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• Optimization under abstraction 
– Automatically accelerate FPGA applications  
– Provide FREE performance gain 
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interface MEMORY_INTERFACE 
    input:  
        readReq (addr); 
        write(addr, din); 
    output:  
        // dout is available at the next cycle of readReq 
        readResp() if (readReq fired previous cycle); 
endinterface 



Memory Abstraction 

Client 

RAM 
Block 

Client 

RAM 
Block 

Client 

RAM 
Block 

FPGA Block RAMs 

addr 

din 

wen 

dout 

valid 

clk 

addr 

dout 

A1 

D1 

valid 

interface MEMORY_INTERFACE 
    input:  
        readReq (addr); 
        write(addr, din); 
    output:  
        // dout is available when response is ready 
        readResp() if (valid == True); 
endinterface 
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Talk Outline 

• Motivation 
• Introduction to LEAP Scratchpads 
• Prefetching in FPGAs vs. in processors  
• Scratchpad Prefetcher Microarchitecture 
• Evaluation and Prefetch Optimization 
• Conclusion 
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Dynamic Prefetching in Processor 

Classic processor dynamic prefetching policies 
• When to prefetch 

– Prefetch on cache miss  
– Prefetch on cache miss and prefetch hit 

• Also called tagged prefetch 

• What to prefetch 
– Always prefetch next memory block 
– Learn stride-access patterns 



Dynamic Prefetching in Processor 

Stride prefetching 
• L1 cache: PC-based stride prefetching 
• L2 cache: address-based stride prefetching 
                      (fully associative cache of learners) 

 

 Tag Previous 
Address Stride State 

0xa001 0x1008 4 Steady 

0xa002 0x2000 0 Initial 

learner 1 

learner 2 

learner 3 



Dynamic Prefetching on FPGAs 

• Easier: 
– Cleaner streaming memory accesses 
– No need for PC as a filter to separate streams 
– Fixed (usually plenty of) resources  

• Harder: 
– Back-to-back memory accesses 
– Inefficient to implement CAM 
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Scratchpad prefetcher uses address-based stride 
prefetching with a larger set of direct-mapped learners 



Talk Outline 

• Motivation 
• Introduction to LEAP Scratchpads 
• Prefetching in FPGAs vs. in processors  
• Scratchpad Prefetcher Design 
• Evaluation and Prefetch Optimization 
• Conclusion 
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Scratchpad Prefetching Policy 

• When to prefetch 
– Cache line miss / prefetch hit 

– Prefetcher learns the stride pattern  
• What to prefetch 

– Prefetch address: P = L + s * d 
– Cache line address: L 
– Learned stride: S 
– Look-ahead distance: d 
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Talk Outline 

• Motivation 
• Introduction to LEAP Scratchpads 
• Prefetching in FPGAs vs. in processors  
• Scratchpad Prefetcher Microarchitecture 
• Evaluation and Prefetch Bandwidth Control 
• Conclusion 
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Evaluation 

• Blocked matrix-matrix multiplication (MMM) 

• Prefetching has larger gains in smaller matrices.  
• Prefetching helps in edge conditions.  

N. Dave et al., “Hardware acceleration of matrix multiplication on a xilinx fpga,” in MEMOCODE, 2007. 



Evaluation 

• Blocked matrix-matrix multiplication (MMM) 

• Prefetching has larger gains in smaller matrices.  
• Prefetching helps in edge conditions.  

preload 

N. Dave et al., “Hardware acceleration of matrix multiplication on a xilinx fpga,” in MEMOCODE, 2007. 



Evaluation 

• Blocked matrix-matrix multiplication (MMM) 

• Prefetching has larger gains in smaller matrices.  
• Prefetching helps in edge conditions.  

preload 

compute 

N. Dave et al., “Hardware acceleration of matrix multiplication on a xilinx fpga,” in MEMOCODE, 2007. 



Evaluation 

• Blocked matrix-matrix multiplication (MMM) 

• Prefetching has larger gains in smaller matrices.  
• Prefetching helps in edge conditions.  

compute 

N. Dave et al., “Hardware acceleration of matrix multiplication on a xilinx fpga,” in MEMOCODE, 2007. 



Evaluation 
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• Prefetching has larger gains in smaller matrices.  
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N. Dave et al., “Hardware acceleration of matrix multiplication on a xilinx fpga,” in MEMOCODE, 2007. 



Memory Bandwidth Control 

• MMM with memory bandwidth control 
Prefetcher automatically stops issuing requests when there 
are too many requests inflight 
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Prefetch Performance Summary 

K. Fleming et al., “H.264 Decoder: A Case Study in Multiple Design Points,” in MEMOCODE, 2008 



Prefetcher Resource Utilization 

Area of different prefetching logic implementations 
 

 
Slice 

Registers 
Slice  
LUTs BRAM fmax 

32 learners, LUTRAM 333 1045 0 127 MHz 

32 learners, BRAM 419 1275 2 131 MHz 

H.264, Baseline Profile 60770 86364 99 80 MHz 

• Area requirements  of FPGA prefetching are small. 
― less than 0.5% of total chip area on the ML605 board 



Conclusion 

 

 
• FPGA programs are hard to write 
• FPGA programs usually do not fully utilize resources 
• Optimizations under abstraction leverage unused 

resources and provide FREE performance gain 
• Adding prefetching to LEAP Scratchpads speeds up 

existing streaming applications  
– No program code changes in target design 
– 15% average runtime improvement 

• There are many other possible optimizations to the 
FPGA memory system 

 



Thank You 
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