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ABSTRACT

In an effort to speed the development of FPGA-based ac-

celerators, recent research has focused on providing FPGA

developers with memory and communications abstractions.

Because abstraction decouples the function of these inter-

faces from their implementation, these new interfaces present

an enormous opportunity for optimization. In this paper we

examine stride prefetching as a means of improving the per-

formance of an automatically synthesized, abstract memory

hierarchy. We demonstrate, by applying our technique to

several large benchmarks, that prefetching can improve pre-

existing application runtime by 15% on average, and up to

40%, without requiring program modification.

1. INTRODUCTION

FPGAs were originally intended to provide a replacement for

ASICs in small or low-volume designs. However, as FPGAs

have grown in both size and capability, they have matured

from their original role to become algorithmic computation

platforms in their own right. Indeed, many recent academic

and industrial research projects have accelerated algorithms

using FPGAs, without the intention of producing or emu-

lating an ASIC. Instead, these projects targeted FPGAs to

take advantage of the performance benefits offered by a fine-

grained parallel substrate over general purpose processors.

Rather than trying to precisely emulate some circuit, the de-

sign goal for these programs is to produce a correct answer

to a problem of interest as quickly as possible.

This new use case for FPGAs has engendered several

researches into making FPGAs easier to use, since generating

an answer quickly encompasses not only the time to compute

a solution but also the time to implement the program to

perform the computation. The latter has traditionally been a

pain point for FPGAs. FPGA tools, programming languages,

and abstractions are lacking, prolonging development time

and impeding the general adoption of FPGAs. In light of the

need to make FPGAs truly programmable, much recent work

has focused on making FPGAs easier to use.

One class of work that targets algorithm acceleration

has added new programming primitives to existing hardware

description languages(HDL). These augmentations simplify

FPGA programming by permitting the HDL programmer to

concisely express program behavior at a higher level than reg-

ister transfers. Examples of higher-level constructs include

communications, to software [1], within the FPGA, [2], and

between FPGAs [3], and memory abstractions [4, 5]. The

programmer contract of these primitives is functional, and in

using these primitives, the programmer agrees to adhere to

the function of the interface, rather than the timing of some

specific instance of the interface. These primitives map well

to FPGA-based algorithm accelerators: unlike RTL emula-

tion, which requires the preservation of cycle accuracy, an

algorithm accelerator requires only the preservation of the

functional behavior of the algorithm.

In many cases, an algorithm implementation does not

consume all the resources available on a given FPGA, for ex-

ample, when an algorithm targeting an older, smaller FPGA

is ported to a newer, larger FPGA. In this case, we would like

the compiler to automatically make use of those resources to

improve the performance of the program. To a limited extent,

existing RTLs permit this kind of optimization. For exam-

ple, re-timing and register duplication permit some scaling

of program performance in exchange for area. However, in

traditional RTLs, optimizations must operate at the sub-cycle

level so as not to inadmissibly alter the cycle-level behavior

of the RTL program. This constraint fundamentally limits

the impact of traditional RTL optimizations on program per-

formance. In contrast, the newer, abstract HDL primitives

permit a great deal of freedom in terms of optimization: at

points where the algorithm incorporates the new primitives,

the compiler is explicitly free to choose any implementation

that preserves the functional behavior of the HDL primitive.

Thus, the compiler may leverage idle resources to construct

a high-performance implementation underneath of the func-

tional abstraction layer.

In this work, we examine automatically generated pre-

fetching as a means of improving the performance of pre-

viously written FPGA applications. As in general purpose
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processors, prefetchers can be introduced alongside the exist-

ing memory hierarchy without modifying the memory-using

application. We present a novel, FPGA-optimized microar-

chitecture for prefetching which is tuned for the behavior of

typical FPGA applications. We demonstrate the effectiveness

of our approach by adding prefetchers to three large, pre-

existing FPGA programs. By making use of unused FPGA

resources to automatically accelerate these programs, we ob-

tain performance gains of 15% on average, and up to 40%,

on unmodified program source.

2. RELATED WORK

Traditionally, the definition of FPGA memory hierarchy has

been left as a sometimes-painful exercise to the programmer.

In response to the increasing complexity of memory systems,

FPGA vendors have begun to provide memory controllers,

for example Xilinx MIG [6]. Programmers instantiate some

physical memory controller, and tie their program logic di-

rectly to the instantiated controller, simplifying the overall

design experience. Although controllers are upgraded by the

vendors over time and maintain nearly constant interfaces

across memory and FPGA generations, vendor memory con-

trollers provide a basic implementation – advanced features

like caches are still left to programmers.

Recent research into FPGA programming and architec-

ture has suggested that programs can benefit, in some cases,

dramatically, from improved memory system support. The

CoRAM [5] architecture provides a C-like language in which

fetches to memory can be described. These fetches are exe-

cuted in a streaming fashion and stored in an SRAM resource

for access by program logic. Control flow between the fab-

ric and fetch thread permits a degree of program-dependent

dynamic behavior in the fetch stream.

CoRAM is similar to both a cache hierarchy and a pre-

fetcher. However, the chief weakness of CoRAM lies in the

difficulty of describing the memory access pattern. CoRAM

works well for deterministic access patterns, like matrix-

matrix multiplication. However, for data-dependent or com-

plex access patterns, a C-like fetch description language

may be inadequate. For example, consider the strongly data-

dependent access pattern of an H.264 decoder: memory ac-

cesses generation is tightly coupled to states and logic in

the FPGA fabric, rendering it difficult to describe the fetch

pattern in an external language.

An alternative approach is the LEAP Scratchpad mem-

ory architecture [4]. LEAP Scratchpads provide a general,

portable memory abstraction for FPGA programs. Program-

mers instantiate memories with the simple read-request, read-

response, write interface, shown in Figure 1. A program may

instantiate as many Scratchpad memories as necessary, and

these memories may have arbitrary size, even if the target

FPGA does not have sufficient physical memory to cover the

entire requested memory space.

At compile time, the compiler gathers the Scratchpads in

the user program and instantiates a complex memory hierar-

chy [4] with multiple levels of cache, as in Figure 2. Scratch-

pad memories instantiated in the user program each receives

a local L1 cache. The board-level memory, typically an off-

chip SRAM or DRAM, is used as a shared L2 cache. The

L1 caches are connected to the L2 by way of a synthesized

interconnect network. Backing this high-performance cache

hierarchy is the main memory of a host general-purpose

computer. Like memory hierarchies in general-purpose com-

puters, Scratchpads provide the appearance of fast memory to

programs with good locality, while maintaining the illusion

of an infinite store through the virtual memory mechanisms

of the host.

interface MEM_IFC#(type addr, type data);

Action readRequest(addr addrIn);

ActionValue#(data) readResponse();

Action write(addr addrIn, data dataIn);

endinterface

Fig. 1. A general memory interface for hardware designs [7].

The LEAP Scratchpad architecture provides FPGA pro-

grams a memory abstraction, enabling us to augment the

memory hierarchy with optimization techniques similar to

those used in general-purpose processors. Prefetching is

one such technique. In processors, hardware prefetching

mitigates the impact of cache misses by predicting program

behavior and issuing memory reads in advance of program

execution. Prefetching schemes attempt to predict two prop-

erties of data: which data will be used and when it will be

used. Consequently, prefetching schemes are judged based

on accuracy, fetching useful data, and timeliness, fetching

data into the cache prior, but temporally close, to its use.

The simplest prefetching technique is next sequential

prefetch, which issues a prefetch request to the next cache

line (L+1) when the current cache line (L) is accessed [8, 9].

Prefetch-on-miss issues a prefetch request on every cache

miss, while tagged-prefetch issues requests both on a cache

miss and on the first access to a prefetched cache line, a

prefetch hit, to further reduce the number of misses in a

sequential access stream [10]. To enable tagged-prefetching,

a tag bit is added to each cache line, marking prefetched

cache lines that have not been accessed.

To enhance accuracy, hardware prefetching methods dy-

namically attempt to learn access patterns from program

access streams. However, the learning process is compli-

cated by the interleaving of streaming memory accesses

with other streaming accesses and non-predictable data fetch.

To separate different streaming accesses and to filter out

the non-predictable accesses, extra information, such as the

program counter (PC) of load instructions [11, 12] or the



memory region of the target address [13, 14], is used to

disambiguate the program memory access stream. Once

memory access streams are separated, a prefetch learning

algorithm [11, 14, 15, 16] can be applied to each stream in-

dependently. Stride-prefetching is the most common of these

algorithms. When the prefetcher learns the stride pattern, it

issues memory accesses for L+s, L+2 ·s,..., L+d ·s, where

L is the current cache line, s is the detected stride, and d is

the prefetch degree, the number of issued prefetch requests.

The d parameter is also called look-ahead distance [17], and

may be adjusted to improve timeliness.

Recent prefetching schemes, such as Markov prefetch-

ing [15] and delta correlation prefetching [16], focus on

detecting more complex memory patterns. To reduce the

area complexity of these prefetchers, Global History Buffer

(GHB) [18] uses shared memory structures and linked-lists

to store long access histories. Diaz et al. [19] extend GHB

by linking different local streams together to further increase

accuracy and timeliness.

3. PREFETCHING IN FPGAS

Prefetching in general-purpose architecture has been well

studied and widely applied in modern architectures. How-

ever, there are significant differences between prefetching in

general-purpose architectures and prefetching on the FPGA,

both in terms of program behavior and hardware implemen-

tation. By examining these qualitative differences we build

intuition into our FPGA prefetching architecture design.

Hardware programs differ qualitatively from software

programs. Hardware programs lack a PC, an important pre-

fetching hint for general purpose processors. Although soft-

ware prefetchers have access to the PC, the memory accesses

streams produced by software programs are a mix of both

data and program control structures, which are usually non-

predictable even in streaming applications. On the other hand,

the memory access streams produced by FPGA programs are,

in many cases, pure data streams. In FPGA programs, control

structures, which must be stored in memory in Von Neumann

architectures, are stored in the fabric and accesses to these

structures do not pollute the memory stream. Prefetchers

in general-purpose processors rely on the PC to filter out

non-predictable accesses, especially at the L1 cache. We

show that reasonable prefetching is possible at the L1 cache

in hardware programs even though the PC is not available.

In general-purpose architectures, a common technique to

improve program performance is software prefetching: the

injection of extra load instructions into a program to pull use-

ful data into the cache before its use. Hardware programs are

generally described in a pipelined style, which superficially

resembles software prefetching. In typical hardware imple-

mentations, memory requests are issued well in advance of

data use, and the hardware pipeline is built to tolerate at least

some, if not all, of the latency of these memory requests.

Unlike software prefetching, which can slow a program with

extra instructions, explicit program prefetching in hardware

has almost no performance cost, beyond the introduction of

new buffering. At first glance, explicit prefetching seems

to obviate the need for architectural prefetching support in

the FPGA. However, it is difficult for even-well designed

legacy programs to anticipate the structure and behavior of

new FPGA memory architectures or to completely hide the

latency of the occasional long cache miss. We will demon-

strate that even codes with well-engineered memory latency

tolerance benefit from our prefetching architecture.

The final difference between prefetching in processors

and in FPGAs is in physical implementation of the prefetch-

ing hardware. Silicon prefetcher implementations have great

freedom in building complex wired structures, including

content-addressable memories (CAMs). However, general-

purpose prefetchers face power-performance driven area con-

straints, resulting in small numbers of learners, particularly

at lower levels of the cache. On the other hand, FPGAs

have fixed resources on die, which must either be used by

a program or left idle. Hardware programs running may

leave a large portion of these resources unused, especially

on large FPGAs. Therefore, the area constraints for prefetch-

ing algorithms on FPGAs are usually much lower than in a

fixed-function processor design. Due to the nature of wires

in FPGA fabric, CAMs are not well suited for FPGA imple-

mentation. Instead, larger direct-mapped structures, made

efficient by plentiful in-fabric memory resources, are a good

architecture for prefetching in the FPGA.

4. FPGA PREFETCHING MICROARCHITECTURE

Although FPGAs and general-purpose architectures are dif-

ferent, the similarity between the memory hierarchies in

LEAP Scratchpads and general-purpose processors allows us

to borrow the concepts of prefetch techniques used in proces-

sors to improve the performance of existing FPGA programs.

In this section we describe our adaptation of classical pre-

fetching techniques to the computational structures of FPGAs

and the integration of our prefetching microarchitecture into

the LEAP scratchpad memory hierarchy.

Since FPGAs lack a PC, we employ address-based stride

prefetching, which separates global memory accesses accord-

ing to their memory regions, for Scratchpad private caches.

The size of each memory region is set as the capacity of

the private cache, which is programmer tunable but defaults

to 8 kilowords. Because hardware programs are typically

well-pipelined, memory requests can arrive temporally close

together. Therefore, the prefetching learning process must be

short enough to accommodate these back-to-back accesses,

preventing us from using some of the more complicated

prefetching schemes used in general-purpose architectures.



Fig. 2. Prefetching Microarchitecture. The LEAP Scratchpad architecture is shown to the left, with the L1 microarchitecture.

Our augmentations are highlighted.

However, we believe that the address-based stride prefetching

is sufficient to disambiguate multiple access streams because

the memory accesses from hardware programs are pure data

streams.

Our prefetcher is a variation of the classic addressed-

based stride-prefetcher, to which we add more learning re-

sources and automatic look-ahead distance adjustment. Mem-

ory accesses are separated into streams according to their

memory regions, as denoted by the high-order bits of the

memory access address. Each stream is directly-mapped to

a learner in the prefetcher, permitting us to implement our

prefetcher state storage in either FPGA-resource-efficient

LUTRAM or SRAM. Learners in our prefetcher are updated

by both cache misses and hits to prefetched cache lines, since

each useful prefetch changes what would have been a cache

miss into a prefetch hit.

Prefetch requests must be timely. If a user cache request

to a prefetched line arrives before a prefetch has completed,

the cache request incurs some additional latency and the

benefit of prefetching is reduced. On the other hand, if data is

prefetched too early, it may evict other data that is still needed

or get evicted before it is used. We attempt to adjust the

prefetch look-ahead distance dynamically to match the timing

of requests from the client hardware. When a client request

stalls due to an outstanding prefetch to the same cache line or

if a prefetch request targets a cache line that already has an

outstanding request, we increment the look-ahead distance.

The look-ahead distance may be increased until it reaches a

statically defined upper bound. To prevent the look-ahead

distance from becoming unnecessary large, we add a negative

feedback by decreasing the distance when receiving a certain

amount of timely prefetch hits. One important feature of

our prefetching architecture is portability: we expect that

our prefetching scheme will be applied to multiple memory

architectures and hierarchies. Dynamically adjusting the

look-ahead distance is essential in this use case since different

memory hierarchies and technologies will assuredly have

different access latencies.

The main purpose of a prefetcher is to leverage the un-

used memory bandwidth to fetch data for future needs. When

the memory bandwidth is already saturated by normal cache

requests, prefetch requests consume the precious bandwidth

resources and thus undesirably delay the responses to those

normal requests. To prevent prefetching from overwhelming

the memory bandwidth, the prefetcher automatically stops

issuing requests (but keeps learning on cache accesses) when

the number of outstanding memory accesses exceeds a stati-

cally defined threshold, which may vary from different mem-

ory hierarchies and technologies.

Our prefetch learners store five values, as depicted in

Figure 2. The learner stores prevAddr (the most recently

referenced cache address from the associated stream), the

detected stride (the difference between the two most recent

addresses), a 2-bit prediction state (a saturation counter), and

the look-ahead distance for the stream. When a learner is

triggered by a cache access (L) and has correctly predicted

the stride (s) of that access, it issues a prefetch request L+d·s
to the prefetch request queue (prefetchQ), where d is the

look-ahead distance associated with the learner.

The left side of Figure 2 shows a modified Scratchpad

architecture augmented with prefetchers. Each private L1

cache is connected to a prefetcher that learns from the cache

accesses and issues prefetch requests to bring data into the

cache. A prefetcher consists of multiple learners, each of



which is responsible for extracting the stride pattern in a local

memory access stream. The number of learners is parame-

terized and can be adjusted either by the programmer or by

a compiler depending on the amount of available resources.

Because we store the state of the learners in either FPGA LU-

TRAM or SRAM resources, we can instantiate many more

learners on an FPGA board than in a processor, although

these learners can only be accessed by direct address index-

ing. Indeed, because FPGA resources have a fixed minimum

size, we fill the memory resource completely with learners

– SRAM-based prefetchers may have thousands of learners.

Using large numbers of learners approximates a fully asso-

ciative structure and can significantly reduce conflict misses.

The right half of Figure 2 depicts the integration of our

prefetching microarchitecture into the L1 cache microarchi-

tecture. In the baseline scratchpad L1 cache microarchitec-

ture, cache lines are either available for operation or are busy,

if there is an outstanding request to an upper level cache.

The baseline cache maintains two kinds of requests which

are buffered in two distinct queues: (1) newReqQ buffers

incoming client requests and (2) sideBuffer stores prior re-

quests that are blocked by busy cache lines. Each cycle, an

arbiter chooses a single request from one of the queues. If the

chosen request needs to access a busy cache line, it is shunted

to the sideBuffer where it waits for the busy line to be ser-

viced. The sideBuffer allows subsequent cache requests to

be processed out-of-order but requires the introduction of

a completion buffer (not depicted) in the cache. Because

out-of-order request processing obfuscates memory access

patterns, our prefetcher learns only from the newReqQ .

In addition to the prefetching hardware itself, we make a

few modifications to the scratchpad cache microarchitecture.

Our prefetching microarchitecture adds a third request source

to the request arbiter: prefetchQ buffers requests issued by

the prefetcher. If a prefetch request is chosen and the request

tries to access a busy cache line, it is not shunted to the

sideBuffer , but instead dropped. Prefetches to busy lines

are dropped because it is likely that the prefetch request is

issued too late, and the cache line is busy because the client

request predicted by the prefetcher has already occurred. In

addition, we add an additional prefetch status bit (PF ) to

each cache line to mark cache lines that are pulled into the

cache by prefetch requests and have not been accessed yet.

This additional bit enables the tagged prefetching scheme as

well as allows the prefetching hardware to check whether a

prefetch request is timely or not.

5. EVALUATION

5.1. Benchmarks

To evaluate the effect of adding our prefetcher to the LEAP

Scratchpads memory hierarchy, we examine a diverse set of

previously published FPGA implementations. All codes we

Characteristic ML605 ACP

Type DRAM SRAM

Capacity 512 MB 8 MB

Bandwidth 2780 MB/s 600 MB/s

Latency 254 ns 150 ns

Table 1. Structural and performance metrics for evaluation

FPGA platforms, as measured at the memory controller.

evaluate were originally expressed in terms of the generic

request-response memory interfaces, and adding our pre-

fetcher requires no modification. These codes are also several

years old and were originally written targeting much smaller

FPGAs than our evaluation platforms. As a result, adding our

prefetching scheme does not materially impact the physical

implementation of these designs in terms of area or maxi-

mum clock frequency. It is also important to note that these

designs are highly performance-tuned: two of the designs

[20, 21] won performance-based FPGA design contests.

We arrange the benchmarks in order of the regularity of

their memory access pattern.

Blocked Matrix-matrix Multiplication: The MMM hard-

ware [20] that we evaluate uses a block-style decomposition

with its own internal block buffering. The two input and the

output matrices are stored in separately initialized Scratch-

pad address spaces. When calculating a single output block,

the hardware pulls in a complete row and column of the

source matrices, computing a streaming multiply-accumulate.

Although the block access pattern is non-strided, accesses

within the rows of a single block, which are visible to our

prefetcher, are strided. The fetch pattern of MMM is fixed

statically and does not vary with input.

Merge Sort: Our merge sort implementation [21] achieves

area-efficiency by time-multiplexing a single comparator

among many lists. Lists are stored locally in FPGA SRAM,

which is shared among all the lists to be merged. Multiple

mergers may be concatenated to form a deep sorting pipeline,

further reducing memory pressure. Merge sort uses a sin-

gle Scratchpad interface. At runtime, the merger hardware

repetitively picks a pair of lists and performs a single merge

on them, propagating the result to the next merger. The

item chosen at each list merge is data-dependent, causing the

stored lists to drain at different and unpredictable rates. The

hardware attempts to deal with this by observing the amount

of data remaining in each list and fetching new data as the

list drains. Thus, while the set of fetches produced by the

merge sorter are determined statically, the order in which

these fetches are issued by the hardware is data dependent.

H.264: H.264 is a state-of-the-art video decoder. Like many

video decoders, H.264 constructs new frames from portions

of previously decoded frames stored in memory, a process

known as inter-prediction. Pre-existing frames are generally
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Fig. 3. Prefetcher performance results. Performance is normalized to a non-prefetched implementation.

fetched into the processing core in a raster-like order, left-

to-right and top-to-bottom. However, there are significant

sources of non-determinism in the fetch pattern. First, por-

tions of the frame may not be inter-predicted, creating gaps in

the memory access stream. Second, because there are several

possible prediction modes, the memory access pattern may

vary in stride at a fine grain. Our H.264 implementation [7]

uses three separate Scratchpads, one for the luminance field

and two for the chrominance fields.

5.2. Platforms

Because the evaluation benchmarks were written on top of

LEAP, we can port implementations among different FPGA

platforms without source modification by simply re-targeting

the LEAP compilation flow to the new platform. Re-targeting

a program does not change the functional behavior of a pro-

gram, just as recompiling a C code for a new machine does

not change the functional behavior of the C code.

In this study, we run benchmarks on two different FPGA

memory hierarchies: the Nallatech ACP [22] module and the

Xilinx ML605 [23]. The chief qualitative difference between

the ACP and the ML605 is that the ACP board-level memory

is a small, but fully-pipelined SRAM, while the ML605

board-level memory is a large DRAM, in which only some

memory requests may be pipelined. Table 1 summarizes the

properties of the memory systems of the two boards.

6. RESULTS

In this section, we first discuss our prefetcher’s runtime per-

formance results on each benchmark described in Section 5.

Then, we use MMM as an example to analyze the prefetching

accuracy and the effect of controlling prefetch bandwidth.

We also discuss the area of our prefetching hardware. If not

specified, we use the following configurations throughout this

section: (1) each prefetcher has 32 learners; (2) look-ahead

distance is increased with upper bound of 32 and decreased

on every 4 timely prefetch hits; (3) prefetch requests are ig-

nored when the total number of outstanding memory requests

exceeds 12.

6.1. Runtime Acceleration

Blocked Matrix-matrix Multiplication: We evaluate our

prefetcher architecture using matrix multiplications of vari-

ous sizes. For small matrix sizes, the prefetcher provides up

to a 40% performance gain.

The underlying MMM hardware decouples memory op-

erations from computation and actively attempts to overlap

the latency of block loads with ongoing computation. When

there are a sufficiently large number of blocks in a row or

column, the hardware matrix multiplication hides most of

the memory latency. However, at the edges of the matrix

multiplication, for example starting on a new row of blocks,

the MMM algorithm does not fully overlap loads and in-

curs some performance penalty due to memory latency. Our

prefetching scheme minimizes this penalty, and in smaller

problems, which are dominated by edge conditions, prefetch-

ing results in a substantial performance gain.

Merge Sort: Merge sort is evaluated by sorting random

lists of 128-bit integer values. Figure 3(b) shows that, our

prefetching scheme marginally improves the performance of

the merge sorter on both FPGAs.

Our prefetcher architecture is able to discover the list-

based data management scheme that the prefetcher is using.

However, as the merge sort is intrinsically performing its own

prefetching scheme by monitoring the fullness of its internal

list buffers and preemptively requesting data, there is limited

opportunity for performance gain. Despite this, our prefetch-

ing scheme can mine out additional performance without

requiring performance tuning on the part of the programmer.

H.264: Figure 3(c) shows the results of applying our pre-

fetching scheme to an H.264 decoder operating on streams

of various resolutions. Although the effect of prefetching

varies among different video streams on different platforms,

all benchmarks benefit from prefetching to some degree.

There are many factors that may cause the prefetching
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Fig. 4. Matrix-matrix multiplication result analysis

performance variation. First, because the encoding of a video

is strongly dependent on the content of that video, the amount

and kind of prefetching varies between encoded streams.

Actually, for streams without inter-prediction, prefetching

has no effect on performance.

In addition, at lower resolutions, data may remain in the

cache for longer periods during processing and therefore can

be reused, while at higher resolutions, only a small portion

of a frame can remain on chip. As a result, useless prefetches

that evict useful data in the cache may have bigger impact

on lower resolution streams. However, the performance of

higher resolution streams is more likely to suffer from limited

memory bandwidth due to more outstanding requests.

The effect of prefetching on decode speed varies between

the ACP and ML605. The ML605 has larger board-level

memory latency, which means a timely prefetch results in a

bigger performance gain. However, because the memory on

the ML605 is not fully pipelined, useless prefetches waste

memory bandwidth and may reduce performance.

6.2. Prefetch Accuracy

Figure 4(a) gives a classification of prefetches based on their

dynamic behavior. Prefetches issued by our prefetcher mi-

croarchitecture fall into five categories. At issue, a prefetch

may be dropped, either because the data already resides in the

cache, or because the cache line target is busy, indicating that

the prefetch is too late where the requested address may have

been issued earlier by the client. Once issued, each prefetch

has one of three possible outcomes: (1) timely useful, (2)

late useful where the user program has already attempted to

access the prefetch data, and (3) useless where the prefetch

data is not accessed before it is evicted from the cache.

Although we show a detailed breakdown for only MMM,

in general, prefetches are useful, that is they are either timely

or late. Most programs that we tested also experience some

degree of improved runtime, though the runtime improve-

ment may be small if there are few prefetches.

In the larger MMM workloads, a sizable portion of the

prefetches are useless. In our blocked MMM implementation,

we access half of the blocks in column-major order. Because

of the prefetch look-ahead distance, the prefetcher fetches

beyond the edge of the block into the next column. Although

these prefetches will ultimately be useful, they are temporally

distant and get evicted from the cache before they are used.

6.3. Prefetch Bandwidth Control

To prevent prefetching from overwhelming the memory band-

width, our prefetcher automatically stops issuing requests

when the number of outstanding memory requests exceeds

a certain threshold, in effect permitting prefetching only if

there is spare memory bandwidth available. Figure 4(b)

and 4(c) show the effects of controlling prefetch bandwidth

on runtime performance and prefetch issue rate. The low

issue rate under bandwidth control indicates that MMM has

high demand on the memory bandwidth, especially at large

matrix sizes due to its own internal block prefetching. With-

out the bandwidth control, prefetch requests may overwhelm

the memory and starve these memory requests, resulting in

increased miss latency and runtime performance degradation.

Bandwidth-limiting has a more pronounced effect on the

ML605 because the DRAM is not fully pipelined.

6.4. Prefetcher Area

Table 2 shows the area of various implementations of our

prefetching hardware. In general the area requirements of

prefetching in the FPGA are extremely small, even if there

are many stream learners incorporated into the prefetch en-

gine. This is because the learner state, the chief consumer

of area in an ASIC prefetcher, can be mapped efficiently to

SRAM, leaving only the much smaller tracking and address

generation logic to be implemented in slice resources.



Slice Registers Slice LUTS BRAM fmax

32 Learners, LUTRAM 333 1045 0 127 MHz

32 Learners, BRAM 419 1275 2 131 MHz

H.264, Baseline Profile 60770 86364 99 80 MHz

Table 2. FPGA resource utilization for prefetching logic. The area used by a single prefetcher is less than .5% of the total area

of the LX240T chip used on the ML605 board. For comparison, the total area of our H.264 implementation is also shown.

Most applications require only a handful of Scratchpads.

Coupled with the area efficiency of our prefetcher implemen-

tation, this means that the performance gains of prefetching

discussed above are not likely to compromise the overall

implementation quality of most designs.

7. CONCLUSION

FPGAs are establishing themselves as platforms for algo-

rithm acceleration. However, many algorithm implemen-

tations do not fully utilize the resources available on the

FPGA. Programs expressed using the Scratchpad memory

abstraction leave the choice of memory system implemen-

tation to the compiler, permitting the compiler to leverage

these unused resources. In this paper we have demonstrated

that adding prefetchers to this synthesized memory hierar-

chy improves performance of pre-existing programs. The

size of prefetchers is tunable to leverage excess resources,

allowing performance tuning without design changes. In

particular, inserting small stride prefetchers results in 15%

average performance gain.

Although we have assumed in this paper the monolithic

addition of prefetching as the sole means of memory system

optimization, there are many possible optimizations to the

memory system: improved caching policy, larger caches, and

greater associativity. Such optimizations could be automated,

with synthesis and behavioral feedback from a specific pro-

gram dictating the optimizations applied by the compiler.
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