
Scavenger:

Automating the Construction of
Application-Optimized Memory Hierarchies

Hsin-Jung Yang†, Kermin E. Fleming‡, Michael Adler‡,

Felix Winterstein§, and Joel Emer†*

† Massachusetts Institute of Technology, ‡ Intel Corporation
§ European Space Agency, *NVIDIA Research

September 3rd, FPL 2015

Abstraction

• Abstraction hides implementation details and provides
good programmability

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e
Ha

rd
w

ar
e

Abstraction

• Abstraction hides implementation details and provides
good programmability

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e
Ha

rd
w

ar
e

programmer

Abstraction

• Abstraction hides implementation details and provides
good programmability

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e
Ha

rd
w

ar
e

programmer

• Hardware is optimized for a set of
applications and fixed at design time

Abstraction

• Abstraction hides implementation details and provides
good programmability

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e
Ha

rd
w

ar
e

programmer

FPGA

SRAM SRAM

DRAM

LUTs

PCIE

User Program

• Hardware is optimized for a set of
applications and fixed at design time

Abstraction

• Abstraction hides implementation details and provides
good programmability

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e
Ha

rd
w

ar
e

programmer

FPGA

SRAM SRAM

DRAM

LUTs

PCIE

User Program

• Implementation details are
handled by programmers

• Hardware can be optimized for
the target application

• Hardware is optimized for a set of
applications and fixed at design time

Abstraction

• Abstraction hides implementation details and provides
good programmability

FPGA

User Program

Abstraction

Memory Communication

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e
Ha

rd
w

ar
e

programmer

• Hardware is optimized for a set of
applications and fixed at design time

Abstraction

• Abstraction hides implementation details and provides
good programmability

FPGA

User Program

Abstraction

Memory Communication

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e
Ha

rd
w

ar
e

programmer

• Hardware is optimized for a set of
applications and fixed at design time

Abstraction

• Abstraction hides implementation details and provides
good programmability

FPGA

User Program

Abstraction

Memory Communication

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e
Ha

rd
w

ar
e

programmer

• Hardware is optimized for a set of
applications and fixed at design time

Abstraction

• Abstraction hides implementation details and provides
good programmability

FPGA

User Program

Abstraction

Memory Communication

• Platform hardware can be
optimized for the target application

C/Python Application

Memory

Processor

Instruction Set Architecture

CPU I/O

Operating System So
ft

w
ar

e
Ha

rd
w

ar
e

programmer

• Hardware is optimized for a set of
applications and fixed at design time

• Goal: build the “best” memory subsystem for a
given application
– What is the “best”?

• The memory subsystem which minimizes the
execution time

– How?
• A clean memory abstraction
• A rich set of memory building blocks
• Intelligent algorithms to analyze programs and

automatically compose memory hierarchies

Application-Optimized Memory
Subsystems

Observation

• Many FPGA programs do not consume all the available
block RAMs (BRAMs)
– Design difficulty
– Same program ported from smaller FPGAs to larger ones

Observation

• Many FPGA programs do not consume all the available
block RAMs (BRAMs)
– Design difficulty
– Same program ported from smaller FPGAs to larger ones

Goal: Utilizing spare BRAMs to improve program performance

LEAP Memory Abstraction

interface MEM_IFC#(type t_ADDR, type t_DATA)
 method void readReq(t_ADDR addr);
 method void write(t_ADDR addr, t_DATA din);
 method t_DATA readResp();
endinterface

LEAP
Memory

User Engine

Interface

LEAP Memory Block
• Simple memory interface
• Arbitrary data size
• Private address space
• “Unlimited” storage
• Automatic caching

LEAP Scratchpad

Client Client Client

Interface

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

LEAP Scratchpad

Client Client Client

Interface

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

LEAP Scratchpad

Client Client Client

Interface
on-chip SRAM

on-board DRAM

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

LEAP Scratchpad

Client Client Client

Interface

Processor

Application

L1 Cache

L2 Cache

Memory

Scratchpads

on-chip SRAM

on-board DRAM

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

LEAP Memory is Customizable

• Highly parametric
– Cache capacity
– Cache associativity
– Cache word size
– Number of cache ports

• Enable specific features/optimizations only when
necessary
– Private/coherent caches for private/shared memory
– Prefetching
– Cache hierarchy topology

• Many FPGA programs do not consume all the BRAMs

• Goal: utilize all spare BRAMs in LEAP memory hierarchy
• Problem: need to build very large caches

Utilizing Spare Block RAMs

Cache Scalability Issue

• Simply scaling up BRAM-based structures may have a
negative impact on operating frequency
– BRAMs are distributed across chip, increasing wire delay

Cache Scalability Issue

• Solution: trade latency for frequency
– Multi-banked BRAM structure
– Pipelining relieves timing pressure

Cache Scalability Issue

• Solution: trade latency for frequency

Banked Cache Overhead

• Simple kernel (hit rate=100%)

Latency-oriented applications Throughput-oriented applications

Banked Cache Overhead

• Simple kernel (hit rate=69%)

Results: Scaling Private Caches

• Case study: Merger (an HLS kernel)
Merger has 4 partitions: each connects to a LEAP scratchpad and
forms a sorted linked list from a stream of random values.

Private or Shared Cache?

• We can now build large caches
• Where should we allocate spare BRAMs?

– Option1: Large private caches
– Option2: A large shared cache at the next level

• Many applications have multiple memory clients
– Different working set sizes and runtime memory footprints

Adding a Shared Cache

Host Memory

Central Cache (DRAM)
FPGA
Host

Scratchpad Controller

Adding a Shared Cache

Host Memory

Central Cache (DRAM)
FPGA
Host

Scratchpad Controller

Shared On-Chip Cache

Adding a Shared Cache

Host Memory

Central Cache (DRAM)
FPGA
Host

Scratchpad Controller

Shared On-Chip Cache Consume all extra BRAMs

Automated Optimization

User frequency,
memory demands
(ex: cache capacity)

Shared Cache Construction

LEAP Platform Construction

BRAM Usage
Estimation

User Kernel Generation
(Bluespec, Verilog, HLS kernel)

Pre-build database

FPGA Tool Chain

Results: Shared Cache

• Case study: Filter (an HLS kernel)
– Filtering algorithm for K-means clustering
– 8 partitions: each uses 3 LEAP Scratchpads

8192 set,
4 way

16384 set,
2 way

8192 set,
2 way

4096 set,
1 way

Conclusion

• It is possible to exploit unused resources to construct memory
systems that accelerate the user program.

• We propose microarchitecture changes for large on-chip
caches to run at high frequency.

• We make some steps toward automating the construction of
memory hierarchies based on program resource utilization
and frequency requirements.

• Future work:
– Program analysis
– Energy study

Thank You

	Scavenger:���Automating the Construction of�Application-Optimized Memory Hierarchies
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Application-Optimized Memory Subsystems
	Observation
	Observation
	LEAP Memory Abstraction
	LEAP Scratchpad
	LEAP Scratchpad
	LEAP Scratchpad
	LEAP Scratchpad
	LEAP Memory is Customizable
	Slide Number 41
	Cache Scalability Issue
	Cache Scalability Issue
	Cache Scalability Issue
	Banked Cache Overhead
	Banked Cache Overhead
	Results: Scaling Private Caches
	Private or Shared Cache?
	Adding a Shared Cache
	Adding a Shared Cache
	Adding a Shared Cache
	Automated Optimization
	Results: Shared Cache
	Conclusion
	Thank You

