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Motivation 
• Moore’s Law continues 

– More transistors & memory controllers on modern FPGAs 
• Example:  Xilinx VC709:  two 4GB DDR3 memories 

                  Nallatech 510T: eight 4GB DDR4 memories + 2GB HMC 
                  Xeon + FPGA: three memory channels  

• It is difficult to fully utilize DRAM bandwidth 
– Co-optimizing application cores and memory systems 
– Porting an existing design to a new platform 

• Smaller FPGA -> Larger FPGA 
• Single FPGA -> Multiple FPGAs  
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 Goal: automatically optimizing the memory system to efficiently  
           utilize the increased DRAM bandwidth  



• How to connect computational engines to DRAMs in 
order to maximize program performance?  
– Network topology: latency, bandwidth 
– On-chip caching 
– Area constraints 
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• How to connect computational engines to DRAMs in 
order to maximize program performance?  
– High design complexity: network, caching… 

• Applications have different memory behavior 

Utilizing Multiple DRAMs 

Need a memory compiler! 

Need more  
bandwidth! 



• A clearly-defined, generic memory abstraction 
– Separate the user program from the memory system 

implementation 
• Program introspection  

– To understand the program’s memory behavior 
• A resource-aware, feedback-driven memory compiler  

– Use introspection results as feedback to automatically 
construct the “best” memory system for the target 
program and platform 
 
 

Automatic Construction of  
Program-Optimized Memories 



Abstraction 

• Abstraction hides implementation details and provides 
good programmability  
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• Hardware can be optimized for the 
target application and platform 

Compilers & system developers 



LEAP Memory Abstraction 

interface MEM_IFC#(type t_ADDR, type t_DATA) 
       method void readReq(t_ADDR addr); 
       method void write(t_ADDR addr, t_DATA din); 
       method t_DATA readResp(); 
endinterface 
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LEAP memory block 
• Simple memory interface 
• Arbitrary data size 
• Private address space 
• “Unlimited” storage 
• Automatic caching 

Same as block RAMs 
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• Naïve solution: unified memory with multiple DRAM banks 
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Serialized requests 
Long latency for large rings 

Client Client Client 

Interface 

Simplicity 

More capacity 

Higher bandwidth 

Can we do better? 



• Distributed central caches and memory controllers 
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LEAP Memory with Multiple DRAMs 



• Program introspection 
– To understand programs’ memory behavior 
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Client A: 100 
Client B: 10 
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Statistics Counter Statistics file 
Client A: 100 
Client B: 10 
Client C: 50 
Client D: 20 

Ex: # Cache misses 
       # Outstanding requests 
       Queueing delays 



• Case 1: Memory clients with homogeneous behavior 
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• Case 2: Memory clients with heterogeneous behavior 
– Load-balanced partitioning 

• Classical minimum makespan scheduling problem 
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𝑚 controllers, n clients, client j with traffic 𝑡𝑗  
 

𝑥𝑖,𝑗 = � 1 0   
 
ILP formulation:  
  

   minimize     t 
 

       s.t.            ∑  𝑥𝑖,𝑗𝑡𝑗𝑛
𝑗=1 ≤ 𝑡,   𝑖 = 1, … ,𝑚 

 

       s.t.             ∑  𝑥𝑖,𝑗𝑚
𝑖=1 = 1,      j = 1, … , n 

 

       s.t.            𝑥𝑖,𝑗 ∈ 0,1 ,         𝑖 = 1, … ,𝑚, 𝑗 = 1, … ,𝑛                            

if client j is mapped to controller i 
otherwise 
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Approximation:  
Longest processing time (LPT) 
algorithm 



• Case 3: Fractional load-balancing 
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Private Cache Network Partitioning 

minimize     t 
    s.t.            ∑  𝑥𝑖,𝑗𝑡𝑗𝑛

𝑗=1 ≤ 𝑡 
    s.t.             ∑  𝑥𝑖,𝑗𝑚

𝑖=1 = 1 
     s.t.            𝟎 ≤ 𝒙𝒊,𝒋 ≤ 𝟏                            

ILP->LP 



• Three-phase feedback-driven compilation  

LEAP Memory Compiler 

– Instrumentation (optional): 
to collect runtime 
information about the way 
the program uses memory 

– Analysis: to analyze the 
program properties and 
decide an optimized 
memory hierarchy 

– Synthesis: to implement the 
program-optimized memory 
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LEAP Memory Performance 

• Memory interleaving 
 

Private cache 

Central cache 



Case Study: Cryptosorter 

• Cryptosorter: each sorter uses a LEAP private memory 



Case Study: Filtering Algorithm 

• Filtering algorithm for K-means clustering (HLS kernel) 
– 8 partitions: each uses 3 LEAP private memories 

 



• Baseline coherent memory 
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Coherent Cache Network 
Partitioning 

Private cache network optimizations can be directly composed 



Case Study: Heat Transfer 

• Heat transfer: 16 engines, 1024x1024 frame 
 

Private memory optimizations only Private + coherent memory optimizations 
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• Heat transfer: 16 engines, 1024x1024 frame 
 

Private memory optimizations only Private + coherent memory optimizations 

57% (96%) performance gain 



Moving to Multi-FPGA Platforms 
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Performance on Dual FPGAs 



Conclusion 

• We introduce the LEAP memory compiler that can 
transparently optimize the memory system for a given 
application. 

• The compiler automatically partitions both private and 
coherent memory networks to efficiently utilize the increased 
DRAM bandwidth on modern FPGAs. 

• Future work: 
– More case studies on asymmetric memory clients 
– More complex memory network topologies 
– Dynamic cache partitioning 



Thank You 
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