
LMC: Automatic Resource-Aware
Program-Optimized Memory Partitioning

Hsin-Jung Yang†, Kermin E. Fleming‡, Michael Adler‡,

Felix Winterstein§, and Joel Emer†

† Massachusetts Institute of Technology,
‡ Intel Corporation, § Imperial College London,

February 22nd, FPGA 2016

Motivation
• Moore’s Law continues

– More transistors & memory controllers on modern FPGAs
• Example: Xilinx VC709: two 4GB DDR3 memories

 Nallatech 510T: eight 4GB DDR4 memories + 2GB HMC
 Xeon + FPGA: three memory channels

• It is difficult to fully utilize DRAM bandwidth
– Co-optimizing application cores and memory systems
– Porting an existing design to a new platform

• Smaller FPGA -> Larger FPGA
• Single FPGA -> Multiple FPGAs

Motivation
• Moore’s Law continues

– More transistors & memory controllers on modern FPGAs
• Example: Xilinx VC709: two 4GB DDR3 memories

 Nallatech 510T: eight 4GB DDR4 memories + 2GB HMC
 Xeon + FPGA: three memory channels

• It is difficult to fully utilize DRAM bandwidth
– Co-optimizing application cores and memory systems
– Porting an existing design to a new platform

• Smaller FPGA -> Larger FPGA
• Single FPGA -> Multiple FPGAs

 Goal: automatically optimizing the memory system to efficiently
 utilize the increased DRAM bandwidth

• How to connect computational engines to DRAMs in
order to maximize program performance?
– Network topology: latency, bandwidth
– On-chip caching
– Area constraints

Utilizing Multiple DRAMs

?

• How to connect computational engines to DRAMs in
order to maximize program performance?
– Network topology: latency, bandwidth
– On-chip caching
– Area constraints

Utilizing Multiple DRAMs

?

Utilizing Multiple DRAMs

?

• How to connect computational engines to DRAMs in
order to maximize program performance?
– High design complexity: network, caching…

• How to connect computational engines to DRAMs in
order to maximize program performance?
– High design complexity: network, caching…

• Applications have different memory behavior

Utilizing Multiple DRAMs

• How to connect computational engines to DRAMs in
order to maximize program performance?
– High design complexity: network, caching…

• Applications have different memory behavior

Utilizing Multiple DRAMs

Need more
bandwidth!

• How to connect computational engines to DRAMs in
order to maximize program performance?
– High design complexity: network, caching…

• Applications have different memory behavior

Utilizing Multiple DRAMs

Need more
bandwidth!

• How to connect computational engines to DRAMs in
order to maximize program performance?
– High design complexity: network, caching…

• Applications have different memory behavior

Utilizing Multiple DRAMs

Need a memory compiler!

Need more
bandwidth!

• A clearly-defined, generic memory abstraction
– Separate the user program from the memory system

implementation
• Program introspection

– To understand the program’s memory behavior
• A resource-aware, feedback-driven memory compiler

– Use introspection results as feedback to automatically
construct the “best” memory system for the target
program and platform

Automatic Construction of
Program-Optimized Memories

Abstraction

• Abstraction hides implementation details and provides
good programmability

FPGA

User Program

Abstraction

Memory Communication

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e
Ha

rd
w

ar
e

Abstraction

• Abstraction hides implementation details and provides
good programmability

FPGA

User Program

Abstraction

Memory Communication

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e
Ha

rd
w

ar
e

• Hardware can be optimized for the
target application and platform

Compilers & system developers

LEAP Memory Abstraction

interface MEM_IFC#(type t_ADDR, type t_DATA)
 method void readReq(t_ADDR addr);
 method void write(t_ADDR addr, t_DATA din);
 method t_DATA readResp();
endinterface

LEAP
Memory

User Engine

Interface

LEAP memory block
• Simple memory interface
• Arbitrary data size
• Private address space
• “Unlimited” storage
• Automatic caching

LEAP Memory Abstraction

interface MEM_IFC#(type t_ADDR, type t_DATA)
 method void readReq(t_ADDR addr);
 method void write(t_ADDR addr, t_DATA din);
 method t_DATA readResp();
endinterface

LEAP
Memory

User Engine

Interface

LEAP memory block
• Simple memory interface
• Arbitrary data size
• Private address space
• “Unlimited” storage
• Automatic caching

Same as block RAMs

LEAP Private Memory

Client Client Client

Interface

FPGA

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

User
Program

Platform

LEAP Private Memory

Client Client Client

Interface

FPGA

on-chip SRAM

on-board DRAM

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

User
Program

Platform

LEAP Private Memory

Client Client Client

Interface

Processor

Application

L1 Cache

L2 Cache

Memory

FPGA

on-chip SRAM

on-board DRAM

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

User
Program

Platform

• Naïve solution: unified memory with multiple DRAM banks

LEAP Memory with Multiple DRAMs

Client Client Client

Interface

• Naïve solution: unified memory with multiple DRAM banks

LEAP Memory with Multiple DRAMs

Client Client Client

Interface

• Naïve solution: unified memory with multiple DRAM banks

LEAP Memory with Multiple DRAMs

Client Client Client

Interface

Simplicity

More capacity

Higher bandwidth

• Naïve solution: unified memory with multiple DRAM banks

LEAP Memory with Multiple DRAMs

Difficulty: Performance is limited

Serialized requests
Long latency for large rings

Client Client Client

Interface

Simplicity

More capacity

Higher bandwidth

• Naïve solution: unified memory with multiple DRAM banks

LEAP Memory with Multiple DRAMs

Difficulty: Performance is limited

Serialized requests
Long latency for large rings

Client Client Client

Interface

Simplicity

More capacity

Higher bandwidth

Can we do better?

• Distributed central caches and memory controllers

LEAP Memory with Multiple DRAMs

• Distributed central caches and memory controllers

?

LEAP Memory with Multiple DRAMs

• Program introspection
– To understand programs’ memory behavior

Private Cache Network Partitioning

Statistics file
Client A: 100
Client B: 10
Client C: 50
Client D: 20

Statistics Counter Statistics file
Client A: 100
Client B: 10
Client C: 50
Client D: 20

Ex: # Cache misses
 # Outstanding requests
 Queueing delays

• Case 1: Memory clients with homogeneous behavior

Private Cache Network Partitioning

• Case 1: Memory clients with homogeneous behavior

Private Cache Network Partitioning

Homogeneous

• Case 1: Memory clients with homogeneous behavior

Private Cache Network Partitioning

Homogeneous

• Case 2: Memory clients with heterogeneous behavior

Private Cache Network Partitioning

 Traffic: 100 10 50 20

• Case 2: Memory clients with heterogeneous behavior

Private Cache Network Partitioning

 Traffic: 100 10 50 20

Need more
bandwidth!

• Case 2: Memory clients with heterogeneous behavior

Private Cache Network Partitioning

 Traffic: 100 10 50 20

Need more
bandwidth!

• Case 2: Memory clients with heterogeneous behavior
– Load-balanced partitioning

• Classical minimum makespan scheduling problem

Private Cache Network Partitioning

𝑚 controllers, n clients, client j with traffic 𝑡𝑗

𝑥𝑖,𝑗 = � 1 0

ILP formulation:

 minimize t

 s.t. ∑ 𝑥𝑖,𝑗𝑡𝑗𝑛
𝑗=1 ≤ 𝑡, 𝑖 = 1, … ,𝑚

 s.t. ∑ 𝑥𝑖,𝑗𝑚
𝑖=1 = 1, j = 1, … , n

 s.t. 𝑥𝑖,𝑗 ∈ 0,1 , 𝑖 = 1, … ,𝑚, 𝑗 = 1, … ,𝑛

if client j is mapped to controller i
otherwise

• Case 2: Memory clients with heterogeneous behavior
– Load-balanced partitioning

• Classical minimum makespan scheduling problem

Private Cache Network Partitioning

𝑚 controllers, n clients, client j with traffic 𝑡𝑗

𝑥𝑖,𝑗 = � 1 0

ILP formulation:

 minimize t

 s.t. ∑ 𝑥𝑖,𝑗𝑡𝑗𝑛
𝑗=1 ≤ 𝑡, 𝑖 = 1, … ,𝑚

 s.t. ∑ 𝑥𝑖,𝑗𝑚
𝑖=1 = 1, j = 1, … , n

 s.t. 𝑥𝑖,𝑗 ∈ 0,1 , 𝑖 = 1, … ,𝑚, 𝑗 = 1, … ,𝑛

if client j is mapped to controller i
otherwise

Approximation:
Longest processing time (LPT)
algorithm

• Case 3: Fractional load-balancing

Private Cache Network Partitioning

• Case 3: Fractional load-balancing

Private Cache Network Partitioning

• Case 3: Fractional load-balancing

Private Cache Network Partitioning

minimize t
 s.t. ∑ 𝑥𝑖,𝑗𝑡𝑗𝑛

𝑗=1 ≤ 𝑡
 s.t. ∑ 𝑥𝑖,𝑗𝑚

𝑖=1 = 1
 s.t. 𝟎 ≤ 𝒙𝒊,𝒋 ≤ 𝟏

ILP->LP

• Three-phase feedback-driven compilation

LEAP Memory Compiler

– Instrumentation (optional):
to collect runtime
information about the way
the program uses memory

– Analysis: to analyze the
program properties and
decide an optimized
memory hierarchy

– Synthesis: to implement the
program-optimized memory

LEAP Memory Performance

• Baseline

LEAP Memory Performance

• Baseline

Private cache

Central cache

LEAP Memory Performance

• Memory interleaving

Private cache

Central cache

Case Study: Cryptosorter

• Cryptosorter: each sorter uses a LEAP private memory

Case Study: Filtering Algorithm

• Filtering algorithm for K-means clustering (HLS kernel)
– 8 partitions: each uses 3 LEAP private memories

• Baseline coherent memory

Coherent Cache Network
Partitioning

• Coherent memory interleaving

Coherent Cache Network
Partitioning

• Coherent memory interleaving

Coherent Cache Network
Partitioning

Private cache network optimizations can be directly composed

Case Study: Heat Transfer

• Heat transfer: 16 engines, 1024x1024 frame

Private memory optimizations only Private + coherent memory optimizations

Case Study: Heat Transfer

• Heat transfer: 16 engines, 1024x1024 frame

Private memory optimizations only Private + coherent memory optimizations

57% (96%) performance gain

Moving to Multi-FPGA Platforms

Moving to Multi-FPGA Platforms

Performance on Dual FPGAs

Conclusion

• We introduce the LEAP memory compiler that can
transparently optimize the memory system for a given
application.

• The compiler automatically partitions both private and
coherent memory networks to efficiently utilize the increased
DRAM bandwidth on modern FPGAs.

• Future work:
– More case studies on asymmetric memory clients
– More complex memory network topologies
– Dynamic cache partitioning

Thank You

	LMC: Automatic Resource-Aware �Program-Optimized Memory Partitioning
	Motivation
	Motivation
	Utilizing Multiple DRAMs
	Utilizing Multiple DRAMs
	Utilizing Multiple DRAMs
	Utilizing Multiple DRAMs
	Utilizing Multiple DRAMs
	Utilizing Multiple DRAMs
	Utilizing Multiple DRAMs
	Automatic Construction of Program-Optimized Memories
	Abstraction
	Abstraction
	LEAP Memory Abstraction
	LEAP Memory Abstraction
	LEAP Private Memory
	LEAP Private Memory
	LEAP Private Memory
	LEAP Memory with Multiple DRAMs
	LEAP Memory with Multiple DRAMs
	LEAP Memory with Multiple DRAMs
	LEAP Memory with Multiple DRAMs
	LEAP Memory with Multiple DRAMs
	LEAP Memory with Multiple DRAMs
	LEAP Memory with Multiple DRAMs
	Private Cache Network Partitioning
	Private Cache Network Partitioning
	Private Cache Network Partitioning
	Private Cache Network Partitioning
	Private Cache Network Partitioning
	Private Cache Network Partitioning
	Private Cache Network Partitioning
	Private Cache Network Partitioning
	Private Cache Network Partitioning
	Private Cache Network Partitioning
	Private Cache Network Partitioning
	Private Cache Network Partitioning
	LEAP Memory Compiler
	LEAP Memory Performance
	LEAP Memory Performance
	LEAP Memory Performance
	Case Study: Cryptosorter
	Case Study: Filtering Algorithm
	Coherent Cache Network Partitioning
	Coherent Cache Network Partitioning
	Coherent Cache Network Partitioning
	Case Study: Heat Transfer
	Case Study: Heat Transfer
	Moving to Multi-FPGA Platforms
	Moving to Multi-FPGA Platforms
	Performance on Dual FPGAs
	Conclusion
	Thank You

