel and can be divided
among as many worker engines as can fit on the FPGA. From an
algorithmic perspective, heat is also very regular: workers march
over the shared two-dimensional space in fixed rectangular patterns.
As such, heat is largely throughput-oriented with a strided access
pattern, but with a high degree of locality. Each heat worker accesses
a LEAP coherent memory, and these coherent memories are largely
symmetric in their runtime behavior. However, heat’s coherence con-
trollers include private memory clients for data and ownership, and
these are asymmetric: the data client uses ten times the bandwidth
of the ownership client.

Heat operates on a parametric data size. In this work, we examine
two data size parameterizations: 8-bit, which gives a degree of spatial
locality in the coherent cache, and 64-bit, which has less locality.

Cryptosorter: Cryptosorter [12] sorts a set of encrypted memory
arrays using highly parallel merge sort engines. Cryptosorter loads
a large number of partially ordered lists in a streaming fashion and
then merges these lists within the fabric using a high-radix sort tree.
Cryptosorter is throughput-oriented and can be scaled to consume
almost any amount of bandwidth. Since the lists to be sorted are
random, the access pattern of cryptosorter is also somewhat random.
The merge operation and, therefore, the memory access behavior
of cryptosorter is related to sparse matrix algebra [18], making this
workload broadly representative of that class of algorithms.

Cryptosorter itself has a parametric memory system and can
instantiate several parallel, banked memory interfaces to improve
memory bandwidth. This approach works well for small numbers
of sorting engines and banks, but if scaled to an extreme, results in
large memory network queuing delays and degraded overall system
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Table 1: FPGA resource utilization for memory system components.

Primitive Slice
Registers

Slice
LUTS

18K-bit
BRAM

Memory Ringstop 876 945 0

Memory Interleaver 1575 1766 0

Unified Central Cache 14499 16513 18

Single Central Cache 13195 15376 18

DRAM Controller 8525 13661 0

Private Memory Client 1660 2010 4

Coherent Memory Client 2985 5721 7

Coherence Controller 6795 7658 19

performance. We examine two configurations: a baseline configu-
ration with a single private memory and a configuration with two
memory interfaces, which we refer to as banked.

Filter: An HLS kernel that implements a filtering algorithm for
K-means clustering [19]. K-means clustering partitions a data set
of points into K clusters, such that each point belongs to the cluster
with the nearest mean. Filter first builds a binary tree structure from
the input data set and then traverses the tree in several iterations. Our
implementation splits the tree into eight independently-processed
sub-trees. Each partition tracks its tree traversal using a stack and
maintains several sets of candidates for the best cluster centers.
Filter uses 24 private memories: eight each for the sub-trees, stacks,
and candidate center sets. Unlike the other applications, Filter’s
performance is sensitive to the latency of memory read responses.
The workload chases data-dependent pointers and thus has limited
ability to produce multiple, parallel memory requests.

6.1 Basic Memory Behavior
To build intuition about the behavior of our optimized memory

systems, we benchmark three memory system implementations – a
baseline implementation and two different interleaved implemen-
tations – using a memory performance kernel that varies both the
working set size and reference locality (see Figure 8). In regions of
high locality, when the working set is small, all three implementa-
tions have similar performance, since there are few misses to the
backing memory system. As locality decreases and the number of
accesses to the backing memory increases, our memory-interleaved
implementations begin to outperform the baseline implementation.
When all accesses are serviced in the central caches, our interleaved
memory subsystems outperform the baseline throughput by 40%
due to the availability of bandwidth from both DRAM controllers.

Our direct address interleaving mechanism routes requests based
on a granularity related to the central cache line size. For memperf
strides that are multiples of this granularity, our direct scheme will
route all requests to a single memory controller, reverting to baseline
performance. To combat this case, we introduce address hashing
which recovers most of the DRAM bandwidth by evenly balancing
the interleaving.

6.2 Area Consumption
Table 1 describes the area requirements of various components of

the LEAP memory hierarchy. We consider two central cache con-
troller implementations: the unified cache controller, which services
two DRAM banks, and the single cache controller, which services
a single DRAM. Managing a second DRAM bank marginally in-
creases the area utilization of the cache controller, due to the increas-
ing width of buses within the controller.

Within the memory system, the chief consumers of area are

Table 2: FPGA resource utilization for baseline and best performing
memory configurations. In general, our optimizations increase uti-
lization by about 20,000 slices and registers over the baseline. This
represents 5.27% of LUTs and 2.44% of registers on the VC709.

Benchmark Slice
Registers

Slice
LUTS

18K-bit
BRAM

Memperf Baseline 62317 80722 162
Optimized 84166 105308 184

Cryptosorter Baseline 99284 137314 304
(4 sorters) Optimized 110116 146592 326

Heat Baseline 157361 229276 243
(8-bit Data) Optimized 189684 264881 284

Filter Baseline 158774 185742 457
Optimized 178039 207333 475

Average Utilization Increase 21067 22765 25.75

VC709 Area (%) 2.44% 5.27% 0.88%

DRAM controllers and central cache controllers. Private and co-
herent memory clients require much fewer resources than the lower
levels of the memory hierarchy. For most applications, the chief
cost of implementing our bandwidth partitioning scheme is the in-
troduction of a second central cache controller. Considered at the
chip level, this area represents only 3.6% of the overall area of the
VC709, which we believe is a small price to pay for the performance
gains we will describe in subsequent sections.

The chief overhead of our intelligent network synthesis is the
introduction into the memory network of new ringstops. In the case
where we simply assign memory clients to different memory net-
works without interleaving, no new hardware is introduced. Memory
network ringstops that are capable of address interleaving, shown in
Figure 6, are more than twice the cost of baseline ringstops, since
interleaved ringstops must communicate with two or more controller
networks. However, the cost of ringstops, and of the network in
general, is dwarfed by the cost of implementing the other elements
of the memory system: memory controllers and caches.

Table 2 shows the area utilization of baseline and best-performing
implementations of each of our benchmarks. As expected, LMC op-
timization increases the area of each benchmark by approximately
the area of a single cache controller. The largest increase occurs in
the heat benchmark. In addition to a second central cache controller,
the optimal instance of heat also includes a second coherence con-
troller. However, the average increase in utilization is small relative
to the size of the VC709: LUT utilization increases by 5.3% of the
full VC709 while register utilization increases by 2.4%.

6.3 Randomized Partitioning
As a baseline for LMC optimization, we examine a random parti-

tioning algorithm, in which memory clients are allocated to memory
controllers in a randomized fashion. This balances the number of
clients accessing each board-level memory, but is otherwise sub-
optimal. Figures 9, 10, and 11 show the relative performance of
three benchmarks under randomized allocation. In general, random
allocation is successful in improving program performance, espe-
cially for symmetric applications like cryptosorter. However, for
throughput-oriented applications with asymmetric memory clients
like heat, random partitioning gives only limited performance gains.

Like heat, filter also features asymmetric memory clients. How-
ever, random allocation actually performs slightly better than more
sophisticated allocation schemes. This is because filter can sustain
only a few outstanding requests per memory client, and is therefore
less sensitive to bandwidth balancing. Filter is, however, extremely
sensitive to latency. Random allocation both halves and balances
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(b) Address Interleaving
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(c) Hashed Address Interleaving

Figure 8: Performance of various LEAP memory systems. Performance is divided into two regions for each configuration. In the high-locality
region, throughput is one word per cycle. In the low-locality region, performance is constrained to the bandwidth of the backing memory
system. Our interleaving techniques nearly double the bandwidth over the baseline. Of note is the small region of increased bandwidth in the
baseline memory system, which is due to the FPGA-side on-chip caching of DRAM lines.
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Figure 9: Runtime of heat on a 1-mega-entry array with various
memory network configurations, normalized to the baseline im-
plementations. Heat achieves the highest performance level when
coherent and private cache network optimizations are composed.

memory network latency relative to the baseline, and, as a result,
improves the performance of filter by about 15%.

6.4 Load-balanced Partitioning
The chief weakness of random partitioning is that it can some-

times oversubscribe the bandwidth of a single memory interface,
especially when the memory clients are asymmetric in their memory
bandwidth utilization. To further improve the system performance,
we introduce load balancing. Load-balanced partitioning solves the
problems of bandwidth imbalance by spreading memory accesses
evenly across all board-level caches. Heat, which obtained some
performance gains with random partitioning, obtains another 20%
performance gain with load balancing, since heavily-loaded clients
are evenly spread across the two board-level memories of the VC709.
Load balancing naturally preserves the performance of symmetric
applications like cryptosorter.

Load balancing evens out bandwidth, but ignores latency: low-
bandwidth memory clients may all be assigned to the same net-
work. In the case of filter, the memory network latencies are slightly
imbalanced due to bandwidth balancing, which results in a small
performance degradation compared to random partitioning.

6.5 Private Memory Address Interleaving
Load-balanced partitioning provides large performance gains for

most of our benchmark cases. However, load balancing can result in
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Figure 10: Runtime of cryptosorter on 256 kilo-entry lists with
various memory network configurations, normalized to the baseline
implementations. Generally, cryptosorter benefits from additional
memory bandwidth. Banked versions of cryptosorter add latency
and promulgate queuing delay in the memory network, lowering
performance for large numbers of sorters.

small bandwidth imbalances if the bandwidth characteristics of a par-
ticular workload are uneven, or if the number of memory clients is
relatively prime to the number of board-level memories. This band-
width imbalance can lead to suboptimal performance. For example,
in Figure 10, a three-sorter instantiation of cryptosorter experiences
some benefit under load-balancing, but achieves less of a perfor-
mance gain than either the two or four sorter case. Two of the sorters
in the three sorter case must share a single controller. If we introduce
memory interleaving, the odd controller’s accesses can be spread
across both controllers equally, leading to further performance gains.
Similarly, applications like memperf or a single-sorter cryptosorter,
which have only one client, can benefit from multiple controllers
when using our interleaving approach.

Throughput-oriented applications generally benefit, or at least
maintain load-balanced performance, with address interleaving. How-
ever, for latency-oriented applications, like filter, the extra cycles of
latency added to route requests between memory networks result
in a performance degradation, even as compared to our baseline
implementation. This is the only case which we found in one of
our optimizations failed to outperform the baseline, and suggests
that care must be taken by the compiler when applying network
optimizations to latency-oriented applications.
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Figure 11: Runtime of filter with various memory network configu-
rations, normalized to the baseline. Filter is sensitive to latency and
thus benefits from random and load-balanced partitioning both of
which reduce memory latency.

6.6 Coherent Cache Network Partitioning
Since LEAP coherent memories make use of private memories for

intermediate data storage, they can take advantage of our bandwidth
allocation and interleaving techniques in addition to our shared-
memory-specific optimization. Figure 9 examines the heat bench-
mark under a variety of optimization scenarios.

Because most memory clients in heat are LEAP coherent mem-
ories, only the coherence controller in heat can utilize our private
memory network optimizations. As a result, the performance gains
for heat under our private memory optimizations are limited to about
12% in the best, load-balanced configuration.

Memory interleaving of the coherence domain at the coherence
controller level provides a similar performance gain to load bal-
ancing, around 10%. However, because coherence controllers use
private memory clients, we can compose the coherent memory in-
terleaving technique with private memory optimizations. This com-
position of optimizations yields a performance gain of 49% for the
64-bit version of the heat benchmark and a 36% gain for the 8-bit
version. The composed performance gain is actually better than the
sum of the individual optimizations. This occurs because coher-
ent memory interleaving introduces new coherence controllers and,
thereby, increases the number of private memory clients, improving
the effectiveness of our private memory optimizations.

6.7 Multiple FPGAs
Looking forward to cloud deployments [25] comprised of net-

works of FPGAs, we examine what happens when we stretch our
synthesized memory networks between FPGAs. LEAP’s named
channel semantic permits their implementation as either inter-FPGA
or intra-FPGA channels, differing only in latency. The LEAP com-
piler thus enables programs located on one FPGA to take advantage
of potentially unused resources located on a nearby FPGA by auto-
matically constructing a network between the FPGAs. The results
of this experiment are shown in Figure 12.

Since inter-FPGA networks add latency, we examine only the
throughput-oriented benchmarks: heat and cryptosorter. On the
VC707, which has one DRAM per FPGA, the performance when
scaling to two VC707s approaches that of the dual-DRAM VC709
for heat. Cryptosorter enjoys even larger performance gains when
deployed to dual VC707s, and even obtains slightly better perfor-
mance than a single VC709, indicating that the bandwidth offered
by the remote memory outweighs the latency cost of accessing the
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Figure 12: Normalized runtime of best-achieved performance solu-
tions for 8-bit heat and cryptosorter with various platform configu-
rations. Heat results are normalized to the runtime of the solution
with a single coherence controller on a single VC707. The results
of single-controller dual-FPGA solutions are not included because
they simply add latency. Cryptosorter results are normalized to the
runtime of the optimized single-VC707 solution.

remote memory. We note that it is unrealistic to expect designers to
consider such complex systems without the assistance of a compiler
to manage communication and resource allocation.

Scaling cryptosorter across two VC709s and to four memory
banks yields another significant performance improvement. This
is particularly pronounced for the eight sorter case, which shows
superlinear performance gains: the baseline, single private memory
controller case has a large memory network and suffers queuing
delay. Heat also shows performance improvement when scaled to
two FPGAs, but only about 2% over an optimized single VC709
implementation. Although incorporating multiple FPGAs exposes
more memory resources, in the case of heat, increased bandwidth is
counter-balanced by communication latency in the coherency net-
works. The effect of latency is also visible, to a lesser degree, in the
slight performance degradation that occurs when we increase the
number of interleaved coherence controllers. Our experience with
the memory system of heat points to the need for better program
analysis when scaling application-specific memory systems, espe-
cially if large performance cliffs, like inter-chip latency, are present
in the scaled system.

Our results show, particularly for throughput-oriented applica-
tions, that bandwidth borrowing or sharing among adjacent, net-
worked FPGAs can be a significant source of performance gains.

7. CONCLUSION
Modern FPGA boards include multiple memory resources to sup-

port the increased bandwidth demand of large numbers of computa-
tional resources. To alleviate the complexity of designing programs
for such systems, we have demonstrated a resource- and application-
aware compiler, the LEAP Memory Compiler, that can transpar-
ently optimize the memory system of a given application. Using
runtime statistics, LMC automatically partitions the network that
connects user-specified memory interfaces to board-level memory
resources, simultaneously increasing the memory bandwidth and
reducing memory latency. We target several platforms wherein mul-
tiple on-board memory resources are available, and demonstrate that
LMC produces significant performance gains.

To optimize private memory interfaces, we balance the total traffic
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on each of several partitioned memory networks so that asymmet-
ric memory clients can efficiently share the memory bandwidth.
For memory clients that consume large amounts of bandwidth, a
compiler-synthesized memory interleaver may be added to partition
a single client’s address space into multiple disjoint regions. A simi-
lar memory interleaving technique is also applied to shared memory
interfaces. We also construct distributed coherence controllers to
relieve network contention and introduce hierarchical coherence
rings to improve the latency of coherent cache networks. Our evalu-
ation shows that the compiler-synthesized cache network provides
up to 49% performance gains to throughput-oriented workloads we
studied and a 15% performance gain to the latency-oriented work-
load we studied, while increasing design area utilization by less
than 6%. We also demonstrate that FPGA applications can make
use of and benefit from remote memory resources accessible by an
inter-FPGA network, and that throughput-oriented applications can
derive significant performance gains as a result.

In this work, we show that different optimizations are helpful
for different applications. One direction for future work is to ex-
plore more non-uniform workloads and conduct a more detailed
run-time analysis on clients’ bandwidth and latency demands to
better direct compiler optimizations. For example, such analysis
can be used to classify different memory clients within a single
application as throughput-sensitive or latency-sensitive, enabling
the compiler to synthesize a more complicated network topology.
A latency-oriented client would be given a more direct connection
to a memory controller, while a throughput-oriented client could be
given some quality-of-service guarantees ensuring higher aggregate
bandwidth. In addition, we also plan to explore dynamic partitioning
for memory clients whose memory demands change over time or
between executions.
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