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• Goal: build the “best” memory subsystem for a 
given application 
– What is the “best”? 

• The memory subsystem which minimizes the 
execution time 

– How?  
• A clean memory abstraction 
• A rich set of memory building blocks 
• Intelligent algorithms to analyze programs and 

automatically compose memory hierarchies 

Application-Optimized Memory 
Subsystems 



Observation 

• Many FPGA programs do not consume all the available 
block RAMs (BRAMs) 
– Design difficulty 
– Same program ported from smaller FPGAs to larger ones 



Observation 

• Many FPGA programs do not consume all the available 
block RAMs (BRAMs) 
– Design difficulty 
– Same program ported from smaller FPGAs to larger ones 

Goal: Utilizing spare BRAMs to improve program performance  



LEAP Memory Abstraction 

interface MEM_IFC#(type t_ADDR, type t_DATA) 
       method void readReq(t_ADDR addr); 
       method void write(t_ADDR addr, t_DATA din); 
       method t_DATA readResp(); 
endinterface 

LEAP 
Memory 

User Engine  

Interface 

LEAP Memory Block 
• Simple memory interface 
• Arbitrary data size 
• Private address space 
• “Unlimited” storage 
• Automatic caching 
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M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011. 



LEAP Memory is Customizable 

• Highly parametric 
– Cache capacity 
– Cache associativity 
– Cache word size 
– Number of cache ports 

• Enable specific features/optimizations only when 
necessary 
– Private/coherent caches for private/shared memory 
– Prefetching 
– Cache hierarchy topology 
 



• Many FPGA programs do not consume all the BRAMs 
 
 
 
 
 
 

• Goal: utilize all spare BRAMs in LEAP memory hierarchy 
• Problem: need to build very large caches 
 

Utilizing Spare Block RAMs 



Cache Scalability Issue 

• Simply scaling up BRAM-based structures may have a 
negative impact on operating frequency 
– BRAMs are distributed across chip, increasing wire delay 

 



Cache Scalability Issue 

• Solution: trade latency for frequency 
– Multi-banked BRAM structure 
– Pipelining relieves timing pressure 
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Banked Cache Overhead 

• Simple kernel (hit rate=100%) 

Latency-oriented applications Throughput-oriented applications 



Banked Cache Overhead 

• Simple kernel (hit rate=69%) 



Results: Scaling Private Caches 

• Case study: Merger (an HLS kernel) 
Merger has 4 partitions: each connects to a LEAP scratchpad and 
forms a sorted linked list from a stream of random values.   



Private or Shared Cache? 

• We can now build large caches 
• Where should we allocate spare BRAMs? 

– Option1: Large private caches 
– Option2: A large shared cache at the next level 

• Many applications have multiple memory clients 
– Different working set sizes and runtime memory footprints 
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Adding a Shared Cache  

Host Memory 

Central Cache (DRAM) 
FPGA 
Host 

Scratchpad Controller 

Shared On-Chip Cache Consume all extra BRAMs 



Automated Optimization 

User frequency, 
memory demands 
(ex: cache capacity) 

Shared Cache Construction 

LEAP Platform Construction 

BRAM Usage 
Estimation  

User Kernel Generation 
(Bluespec, Verilog, HLS kernel) 

Pre-build database 

FPGA Tool Chain 



Results: Shared Cache 

• Case study: Filter (an HLS kernel) 
– Filtering algorithm for K-means clustering 
– 8 partitions: each uses 3 LEAP Scratchpads 

8192 set, 
4 way 

16384 set, 
2 way 

8192 set, 
2 way 

4096 set, 
1 way 



Conclusion 

• It is possible to exploit unused resources to construct memory 
systems that accelerate the user program. 

• We propose microarchitecture changes for large on-chip 
caches to run at high frequency.  

• We make some steps toward automating the construction of 
memory hierarchies based on program resource utilization 
and frequency requirements. 

• Future work: 
– Program analysis 
– Energy study 



Thank You 
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