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for(int t = 0; t < T; t++){  
  #pragma omp parallel num_threads(4){ 
    int thread_id = omp_get_thread_num(); 
    int bid_x = thread_id%2; 
    int bid_y = thread_id/2; 
    for (int y = bid_y*(N/2); y < (1+bid_y)*(N/2); y++) 
      for (int x = bid_x*(M/2); x < (1+bid_x)*(M/2); x++)  
        U[t+1,x,y] = C0*U[t,x,y] 
                   + Cx*(U[t,x-1,y]+U[t,x+1,y]) 
                   + Cy*(U[t,x,y-1]+U[t,x,y+1]); 
  } 
} 
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• 2D Heat Transfer Equation (using LEAP Scratchpad) 
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Ring-based snoopy protocol 
Modified MOSI protocol 
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 Memory operations complete 
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interface MEM_IFC#(type t_ADDR, type t_DATA); 
       method void readReq (t_ADDR addr); 
       method void write(t_ADDR addr, t_DATA data); 
       method t_DATA readResp();         
        // t_REQ r := {READ, WRITE, FULL} 
       method Bool requestPending(t_REQ r); 
endinterface 
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• In Processor: software through-memory barriers 
– via shared memory & locks 

 

Synchronization Services: 
Memory Barrier 

void barrier(num_threads_const, lock_addr, eflag_addr,  
             lflag_addr, ecounter_addr, lcounter_addr) 
{ 
    while (*eflag_addr); 
    lock(lock_addr); 
    (*ecounter_addr)++; 
    if ((*ecounter_addr) == num_thread_const){ 
        (*eflag_addr) = 0; 
        (*lflag_addr) = 1; 
    } 
    unlock(lock_addr); 
    while (*lflag_addr); 
    lock(lock_addr); 
    (*lcounter_addr)++; 
    if ((*lcounter_addr) == num_thread_const){ 
        (*lcounter_addr) = 0; 
        (*ecounter_addr) = 0; 
        (*eflag_addr) = 1; 
        (*lflag_addr) = 0; 
    } 
    unlock(lock_addr); 
} 
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Synchronization Services: 
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Suppose clients A & B need to synchronize  

allDone 

void barrier() 
{ 
  send(isDone); 
  while (receive(allDone)); 
} 

A B C 



• In Processor: software through-memory barriers 
– via shared memory & locks 

• In FPGA: 
– outside of shared memory 

• Performance Comparison: 
 

Synchronization Services: 
Memory Barrier 

System Barriers per 
Second 

Normalized 
Throughput 

LEAP Barrier Service 7352076 342 

Hardware Lock Barrier via  
Coherent Scratchpad 85088 4 

Spin-Lock Mutex-Enabled Cache* 21510 1 

* V. Mirian and P. Chow, “Managing mutex variables in a cache-coherent shared-memory system for FPGAs,” in FPT, 2012. 



Performance on 2D Heat Transfer 

FPGA: Xilinx VC707 
Frame Size: 512x512 
Coherent Cache Size: 8KB 
Pixel Size: 8bit 
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Centralized Scratchpad Coherent Scratchpad 



Coherent Scratchpads on  
Multiple FPGAs 

K. Fleming et al., “Leveraging latency-insensitivity to ease multiple FPGA design,” in FPGA, 2012. 



Performance of Dual FPGA 

• 2D Heat Transfer Equation 

FPGA: Xilinx VC707 
Frame Size: 512x512 
Coherent Cache Size: 64KB 
Pixel Size: 8bit 

N 

M 
Single FPGA 

Dual FPGA 



Conclusion 

 

 
• Programming on FPGA is difficult due to the lack of 

useful abstractions 
• We provide a set of FPGA-based shared memory 

primitives: 
– Coherent scratchpads: manage multiple coherent caches 
– Synchronization primitives 

• We improve programming efficiency 
– Common interface:  

Block RAM -> multi-FPGA coherent memory 
– It took only a few hours to write the 2D heat transfer 

equation 



Thank You 
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