Authenticated Storage Using Small Trusted Hardware

<u>Hsin-Jung Yang</u>, Victor Costan, Nickolai Zeldovich, and Srini Devadas

Massachusetts Institute of Technology

November 8th, CCSW 2013

Cloud Storage Model

Cloud Storage Requirements

• Privacy

- Sol: encryption at the client side
- Availability
 - Sol: appropriate data replication

• Integrity

Sol: digital signatures & message authentication codes

• Freshness

- Hard to guarantee due to **replay attacks**

User B

User A

Cloud Server

User B

User A

Cloud Server

User **B**

User A

Cloud Server

User B

Outline

• Motivation: Cloud Storage and Security Challenges

• System Design

- Threat Model & System Overview
- Security Protocols
- Crash Recovery Mechanism
- Implementation
- Evaluation
- Conclusion

- Untrusted connections
- Disk attacks and hardware failures
- Untrusted server that may
 (1) send wrong response
 (2) pretend to be a client
 (3) maliciously crash
 (4) disrupt P chip's power
- Clients may try to modify other's data

- Untrusted connections
- Disk attacks and hardware failures
- Untrusted server that may
 (1) send wrong response
 (2) pretend to be a client
 (3) maliciously crash
 (4) disrupt P chip's power
- Clients may try to modify other's data

- Untrusted connections
- Disk attacks and hardware failures
- Untrusted server that may
 (1) send wrong response
 (2) pretend to be a client
 (3) maliciously crash
 (4) disrupt P chip's power
- Clients may try to modify other's data

- Untrusted connections
- Disk attacks and hardware failures
- Untrusted server that may
 (1) send wrong response
 (2) pretend to be a client
 (3) maliciously crash
 (4) disrupt P chip's power
- Clients may try to modify other's data

System Overview

- Client <-> S-P chip: HMAC key
- S-P chip: integrity/freshness checks, system state storage & updates sign responses
- Server: communication, scheduling, disk IO

Security Protocols

- Message Authentication
- Memory Authentication
- Write Access Control
- System State Protection against Power Loss

Design: Message Authentication

- Untrusted network between client and server
 - Sol: HMAC Technique
- Session-based protocol (HMAC key)

Security Protocols

- Message Authentication
- Memory Authentication
- Write Access Control
- System State Protection against Power Loss

Design: Memory Authentication

- Data protection against untrusted disk
- Block-based cloud storage API
 - Fixed block size (1MB)
 - Write (block number, block)
 - Read (block number) \rightarrow block
 - Easy to reason about the security

Design: Memory Authentication

Disk is divided into many blocks

Design: Memory Authentication

Disk is divided into many blocks

Design: Memory Authentication

Disk is divided into many blocks

Design: Memory Authentication

Disk is divided into many blocks

Merkle Tree Caching

• Caching policy is controlled by the server

P chip

Node #	Hash	Verified	Left child	Right child
1	fabe3c05d8ba995af93e	Y	Y	N
2	e6fc9bc13d624ace2394	Y	Y	Y
4	53a81fc2dcc53e4da819	Y	N	N
5	b2ce548dfa2f91d83ec6	Y	N	N

Security Protocols

- Message Authentication
- Memory Authentication
- Write Access Control
- System State Protection against Power Loss

Design: Write Access Control

- Goal: to ensure all writes are authorized and fresh
- Coherence model assumption:
 - Clients should be aware of the latest update
- Unique write access key (Wkey)
 - Share between authorized writers and the S-P chip

- Revision number (V_{id})
 - Increase during each write operation

Design: Write Access Control

• Protect Wkey and V_{id}

- Add another layer at the bottom of Merkle tree

Security Protocols

- Message Authentication
- Memory Authentication
- Write Access Control
- System State Protection against Power Loss

Design: System State Protection

- Goal: to avoid losing the latest system state
 - Server may interrupt the P chip's supply power
- Solution: root hash storage protocol

Design: Crash Recovery Mechanism

• Goal: to recover the system from crashes

 Even if the server crashes, the disk can be recovered to be consistent with the root hash stored on the S chip

• Solution:

Implementation

• ABS (authenticated block storage) server architecture

Implementation

• ABS client model

Performance Evaluation

• Experiment configuration

- Disk size: 1TB
- Block size: 1MB
- Server: Intel Core i7-980X 3.33GHz 6-core processor with 12GB of DDR3-1333 RAM
- FPGA: Xilinx Virtex-5 XC5VLX110T
- Client: Intel Core i7-920X 2.67GHz 4-core processor
- FPGA-server connection: Gigabit Ethernet
- Client-server connection: Gigabit Ethernet

File System Benchmarks (Mathmatica)

• Fast network:

- Latency: 0.2ms
- Bandwidth: 1Gbit/s

File System Benchmarks (Mathmatica)

• Slow network:

- Latency: 30.2ms
- Bandwidth: 100Mbit/s

File System Benchmarks (Modified Andrew Benchmark)

• Slow network:

- Latency: 30.2ms
- Bandwidth: 100Mbit/s

Customized Solutions

• Hardware requirements

Demand Focused	Performance	Budget
Connection	PCIe x16 (P) / USB (S)	USB
Hash Engine	8 + 1 (Merkle)	0 + 1 (Merkle)
Tree Cache	large	none
Response Buffer	2 KB	300 B

• Estimated performance

Demand	Focused	Performance	Budget
Randomly	Throughput	2.4 GB/s	377 MB/s
Write	Latency	12.3 ms + 32 ms	2.7 ms + 32 ms
Randomly	Throughput	2.4 GB/s	
Read	Latency	0.4 ms	
# HDDs supported		24	4

Customized Solutions

• Hardware requirements

Single chip!

Demand Focused	Performance	Budget
Connection	PCIe x16 (P) / USB (S)	USB
Hash Engine	8 + 1 (Merkle)	0 + 1 (Merkle)
Tree Cache	large	none
Response Buffer	2 KB	300 B

• Estimated performance

Demand Focused		Performance	Budget
Randomly	Throughput	2.4 GB/s	377 MB/s
Write	Latency	12.3 ms + 32 ms	2.7 ms + 32 ms
Randomly	Throughput	2.4 GB/s	
Read	Latency	0.4 ms	
# HDDs supported		24	4

Conclusion

- We build an authenticated storage system
 - Efficiently ensure data integrity and freshness
 - Prevent unauthorized/replayed writes
 - Can be recovered from accidentally/malicious crashes
- The system has 10% performance overhead on the network with 30 ms latency and 100 Mbit/s bandwidth
- We provide customized solutions
 - With limited resources: single-chip solution
 - With more hardware resources: two-chip solution

Thank You!