
LEAP Shared Memories:
Automating the Construction of

FPGA Coherent Memories

Hsin-Jung Yang†, Kermin E. Fleming‡,
Michael Adler‡, and Joel Emer†‡

† Massachusetts Institute of Technology

‡ Intel Corporation

May 12th, FCCM 2014

Motivation

• Goal: simplifying parallel programming on FPGAs

Motivation

• Goal: simplifying parallel programming on FPGAs
• 2D Heat Transfer Equation

N

M

Motivation

• Goal: simplifying parallel programming on FPGAs
• 2D Heat Transfer Equation

N

M

for(int t = 0; t < T; t++){
 #pragma omp parallel num_threads(4){
 int thread_id = omp_get_thread_num();
 int bid_x = thread_id%2;
 int bid_y = thread_id/2;
 for (int y = bid_y*(N/2); y < (1+bid_y)*(N/2); y++)
 for (int x = bid_x*(M/2); x < (1+bid_x)*(M/2); x++)
 U[t+1,x,y] = C0*U[t,x,y]
 + Cx*(U[t,x-1,y]+U[t,x+1,y])
 + Cy*(U[t,x,y-1]+U[t,x,y+1]);
 }
}

Motivation

• Goal: simplifying parallel programming on FPGAs
• 2D Heat Transfer Equation

N

M

for(int t = 0; t < T; t++){
 #pragma omp parallel num_threads(4){
 int thread_id = omp_get_thread_num();
 int bid_x = thread_id%2;
 int bid_y = thread_id/2;
 for (int y = bid_y*(N/2); y < (1+bid_y)*(N/2); y++)
 for (int x = bid_x*(M/2); x < (1+bid_x)*(M/2); x++)
 U[t+1,x,y] = C0*U[t,x,y]
 + Cx*(U[t,x-1,y]+U[t,x+1,y])
 + Cy*(U[t,x,y-1]+U[t,x,y+1]);
 }
} operation on the shared array

Motivation

• Goal: simplifying parallel programming on FPGAs
• 2D Heat Transfer Equation

N

M

for(int t = 0; t < T; t++){
 #pragma omp parallel num_threads(4){
 int thread_id = omp_get_thread_num();
 int bid_x = thread_id%2;
 int bid_y = thread_id/2;
 for (int y = bid_y*(N/2); y < (1+bid_y)*(N/2); y++)
 for (int x = bid_x*(M/2); x < (1+bid_x)*(M/2); x++)
 U[t+1,x,y] = C0*U[t,x,y]
 + Cx*(U[t,x-1,y]+U[t,x+1,y])
 + Cy*(U[t,x,y-1]+U[t,x,y+1]);
 }
} operation on the shared array

implicit barrier synchronization

Motivation

• Goal: simplifying parallel programming on FPGAs
• 2D Heat Transfer Equation

N

M

Motivation

• Goal: simplifying parallel programming on FPGAs
• 2D Heat Transfer Equation

How to implement on FPGAs?
N

M

• 2D Heat Transfer Equation (using FPGA Block RAM)

Programming on FPGA

RAM
Block

Engine

Interface N

M

• 2D Heat Transfer Equation (using FPGA Block RAM)

Programming on FPGA

RAM
Block

Engine

Interface N

M

• 2D Heat Transfer Equation (using FPGA Block RAM)

Programming on FPGA

RAM
Block

Engine

Interface N

M

• 2D Heat Transfer Equation (using FPGA Block RAM)

Programming on FPGA

RAM
Block

Engine

Difficulty:
• Problem size cannot fit in RAM block

Interface N

M

• 2D Heat Transfer Equation (using LEAP Scratchpad)

Programming on FPGA

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

Engine

Interface N

M
unlimited address space

• 2D Heat Transfer Equation (using LEAP Scratchpad)

Programming on FPGA

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

Engine

Interface N

M
unlimited address space

• 2D Heat Transfer Equation (using LEAP Scratchpad)

Programming on FPGA

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

Engine

Interface N

M
unlimited address space

Difficulty:
• Single engine

is too slow

• 2D Heat Transfer Equation

Parallel Programming on FPGA

N

M

Engine 1 Engine 2 Engine 3 Engine 4

Interface

• 2D Heat Transfer Equation

Parallel Programming on FPGA

N

M

Engine 1 Engine 2 Engine 3 Engine 4

Interface

Difficulty: Performance is limited

• 2D Heat Transfer Equation

Parallel Programming on FPGA

N

M

Engine 1 Engine 2 Engine 3 Engine 4

Interface

Difficulty: Performance is limited

Serialized requests

• 2D Heat Transfer Equation

Parallel Programming on FPGA

N

M

Engine 1 Engine 2 Engine 3 Engine 4

Interface

Difficulty: Performance is limited

Serialized requests

Long latency if across FPGAs

• 2D Heat Transfer Equation

Parallel Programming on FPGA

N

M

Engine 1 Engine 2 Engine 3 Engine 4

Interface

• 2D Heat Transfer Equation

Parallel Programming on FPGA

N

M

Engine 1 Engine 2 Engine 3 Engine 4

Difficulty:
• Edge pixels are

shared

Interface

• 2D Heat Transfer Equation

Parallel Programming on FPGA

N

M

Engine 1 Engine 2 Engine 3 Engine 4

Difficulty:
• Edge pixels are

shared

Interface

Need cache coherence!

(1) Ordering point

Shared Memory Services:
Coherent Scratchpad (CS)

Ring-based snoopy protocol

Engine

Interface

Engine Engine Engine

Shared Cache
pre-order request
ordered request
response

(1) Ordering point

Shared Memory Services:
Coherent Scratchpad (CS)

Ring-based snoopy protocol
Modified MOSI protocol

Engine

Interface

Engine Engine Engine

Shared Cache
pre-order request
ordered request
response

(1)
(2) Store data
(1) Ordering point

Shared Memory Services:
Coherent Scratchpad (CS)

Ring-based snoopy protocol
Modified MOSI protocol

Engine

Interface

Engine Engine Engine

Shared Cache
pre-order request
ordered request
response

(1)
(2) Shared data ca
(3) Store owner-bit information for

every address

(1)
(2) Store data
(1) Ordering point

Shared Memory Services:
Coherent Scratchpad (CS)

Ring-based snoopy protocol
Modified MOSI protocol

Engine

Interface

Engine Engine Engine

Shared Cache
pre-order request
ordered request
response

Shared Memory Services:
Coherent Scratchpad (CS)

Ring-based snoopy protocol
Modified MOSI protocol

Engine

Interface

Engine Engine Engine

Shared Cache
pre-order request
ordered request
response

Coherent Scratchpad Controller

(1) Ordering point
(2) Store data
(3) Store owner-bit

information

data owner bit

Shared Memory Services:
Coherent Scratchpad

Parallel Programming on FPGA

• 2D Heat Transfer Equation

N

M

for(int t = 0; t < T; t++){
 #pragma omp parallel num_threads(4){
 int thread_id = omp_get_thread_num();
 int bid_x = thread_id%2;
 int bid_y = thread_id/2;
 for (int y = bid_y*(N/2); y < (1+bid_y)*(N/2); y++)
 for (int x = bid_x*(M/2); x < (1+bid_x)*(M/2); x++)
 U[t+1,x,y] = C0*U[t,x,y]
 + Cx*(U[t,x-1,y]+U[t,x+1,y])
 + Cy*(U[t,x,y-1]+U[t,x,y+1]);
 }
}

implicit barrier synchronization

Parallel Programming on FPGA

• 2D Heat Transfer Equation

N

M

for(int t = 0; t < T; t++){
 #pragma omp parallel num_threads(4){
 int thread_id = omp_get_thread_num();
 int bid_x = thread_id%2;
 int bid_y = thread_id/2;
 for (int y = bid_y*(N/2); y < (1+bid_y)*(N/2); y++)
 for (int x = bid_x*(M/2); x < (1+bid_x)*(M/2); x++)
 U[t+1,x,y] = C0*U[t,x,y]
 + Cx*(U[t,x-1,y]+U[t,x+1,y])
 + Cy*(U[t,x,y-1]+U[t,x,y+1]);
 }
} operation on the shared array

implicit barrier synchronization

Parallel Programming on FPGA

• 2D Heat Transfer Equation

N

M

for(int t = 0; t < T; t++){
 #pragma omp parallel num_threads(4){
 int thread_id = omp_get_thread_num();
 int bid_x = thread_id%2;
 int bid_y = thread_id/2;
 for (int y = bid_y*(N/2); y < (1+bid_y)*(N/2); y++)
 for (int x = bid_x*(M/2); x < (1+bid_x)*(M/2); x++)
 U[t+1,x,y] = C0*U[t,x,y]
 + Cx*(U[t,x-1,y]+U[t,x+1,y])
 + Cy*(U[t,x,y-1]+U[t,x,y+1]);
 }
} operation on the shared array

implicit barrier synchronization

• Finish the inner loop operations
 Computations complete
 Memory operations complete

• Wait until all threads are finished

• Block RAM/Private Scratchpad Interface

• Coherent Scratchpad Interface

interface MEM_IFC#(type t_ADDR, type t_DATA);
 method void readReq (t_ADDR addr);
 method void write(t_ADDR addr, t_DATA data);
 method t_DATA readResp();
 // t_REQ r := {READ, WRITE, FULL}
 method Bool requestPending(t_REQ r);
endinterface

Shared Memory Services:
Memory Consistency

interface MEM_IFC#(type t_ADDR, type t_DATA);
 method void readReq (t_ADDR addr);
 method void write(t_ADDR addr, t_DATA data);
 method t_DATA readResp();
endinterface

• Block RAM/Private Scratchpad Interface

• Coherent Scratchpad Interface

interface MEM_IFC#(type t_ADDR, type t_DATA);
 method void readReq (t_ADDR addr);
 method void write(t_ADDR addr, t_DATA data);
 method t_DATA readResp();
 // t_REQ r := {READ, WRITE, FULL}
 method Bool requestPending(t_REQ r);
endinterface

Fence support
(memory consistency)

Shared Memory Services:
Memory Consistency

interface MEM_IFC#(type t_ADDR, type t_DATA);
 method void readReq (t_ADDR addr);
 method void write(t_ADDR addr, t_DATA data);
 method t_DATA readResp();
endinterface

Parallel Programming on FPGA

• 2D Heat Transfer Equation

N

M

for(int t = 0; t < T; t++){
 #pragma omp parallel num_threads(4){
 int thread_id = omp_get_thread_num();
 int bid_x = thread_id%2;
 int bid_y = thread_id/2;
 for (int y = bid_y*(N/2); y < (1+bid_y)*(N/2); y++)
 for (int x = bid_x*(M/2); x < (1+bid_x)*(M/2); x++)
 U[t+1,x,y] = C0*U[t,x,y]
 + Cx*(U[t,x-1,y]+U[t,x+1,y])
 + Cy*(U[t,x,y-1]+U[t,x,y+1]);
 }
} operation on the shared array

implicit barrier synchronization

• Finish the inner loop operations
 Computations complete
 Memory operations complete

• Wait until all threads are finished

• In Processor: software through-memory barriers
– via shared memory & locks

Synchronization Services:
Memory Barrier

void barrier(num_threads_const, lock_addr, eflag_addr,
 lflag_addr, ecounter_addr, lcounter_addr)
{
 while (*eflag_addr);
 lock(lock_addr);
 (*ecounter_addr)++;
 if ((*ecounter_addr) == num_thread_const){
 (*eflag_addr) = 0;
 (*lflag_addr) = 1;
 }
 unlock(lock_addr);
 while (*lflag_addr);
 lock(lock_addr);
 (*lcounter_addr)++;
 if ((*lcounter_addr) == num_thread_const){
 (*lcounter_addr) = 0;
 (*ecounter_addr) = 0;
 (*eflag_addr) = 1;
 (*lflag_addr) = 0;
 }
 unlock(lock_addr);
}

• In Processor: software through-memory barriers
– via shared memory & locks

• In FPGA:

Synchronization Services:
Memory Barrier

Mask

Client A Client B Client C

Synchronization
Client

Synchronization
Client

Synchronization
Client

Synchronization
Controller

• In Processor: software through-memory barriers
– via shared memory & locks

• In FPGA:

Synchronization Services:
Memory Barrier

Suppose clients A & B need to synchronize

A B C

Mask

Client A Client B Client C

Synchronization
Client

Synchronization
Client

Synchronization
Client

Synchronization
Controller

• In Processor: software through-memory barriers
– via shared memory & locks

• In FPGA:

Synchronization Services:
Memory Barrier

Suppose clients A & B need to synchronize

A B C

Mask

Client A Client B Client C

Synchronization
Client

Synchronization
Client

Synchronization
Client

Synchronization
Controller

A
isDone

• In Processor: software through-memory barriers
– via shared memory & locks

• In FPGA:

Synchronization Services:
Memory Barrier

Suppose clients A & B need to synchronize

A B C

Mask

Client A Client B Client C

Synchronization
Client

Synchronization
Client

Synchronization
Client

Synchronization
Controller

• In Processor: software through-memory barriers
– via shared memory & locks

• In FPGA:

Synchronization Services:
Memory Barrier

Suppose clients A & B need to synchronize

B
isDone

A B C

Mask

Client A Client B Client C

Synchronization
Client

Synchronization
Client

Synchronization
Client

Synchronization
Controller

• In Processor: software through-memory barriers
– via shared memory & locks

• In FPGA:

Synchronization Services:
Memory Barrier

Suppose clients A & B need to synchronize

allDone

A B C

Mask

Client A Client B Client C

Synchronization
Client

Synchronization
Client

Synchronization
Client

Synchronization
Controller

• In Processor: software through-memory barriers
– via shared memory & locks

• In FPGA:

Synchronization Services:
Memory Barrier

Suppose clients A & B need to synchronize

allDone

void barrier()
{
 send(isDone);
 while (receive(allDone));
}

A B C

• In Processor: software through-memory barriers
– via shared memory & locks

• In FPGA:
– outside of shared memory

• Performance Comparison:

Synchronization Services:
Memory Barrier

System Barriers per
Second

Normalized
Throughput

LEAP Barrier Service 7352076 342

Hardware Lock Barrier via
Coherent Scratchpad 85088 4

Spin-Lock Mutex-Enabled Cache* 21510 1

* V. Mirian and P. Chow, “Managing mutex variables in a cache-coherent shared-memory system for FPGAs,” in FPT, 2012.

Performance on 2D Heat Transfer

FPGA: Xilinx VC707
Frame Size: 512x512
Coherent Cache Size: 8KB
Pixel Size: 8bit

N

M

Centralized Scratchpad Coherent Scratchpad

Coherent Scratchpads on
Multiple FPGAs

K. Fleming et al., “Leveraging latency-insensitivity to ease multiple FPGA design,” in FPGA, 2012.

Performance of Dual FPGA

• 2D Heat Transfer Equation

FPGA: Xilinx VC707
Frame Size: 512x512
Coherent Cache Size: 64KB
Pixel Size: 8bit

N

M
Single FPGA

Dual FPGA

Conclusion

• Programming on FPGA is difficult due to the lack of

useful abstractions
• We provide a set of FPGA-based shared memory

primitives:
– Coherent scratchpads: manage multiple coherent caches
– Synchronization primitives

• We improve programming efficiency
– Common interface:

Block RAM -> multi-FPGA coherent memory
– It took only a few hours to write the 2D heat transfer

equation

Thank You

	LEAP Shared Memories: �Automating the Construction of FPGA Coherent Memories
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Programming on FPGA
	Programming on FPGA
	Programming on FPGA
	Programming on FPGA
	Programming on FPGA
	Programming on FPGA
	Programming on FPGA
	Parallel Programming on FPGA
	Parallel Programming on FPGA
	Parallel Programming on FPGA
	Parallel Programming on FPGA
	Parallel Programming on FPGA
	Parallel Programming on FPGA
	Parallel Programming on FPGA
	Shared Memory Services:�Coherent Scratchpad (CS)
	Shared Memory Services:�Coherent Scratchpad (CS)
	Shared Memory Services:�Coherent Scratchpad (CS)
	Shared Memory Services:�Coherent Scratchpad (CS)
	Shared Memory Services:�Coherent Scratchpad (CS)
	Shared Memory Services:�Coherent Scratchpad
	Parallel Programming on FPGA
	Parallel Programming on FPGA
	Parallel Programming on FPGA
	Shared Memory Services:�Memory Consistency
	Shared Memory Services:�Memory Consistency
	Parallel Programming on FPGA
	Synchronization Services:�Memory Barrier
	Synchronization Services:�Memory Barrier
	Synchronization Services:�Memory Barrier
	Synchronization Services:�Memory Barrier
	Synchronization Services:�Memory Barrier
	Synchronization Services:�Memory Barrier
	Synchronization Services:�Memory Barrier
	Synchronization Services:�Memory Barrier
	Synchronization Services:�Memory Barrier
	Performance on 2D Heat Transfer
	Coherent Scratchpads on �Multiple FPGAs
	Performance of Dual FPGA
	Conclusion
	Thank You

