
Optimizing Under Abstraction:
Using Prefetching to Improve

FPGA Performance

Hsin-Jung Yang†, Kermin E. Fleming‡,
Michael Adler‡, and Joel Emer†‡

† Massachusetts Institute of Technology

‡ Intel Corporation

September 3rd, FPL 2013

Motivation

• Moore’s Law
– Increasing FPGA size and capability

• Use case for FPGA:

User
Program A

FPGA A

Motivation

• Moore’s Law
– Increasing FPGA size and capability

• Use case for FPGA:

User
Program A

FPGA A

Ethernet SRAM

User Program B

FPGA B

DRAM

Motivation

• Moore’s Law
– Increasing FPGA size and capability

• Use case for FPGA:

User
Program A

FPGA A

Ethernet SRAM

User Program B

FPGA B

DRAM

circuit
verification

Motivation

• Moore’s Law
– Increasing FPGA size and capability

• Use case for FPGA:

User
Program A

FPGA A

Ethernet SRAM

User Program B

FPGA B

DRAM

circuit
verification

algorithm
acceleration

Motivation

• Moore’s Law
– Increasing FPGA size and capability

• Use case for FPGA:

User
Program A

FPGA A FPGA C

Ethernet SRAM

User Program B

FPGA B

DRAM

circuit
verification

algorithm
acceleration

DRAM

PCIE

Ethernet SRAM

User Program B SRAM

SRAM

DRAM LUTs

SRAM

Motivation

• Moore’s Law
– Increasing FPGA size and capability

• Use case for FPGA:

User
Program A

FPGA A FPGA C

Ethernet SRAM

User Program B

FPGA B

DRAM

circuit
verification

algorithm
acceleration

DRAM

PCIE

Ethernet SRAM

User Program B’ SRAM

SRAM

DRAM LUTs

SRAM

Abstraction

C++/Python/Perl Application

Software Library
Operating System (config. A)

Memory Device CPU

Processor A

• Goal: making FPGAs easier to use

Abstraction

C++/Python/Perl Application

Software Library
Operating System (config. B)

Memory’ Device’ CPU’

Processor B

• Goal: making FPGAs easier to use

Abstraction

Ethernet SRAM

Interface

User Program

FPGA A

Abstraction (config. A)

C++/Python/Perl Application

Software Library
Operating System (config. B)

Memory’ Device’ CPU’

Processor B

• Goal: making FPGAs easier to use

Abstraction

C++/Python/Perl Application

Software Library
Operating System (config. B)

Memory’ Device’ CPU’

Processor B

Interface

User Program

FPGA B

Abstraction (config. B)

PCIe DRAM

Unused resources

• Goal: making FPGAs easier to use

• Goal: making FPGAs easier to use

• Optimization under abstraction
– Automatically accelerate FPGA applications
– Provide FREE performance gain

Abstraction

C++/Python/Perl Application

Software Library
Operating System (config. B)

Memory’ Device’ CPU’

Processor B

Interface

User Program

FPGA B

PCIe DRAM

Abstraction (config. B)

Optimization

Memory Abstraction

Client

RAM
Block

Client

RAM
Block

Client

RAM
Block

FPGA Block RAMs

addr

din

wen

dout

clk

addr

dout

A1

D1

interface MEMORY_INTERFACE
 input:
 readReq (addr);
 write(addr, din);
 output:
 // dout is available at the next cycle of readReq
 readResp() if (readReq fired previous cycle);
endinterface

Memory Abstraction

Client

RAM
Block

Client

RAM
Block

Client

RAM
Block

FPGA Block RAMs

addr

din

wen

dout

valid

clk

addr

dout

A1

D1

valid

interface MEMORY_INTERFACE
 input:
 readReq (addr);
 write(addr, din);
 output:
 // dout is available when response is ready
 readResp() if (valid == True);
endinterface

Client

Sc
ra

tc
hp

ad
 C

lie
nt

Private Cache

Scratchpad
Interface

Client

Private Cache

Scratchpad
Interface

Client

Private Cache

Scratchpad
Interface

Connector

Scratchpad Controller

Host Memory

Pl
at

fo
rm

Central Cache

LEAP Scratchpads
Scratchpads

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

Client

Sc
ra

tc
hp

ad
 C

lie
nt

Private Cache

Scratchpad
Interface

Client

Private Cache

Scratchpad
Interface

Client

Private Cache

Scratchpad
Interface

Connector

Scratchpad Controller

Host Memory

Pl
at

fo
rm

Central Cache

LEAP Scratchpads
Processor Scratchpads

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

Scratchpad Optimization

Automatically accelerate memory-using FPGA programs
• Reduce scratchpad latency
• Leverage unused resources
• Learn from optimization techniques in processors

– Larger caches, greater associativity
– Better cache policies
– Cache prefetching

Scratchpad Optimization

Automatically accelerate memory-using FPGA programs
• Reduce scratchpad latency
• Leverage unused resources
• Learn from optimization techniques in processors

– Larger caches, greater associativity
– Better cache policies
– Cache prefetching

Talk Outline

• Motivation
• Introduction to LEAP Scratchpads
• Prefetching in FPGAs vs. in processors
• Scratchpad Prefetcher Microarchitecture
• Evaluation and Prefetch Optimization
• Conclusion

Comparison of prefetching techniques and platforms

Prefetching Techniques

Static Prefetching Dynamic Prefetching

Platform Processor FPGA Processor FPGA

How? User/
Compiler User Hardware

manufacturer Compiler

No code change

High prefetch accuracy

No instruction overhead

Runtime information

Comparison of prefetching techniques and platforms

Prefetching Techniques

Static Prefetching Dynamic Prefetching

Platform Processor FPGA Processor FPGA

How? User/
Compiler User Hardware

manufacturer Compiler

No code change

High prefetch accuracy

No instruction overhead

Runtime information

Dynamic Prefetching in Processor

Classic processor dynamic prefetching policies
• When to prefetch

– Prefetch on cache miss
– Prefetch on cache miss and prefetch hit

• Also called tagged prefetch

• What to prefetch
– Always prefetch next memory block
– Learn stride-access patterns

Dynamic Prefetching in Processor

Stride prefetching
• L1 cache: PC-based stride prefetching
• L2 cache: address-based stride prefetching
 (fully associative cache of learners)

 Tag Previous
Address Stride State

0xa001 0x1008 4 Steady

0xa002 0x2000 0 Initial

learner 1

learner 2

learner 3

Dynamic Prefetching on FPGAs

• Easier:
– Cleaner streaming memory accesses
– No need for PC as a filter to separate streams
– Fixed (usually plenty of) resources

• Harder:
– Back-to-back memory accesses
– Inefficient to implement CAM

Dynamic Prefetching on FPGAs

• Easier:
– Cleaner streaming memory accesses
– No need for PC as a filter to separate streams
– Fixed (usually plenty of) resources

• Harder:
– Back-to-back memory accesses
– Inefficient to implement CAM

Scratchpad prefetcher uses address-based stride
prefetching with a larger set of direct-mapped learners

Talk Outline

• Motivation
• Introduction to LEAP Scratchpads
• Prefetching in FPGAs vs. in processors
• Scratchpad Prefetcher Design
• Evaluation and Prefetch Optimization
• Conclusion

Scratchpad Prefetcher

Client

Sc
ra

tc
hp

ad
 C

lie
nt

Private
Cache

Scratchpad
Interface

Connector

Scratchpad Controller

Host Memory

Pl
at

fo
rm

 Central Cache

Private
Cache

Scratchpad
Interface

Private
Cache

Scratchpad
Interface

Client Client

Scratchpad Prefetcher

Client

Sc
ra

tc
hp

ad
 C

lie
nt

Private
Cache

Scratchpad
Interface

Connector

Scratchpad Controller

Host Memory

Pl
at

fo
rm

 Central Cache

Prefetcher Private
Cache

Scratchpad
Interface

Prefetcher Private
Cache

Scratchpad
Interface

Prefetcher

Client Client

Scratchpad Prefetching Policy

• When to prefetch
– Cache line miss / prefetch hit

– Prefetcher learns the stride pattern
• What to prefetch

– Prefetch address: P = L + s * d
– Cache line address: L
– Learned stride: S
– Look-ahead distance: d

Scratchpad Prefetching Policy

• When to prefetch
– Cache line miss / prefetch hit

– Prefetcher learns the stride pattern
• What to prefetch

– Prefetch address: P = L + s * d
– Cache line address: L
– Learned stride: S
– Look-ahead distance: d

Scratchpad Prefetching Policy

• Look-ahead distance:
– Small distance? prefetch benefit
– Large distance? cache pollution
– Suitable distance for different programs & platforms?

Scratchpad Prefetching Policy

• Look-ahead distance:
– Small distance? prefetch benefit
– Large distance? cache pollution
– Suitable distance for different programs & platforms?

Dynamically adjust look-ahead distance

Scratchpad Prefetching Policy

• Look-ahead distance:
– Small distance? prefetch benefit
– Large distance? cache pollution
– Suitable distance for different programs & platforms?

Dynamically adjust look-ahead distance

Issued
prefetch

Scratchpad Prefetching Policy

• Look-ahead distance:
– Small distance? prefetch benefit
– Large distance? cache pollution
– Suitable distance for different programs & platforms?

Dynamically adjust look-ahead distance

Issued
prefetch

To Memory

Dropped

Scratchpad Prefetching Policy

• Look-ahead distance:
– Small distance? prefetch benefit
– Large distance? cache pollution
– Suitable distance for different programs & platforms?

Dynamically adjust look-ahead distance

Issued
prefetch

To Memory

Dropped
Dropped by busy

Dropped by hit

Scratchpad Prefetching Policy

• Look-ahead distance:
– Small distance? prefetch benefit
– Large distance? cache pollution
– Suitable distance for different programs & platforms?

Dynamically adjust look-ahead distance

Issued
prefetch

To Memory

Dropped
Dropped by busy

Usable
Useless

Dropped by hit

Scratchpad Prefetching Policy

• Look-ahead distance:
– Small distance? prefetch benefit
– Large distance? cache pollution
– Suitable distance for different programs & platforms?

Dynamically adjust look-ahead distance

Issued
prefetch

To Memory

Dropped
Dropped by busy

Usable
Useless

Dropped by hit

Timely

Late

Scratchpad Prefetching Policy

• Look-ahead distance:
– Small distance? prefetch benefit
– Large distance? cache pollution
– Suitable distance for different programs & platforms?

Dynamically adjust look-ahead distance

Issued
prefetch

To Memory

Dropped
Dropped by busy

Usable
Useless

Dropped by hit

Timely

Late
Untimely

Untimely

Talk Outline

• Motivation
• Introduction to LEAP Scratchpads
• Prefetching in FPGAs vs. in processors
• Scratchpad Prefetcher Microarchitecture
• Evaluation and Prefetch Bandwidth Control
• Conclusion

Evaluation

• Blocked matrix-matrix multiplication (MMM)

N. Dave et al., “Hardware acceleration of matrix multiplication on a xilinx fpga,” in MEMOCODE, 2007.

Evaluation

• Blocked matrix-matrix multiplication (MMM)

• Prefetching has larger gains in smaller matrices.
• Prefetching helps in edge conditions.

N. Dave et al., “Hardware acceleration of matrix multiplication on a xilinx fpga,” in MEMOCODE, 2007.

Evaluation

• Blocked matrix-matrix multiplication (MMM)

• Prefetching has larger gains in smaller matrices.
• Prefetching helps in edge conditions.

preload

N. Dave et al., “Hardware acceleration of matrix multiplication on a xilinx fpga,” in MEMOCODE, 2007.

Evaluation

• Blocked matrix-matrix multiplication (MMM)

• Prefetching has larger gains in smaller matrices.
• Prefetching helps in edge conditions.

preload

compute

N. Dave et al., “Hardware acceleration of matrix multiplication on a xilinx fpga,” in MEMOCODE, 2007.

Evaluation

• Blocked matrix-matrix multiplication (MMM)

• Prefetching has larger gains in smaller matrices.
• Prefetching helps in edge conditions.

compute

N. Dave et al., “Hardware acceleration of matrix multiplication on a xilinx fpga,” in MEMOCODE, 2007.

Evaluation

• Blocked matrix-matrix multiplication (MMM)

• Prefetching has larger gains in smaller matrices.
• Prefetching helps in edge conditions.

compute

N. Dave et al., “Hardware acceleration of matrix multiplication on a xilinx fpga,” in MEMOCODE, 2007.

Memory Bandwidth Control

• MMM with memory bandwidth control
Prefetcher automatically stops issuing requests when there
are too many requests inflight

Memory Bandwidth Control

• MMM with memory bandwidth control
Prefetcher automatically stops issuing requests when there
are too many requests inflight

Prefetch Performance Summary

K. Fleming et al., “H.264 Decoder: A Case Study in Multiple Design Points,” in MEMOCODE, 2008

Prefetcher Resource Utilization

Area of different prefetching logic implementations

Slice

Registers
Slice
LUTs BRAM fmax

32 learners, LUTRAM 333 1045 0 127 MHz

32 learners, BRAM 419 1275 2 131 MHz

H.264, Baseline Profile 60770 86364 99 80 MHz

• Area requirements of FPGA prefetching are small.
― less than 0.5% of total chip area on the ML605 board

Conclusion

• FPGA programs are hard to write
• FPGA programs usually do not fully utilize resources
• Optimizations under abstraction leverage unused

resources and provide FREE performance gain
• Adding prefetching to LEAP Scratchpads speeds up

existing streaming applications
– No program code changes in target design
– 15% average runtime improvement

• There are many other possible optimizations to the
FPGA memory system

Thank You

	Optimizing Under Abstraction: Using Prefetching to Improve �FPGA Performance
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Memory Abstraction
	Memory Abstraction
	LEAP Scratchpads
	LEAP Scratchpads
	Scratchpad Optimization
	Scratchpad Optimization
	Talk Outline
	Prefetching Techniques
	Prefetching Techniques
	Dynamic Prefetching in Processor
	Dynamic Prefetching in Processor
	Dynamic Prefetching on FPGAs
	Dynamic Prefetching on FPGAs
	Talk Outline
	Scratchpad Prefetcher
	Scratchpad Prefetcher
	Scratchpad Prefetching Policy
	Scratchpad Prefetching Policy
	Scratchpad Prefetching Policy
	Scratchpad Prefetching Policy
	Scratchpad Prefetching Policy
	Scratchpad Prefetching Policy
	Scratchpad Prefetching Policy
	Scratchpad Prefetching Policy
	Scratchpad Prefetching Policy
	Scratchpad Prefetching Policy
	Talk Outline
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Memory Bandwidth Control
	Memory Bandwidth Control
	Prefetch Performance Summary
	Prefetcher Resource Utilization
	Conclusion
	Thank You

