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& Learning by imitation can provide agents with a natural and effective means for transferring
knowledge when brain-to-brain connection is infeasible. Natural mechanisms for imitation demon-
strate strong abstraction and conceptualization capabilities, however, computational models that
have been proposed for imitative learning barely address these fundamental features.

Inspired by functions of human brain constituents and exploiting ideas enthused by mirror
neurons and the multi-store model of memory, we propose a new model for learning by imitation
capable of developing relational concepts. In our model, memory gradually organizes sensory data
into concepts through reinforcement learning and consolidation, while mirror neurons maintain
an extendible repertoire of familiar actions connected to corresponding concepts. We also discuss
the relation between modeling behavior of concept-oriented agents in terms of mathematical func-
tions and relevant biological evidence of mirror neurons. Eventually, we evaluate our method in
a phoneme acquisition experiment through real interaction with humans.

Humans and social animals acquire some parts of their knowledge through
interaction with other members of their societies. Such social learning pro-
cesses may have different forms. When an agent (human, animal, or even
machine) tries to learn a task by observing how others do it, the process
is called ‘‘imitation.’’ Although there is still debate on the exact definition
of imitation (Byrne and Whiten 1988; Tomasello 1990), most researchers
agree that it is different from mimicking. While mimicking is merely
involved in recording and reproducing observed actions, imitation needs
some sort of abstraction and understanding of observations (Arbib 2000;
Breazeal and Scassellati 2000).

Learning by imitation is appealing to the engineering community, parti-
cularly to those in AI and robotics, due to its distinctive benefits. The most
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notable benefit is that it provides agents with some natural and effective
means for transferring knowledge from one to another, when brain-to-
brain connection is not possible. This is particularly important for hetero-
geneous agents that have different brain structures. For instance, in human
robot interaction (HRI) applications where the interaction must be natu-
ral, imitative learning can be an effective solution. Several works have been
carried out to apply imitative learning in HRI applications. For instance,
Schaal et al. (1997) trained a robot arm to handle a pendulum-balancing
task by observing a human. Kuniyoshi et al. (1994) also proposed a method
for learning a stacking blocks problem that is performed by a human.

A part of robotics research looks at learning by imitation from a purely
engineering viewpoint. This is the classic approach to imitative learning
which was shaped in 1980 when manipulators had to be programmed
manually. This was a tedious and time-consuming task. AI, particularly sym-
bolic reasoning, was a common choice at that time to convert a measured
human’s arm trajectory to a set of ‘‘IF-THEN’’ rules (Lozano-Pérez 1982;
Dufay and Latombe 1984). In later works, although this approach was facili-
tated to some extent, the core method has remained the same. For
instance, instead of manually providing the agent with trajectory data,
the robot could autonomously extract it using computer vision techniques
(Kuniyoshi et al. 1994; Tung and Kak 1995).

The main problem with the classic approach is its domain-limitedness.
The solutions are very task specific and can be utilized in highly controlled
environments only.

Inspired by imitative learning in natural species, another line of
research has been formed to overcome the drawbacks of pure engineering
approaches. This approach hopes to achieve the robustness and adapta-
bility existing in biological intelligence. Fortunately neuroscientists and
cognitive scientists have been seriously studying learning by imitation to
compare similarities and differences in human and animal cognition.
Although this goal is different from what engineers aim at, it has provided
them with useful information for proposing biologically inspired models of
imitative learning. However, there is still a long way to achieve robust and
adaptive models like the natural ones.

Existing biologically inspired models are still complex and task-specific.
For instance, all of the models introduced by Arbib et al. are tailored for
learning how to grasp (Fagg and Arbib 1998; Oztop and Arbib 2002; Oztop
et al. 2004). Recently, Jenkins et al. (2004) have addressed the limitations
of the models that have been proposed so far. One of these limitations is
that the learned behavior is different from what a human teacher desires.
They have proposed some reasons, such as limited amount of training
set, to cover the whole work space or the over fitting problem where a robot
loses its generalization.
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We add the inability of imitator to learn abstract concepts to these rea-
sons. If concepts are abstract, then the agent cannot achieve the behavior
that the teacher desires. This issue has not been studied much. In fact, the
existing models have chosen evaluation testbeds that can be understood by
their perceptual characteristics, where some distance metric can be defined
for measuring similarities in perceptual space. For instance, Jenkins and
Mataric (2003) used spatial isomap (which is based on Euclidian distance
among points) to categorize recorded joint angles of a demonstrator’s
movements. Categorization of perceptual data has a major role in their
learning model. In contrast, in this work, our concern is problems that
cannot be understood merely from perceptual information.

Abstract concepts may be scattered irregularly in the agent’s perceptual
space. However, they are grouped together according to some principles,
like their functional similarity. This is what the definitions of ‘‘learning
by imitation’’ emphasize, but which the existing models lack. In the next
section, we will see that neural mechanisms that are believed to be respon-
sible for imitative learning have also an abstract representation of actions.
Maybe that is why they can handle a wider range of problems. Obviously,
similarity metrics are not always available, especially in abstract problems.

In this article we introduce a new and biologically inspired model
for learning by imitation.1 Unlike previous works, we consider concep-
tion=abstraction as an essential element in our method. Abstraction and
conception by imitation requires some similarity metrics in the perceptual
and the conceptual spaces. Hand design of such similarity metrics is a data-
dependent and very difficult task, if not impossible. Therefore, we use
reinforcement or emotional learning to help the imitator to learn these
metrics through conceptualization and abstraction of the stimuli implicitly
and automatically.

MIRROR NEURONS

A group of researchers studying neuron activations in monkeys could
discover an interesting region in their brain named F5 (Rizzolatti and
Gentilucci 1988). The behavior of these neurons is such that they possess
both perceptual and motor characteristics and respond to both types of
stimuli. The most important finding about these neurons is that the mirror
neurons which are able to recognize an action are also able to produce it.
In other words, mirror neurons have a common representation of doing
and observing an action. That is why these neurons are believed to be an
important neural mechanism of imitation. Although mirror neurons were
first discovered in monkeys, there is some evidence that the Broca area in
the human brain is a homologue of mirror neurons and has similar char-
acteristics (Fadiga et al. 1995).
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The fact that representation in mirror neurons is action-based has an
important byproduct, which is abstraction. For instance, some recent dis-
coveries in the F5 area have identified audiovisual mirror neurons (Keysers
et al. 2003). These neurons respond not only when a monkey observes some-
one breaking a peanut, but also when it only hears the sound of breaking a
peanut. This indicates that mirror neurons encode actions not observations.
As the two discussed stimuli belong to completely different perceptual
spaces, this indicates that mirror neurons possess abstraction capability.

Another interesting feature of mirror neurons is that there seems to be
a one-to-one correspondence between perceived concepts and available
actions. This idea is supported by experiments that show mirror neurons
have different congruency. Some neurons have a broad congruence; for
instance, they respond to any type of grasp action. On the other hand,
some have a limited congruence; for example, they respond to very specific
types of grasp. In fact, although some actions are a subset of others, there is
still a separate representation for each action and no combination of basic
actions seems to occur in mirror mechanism.

Several models have been proposed to simulate the behavior of mirror
neurons. For instance, Arbib et al. (Fagg and Arbib 1998; Oztop and Arbib
2002; Oztop et al. 2004) have introduced models FARS, MNS1, and IGLM.
However, all these models are focused on grasp learning. They have hard-
coded a mechanism in these models so that their representation
becomes invariant to visual changes. If these models were applied to pro-
blems other than grasp, this hard-coding must be repeated again and again.
This is in contrast with the goal of the biological approach of learning
by imitation.

CONCEPTS

As abstraction and concept-oriented imitation are the motivation and
the core of our work, it is useful to first review some concept definitions
and taxonomies. A concept is an internal representation of the world in
an agent’s mind. It can be a set of objects or events that are similar with
respect to a principle (Zentall et al. 2002). Utilizing concepts in the mind
of an intelligent agent has a number of advantages:

Generalization: By experiencing different instances of the same concept
and analyzing the similarities and differences, a model for these instances
can be constructed. This model is a general description of the concept and
is able to satisfy its diverse instances, even the novel ones.

Communication: If there is a concept for each observation, during
communication, agents can refer to the corresponding concept instead
of describing all details of the observation. Note that, in this case, the com-
municating agents should have a similar interpretation of the concept.
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Cognitive Economy: Thanks to the compact concepts in an agent’s
knowledge structure, there is no need to repeat details when thinking. This
speeds up and simplifies cognitive processing.

Concept acquisition in natural environments must be able to cope with
some constraints (Davidsson 1994). First, concepts should be learned
gradually because we do not encounter all instances of a concept at one
point in time. Moreover, they should be learned in parallel, i.e., the type
or the order of incoming instances is arbitrary. At last, learning must be
accomplished relatively fast in the sense that we are able to learn a fairly
useful concept representation just by encountering instances of the
category on a few occasions.

Abstract Levels

Observations are categorized to concepts with respect to some princi-
ples that depend on physical and=or functional characteristics of the items.
From this perspective, Zentall et al. have categorized concepts to three
levels of abstraction (Zentall et al. 2002) (see Figure 1):

Perceptual: These concepts are formed solely by measuring similarity of
instances in perceptual space. Such data can be categorized by simple clus-
tering algorithms in an unsupervised fashion.

Relational: In this type of concept, although perceptual similarity still
contributes to categorization, it is not sufficient to form the correct con-
cepts. External information must link perceptual categorizes and form
the right concept. This is achieved by classical conditioning.

Associative: In learning these concepts, the stimuli within classes bear no
obvious physical similarity to one another, but cohere because of shared
functional properties.

Same/Different Judgment

As we move from perceptual toward associative concepts, more com-
plex cognitive capabilities are required. Fortunately relational concepts

FIGURE 1 Three types of concept: perceptual (left), relational (middle), and associative (right) in a
two-dimensional feature plane.
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are in the middle level of abstraction and therefore easier for learning,
compared with associative concepts. However, the perceptual capability of
an agent is no longer sufficient (but necessary) to form target concepts.
Therefore, complementary information must be given to the agent by
the teacher. This information can unify scattered clusters that belong to the
same concept. Now the main question is how this information can be
transferred from the teacher to the learning agent.

A solution to learning relational concepts is same=different judgment. In
this technique, the learning agent is exposed to two stimuli. It must decide
whether they belong to the same or to different concepts. A reward or pun-
ishment signal is issued by the teacher depending on correctness or incor-
rectness of the learner’s decision. So the learning agent gradually develops
abstract concepts to increase its reward. Eventually the agent will be able to
correctly classify novel stimuli of the learned concepts. It has been shown
that pigeons, parrots, rhesus monkeys, baboons, and chimpanzees are
capable of learning abstract concepts by the same=different method (Cook
et al. 2003).

The success of relational concept learning by same=different judgment
is valuable for the AI and robotics community for a number of reasons.
First, relational concepts are the first step toward abstract concepts, yet they
are easy to learn due to the contribution of perceptual information.
Second, concept learning can be a solution to the symbol grounding prob-
lem (Harnad 1990), i.e., relating symbols to their physical characteristics,
which is one of the most fundamental problems in AI. Third, since the
technique is based on reinforcement learning, the training interface can
be highly simplified, e.g., making use of the teacher’s emotional state as
the reinforcement signal.

Concept Representation

There are three general theories of concepts, namely, exemplar, proto-
type, and rule theories.

Exemplar: Merely instances of a concept are memorized. A new stimulus
is classified according to its similarity to all of the known instances of the
various candidate concepts. The specification of contents (exemplars) is
not a global summary but is instead a collection of piecemeal information.
A perceived stimulus can be formally represented by its values in the per-
ceptual space. The similarity of the stimulus to a memory exemplar corre-
sponds to their proximity in the perceptual space.

Prototype: It might seem inefficient or wasteful to remember every
instance of a category. Perhaps some sort of summary could be abstracted
during learning, and then the individual cases could be safely jettisoned.
The summary, also called a prototype, should be representative of the
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various instances of the category, e.g., average or idealized caricature of
instances. Because a prototype has a value on every dimension of the stim-
uli, it can be formally represented like an exemplar, although a prototype
need not correspond to any actually experienced instance.

Rule: A rule-based model uses either a strict match=mismatch process or
a boundary representation. An example of a rule-based model is one that
uses featural rules that specify strict necessary and sufficient conditions that
define category membership. Rules are computationally attractive as con-
cept representations because they can be uniformly applied to all stimuli,
regardless of the instances actually experienced. Moreover, they can
describe feature combinations that are not tied to the specific featural rea-
lizations. However, many natural categories are very difficult to specify in
terms of content rules.

Our model is based on exemplars and flexible prototypes. In fact, as the
number of prototypes per category increases, there can eventually be one
prototype per instance, and such models become equivalent to exemplar
models (Nosofsky 1984). Therefore, these theories are the extremes of a
range of prototypeness. By flexible prototype we mean the one whose
prototypeness degree can be adjusted.

In the last two decades we have observed a remarkable progress in the
development of computational models for concept learning (Kruschke
1992; Love and Medin 1998). These models do not address how the
developed concepts can actually influence an agent’s world (through its
actions). Conceptual imitation is our suggested solution for linking
concepts to actions.

MEMORY

The importance of memory in our life is obvious. However, what is in
our focus about memory is its contribution to concept learning. In fact, psy-
chologists have shown that the contents of long-term memory bias concept
learning. For instance, the research of Merriman et al. (1997) on three-
month-old infants supports this hypothesis. However, proposed models of
concept learning have not seriously studied the role of memory in concept
acquisition (Kruschke 1992; Love and Medin 1998). In fact, memory pro-
vides our model with acquisition of abstract concepts through interaction
with a teacher agent.

A number of computational models for memory have been proposed
such as levels of processing (Craik and Lockhart, 1972), transfer-appropriate
processing, parallel-distributed processing (Rumelhart and McClelland
1986), and information processing (Atkinson and Schiffrin 1968). Histori-
cally, the latter model has been the most successful, influential, and compre-
hensive one. Therefore, we adopt this model in our work.
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Information processing model suggests that the input information
must pass through three different stages to be stored. These stages are
three types of memory, namely, sensory memory, short-term memory
(STM), and long-term memory (LTM). For this reason, this model is also
called multi-store memory model.

Sensory memory is a register to keep sensory data. This information is
transferred to STM immediately. STM has low capacity and it cannot hold
as much information as LTM. Moreover, STM contents have a short life; they
will be wiped out if not transferred to LTM. STM is generally used for hold-
ing information temporally. It acts as a scratchpad for the mind. Long-term
memory has unlimited capacity and nothing decays or gets forgotten there.
Information is transferred from STM to LTM by the hippocampus, a region
in the human brain, through the process of consolidation.

LTM itself consists of different types of memory, such as episodic mem-
ory and semantic memory. Episodic memory stores time=space dependent
events, while semantic memory is independent of these factors. Semantic
memory stores concepts and semantic associations between them, forming
a semantic network. Since this article is concerned with concept acquisition
and has nothing to do with episodic memory, in the following, we will use
the terms LTM and semantic memory interchangeably.

The hippocampus can be viewed as a control system between WM (Work-
ing Memory) and LTM and is responsible for consolidation. Rehearsal con-
tributes to the consolidation process. There are two types of rehearsal,
namely, maintenance and elaborative. Maintenance rehearsal means just
repeating things over and over. Although this can help to keep information
in WM for a short time, no consolidation occurs. In contrast, elaborative
rehearsal means relating information in WM to existing knowledge in
LTM and it is the main cause of consolidation. It was believed that the hip-
pocampus is only involved in consolidation of episodic memory. However,
recent studies indicate that the hippocampus also has an important role in
learning and consolidation in semantic memory (Manns et al. 2003).

Scientific evidence indicates that events are better memorized in
emotionally arousing situations (Burke et al. 1992; Christianson 1992). In
addition, some researchers like Gold and McGaugh (1975) believe that
the time that it takes the consolidation process completes is a biological
advantage because it provides an opportunity to evaluate the emotional
importance of the event. The emotional evaluation of stimuli is up to a part
of brain called the amygdala (LeDoux 1996). Once the amygdala decodes
the stimulus in terms of its emotional importance, the result propagates to
the whole body by generating stress hormones. Although emotionally
arousing stimuli are better learned and consolidated, excessive amounts
of stress hormones have a negative effect on the hippocampus (LeDoux
1996). Therefore, emotion can have constructive and destructive effects
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on memory and consolidation. We will make use of this fact in our model to
control consolidation by reinforcement learning.

PROPOSED MODEL

Goals

As discussed earlier, abstraction is what distinguishes imitation from
mimicking. Moreover, the behavior of mirror neurons supports abstract
representation of the brain’s imitation mechanism. Nevertheless, none of
the biologically inspired models in the literature addresses abstraction in
sufficient depth. Therefore, achieving a model for conceptual imitation
is our major goal. Another goal that we pursue in this work is that the pro-
posed model can be applied to real-world problems. In this line, our model
takes situatedness into account and allows the imitator to autonomously
acquire its knowledge by interacting with teacher agents. Moreover, making
use of reinforcement learning, which is connected to emotion in our work,
provides a natural means for training robots by humans. The last purpose
of our research is developing a simple and lightweight algorithm. It is
important to note that although our work is inspired by biological observa-
tions, it is not biologically plausible. In fact, it works based on some rough
ideas about the functionality of a few brain modules.

One-to-One Correspondence in Mirror Neurons

Before introducing our model in detail, we once again return to the
one-to-one correspondence hypothesis that mirror neurons seem to pos-
sess. In this section we will see the mathematical benefit of such one-to-
one representation. In fact, if we assume that all modules of an arbitrary
concept-oriented agent can be described by mathematical functions—not
necessarily analytical ones, even a lookup table—we will prove that there
always exists an agent with a different internal structure, particularly with
one-to-one concept to action mapping, which is behaviorally equivalent
to the original agent.

Such one-to-one correspondence provides the agent with a repertoire
of known actions. By known actions we mean that the agent knows the
abstract meaning of each concept in a way similar to what exists in mirror
neurons through a link to its corresponding action and knowing how to
perform the action in terms of motor parameters.

In order to analyze a concept-oriented agent mathematically, we forma-
lize its behavior with respect to some basic but general building blocks.
Although the model that we will introduce later has more details and it
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is easier to interpret, yet this mathematical representation fits well to the
general structure that we analyze here.

As one of the goals was applicability of the model to real-world pro-
blems, particularly HRI, we assume that the teacher does not have access
to the agent’s brain and its behavior is the only thing that he can observe.2

In fact, the teacher evaluates the agent’s actions and issues reinforcement
signals accordingly. Based on this assumption, we denote the ideal behavior
of the learning agent by a mapping from the sensory data to the motor
commands. By ideal behavior we mean the one which maximizes incoming
reinforcement signal.

In our model, the agent itself has to conceptualize events in its mind.
That means linking regions of continuous input and output spaces through
a discrete concept set. So there are two functions involved, sensory-concept
(f ) and concept-motor (g ) mappings; see Figure 2. Formally, we have:

f : <m ! Np

g : Np ! <n

Np ¼ f1; 2; 3; . . . ; pg;
ð1Þ

where <m and <n are sensor and motor spaces, respectively, and p is the
number of concepts. Abstract concepts can be used by a symbol manipu-
lator for complex cognitive tasks like language learning. Currently, we do
not use symbols for this purpose, but the role of symbol manipulator is
shown in Figure 2 for extended works.

In one hand, the behavioral structure must be able to reconstruct the
ideal behavior g o f (x) ¼ h(x), i.e., maximizing the expected reward. On
the other hand, it must minimize the number of concepts to keep them
as general as possible (extremely, each sample can be assigned to a single
concept). These two constraints act in opposite directions, because if p is
minimized too much, the structure becomes too restricted to reconstruct
the ideal behavior, and if high expected reward (E(R)) is desired, p must

FIGURE 2 The general model of a concept-oriented agent.
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remain big enough. These constraints and the discrete nature of concepts
make this problem a non-linear multi-objective optimization task

ObjectiveFunctions
Maximize ðEðRÞÞ
Minimize ðpÞ

�
ð2Þ

Concepts are linked to continuous regions of input and output spaces.
We represent each region by a prototype; the nearest prototype in the per-
ceptual space catches a given stimulus. Then the prototype is translated into
a concept. Similarly, concepts are mapped to motor prototypes. From the
prototype perspective, functions f and g can be decomposed as shown in (3).

f1 : <m ! Nq ; f1 ¼ ArgMin
i¼1;...;q

kx � xik

f2 : Nq ! Np

f ¼ f2ðf1ðxÞÞ ¼ f2 o f1ðxÞ
g1 : Np ! Nr ; r � p

g2 : Nr ! fy1; y2; . . . ; yrg � <n

g ðkÞ ¼ g2ðg1ðkÞÞ ¼ g2 o g1ðkÞ; k 2 f1; 2; . . . ; pg;

ð3Þ

where f1 maps stimulus to a perceptual prototype and f2 maps the prototype
to corresponding concept. Note that due to the abstract nature of concepts,
f2 is possibly many-to-one. Similarly, g1 maps each concept to a corresponding
action (motor prototype) and g2 realizes the action by physical motor para-
meters in motor space. Obviously, q and r are the number of sensor and
motor prototypes and p is the number of concepts. Finding the prototype
vectors and concept=prototype mappings are up to the learning algorithm.
Note that p � q and r � p are necessary conditions for f and g to be functions.

Nevertheless, due to the discrete nature of concept and prototype sets,
theoretically any many-to-many mapping of them can be converted to
many-to-one (function) by extending the set of indices to its power set.
Hence, we will let the function constraint remain for the sake of simplicity.

So far four functions have been introduced for behavior construction,
namely, f1, f2, g1, g2. Here we claim that for any arbitrary structure h
obtained by combining these functions, there always exists an equivalent
structure h0 whose g1

0 is one-to-one. If g1 is not one-to-one, then there exists
at least two values with the same map.

g1ðn1Þ ¼ g1ðn2Þ ¼ k; n1 6¼ n2 ð4Þ

However, n1 and n2 are themselves obtained from f2ð�Þ

n1 ¼ f2ðm1Þ; n2 ¼ f2ðm2Þ ð5Þ
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Now we define our f2
0 and g1

0 functions as

g 01ðn1Þ ¼ k

f 02ðm1Þ ¼ f 02ðm2Þ ¼ n1
ð6Þ

It is easy to check that

g1ðf2ðmÞÞ ¼ g 01ðf 02ðmÞÞ; m 2 fm1;m2g ð7Þ

Now let’s consider g2
0 ¼ g2 and f1

0 ¼ f1; so while h0 ¼ h, g1
0 is one-to-one.

Although h and h0 are behaviorally the same, they are different in the num-
ber of concepts. As g01 is one-to-one so p0 ¼ r0 and for non one-to-one cases
like g1 p > r. But r ¼ r0 because g01 ¼ g2. Combining these results gives
p > p0. Since the one-to-one instance takes fewer number of concepts, it
is preferred according to (2).

In fact, there could be a dual case, where f2 was one-to-one and g1
0 was

many-to-one. However, relational concepts require different regions to be
mapped to the same concept. Therefore, for efficiently representing the
relational concepts (without power sets), this case is avoided.

Returning to the one-to-one g1, which can be now denoted by
g1 : Np ! Np; its task is now limited to a simple permutation. This is imma-
terial and can be eliminated. The model is therefore simplified to

h ¼ g2 o f2 o f1

f1 : <m ! Nq

f2 : Nq ! Np

g2 : Np ! fy1; y2; . . . ; ypg

ð8Þ

The Model

Previously, we reviewed evidence of conceptual representation in
mirror neurons and then we discussed that concepts are stored in semantic
memory. So there may be a relation between these two areas of brain. More-
over, we could not find any biological evidence that contradicts with this
hypothesis. For instance, Keysers et al. (2003), who work on auditory mirror
neurons, emphasize that there is no evidence for existence of direct con-
nection between the F5 area and the auditory cortex, according to their
correspondence with Matelli. They state that auditory information may
reach F5 neurons along complex cortico-cortical routes (Romanski et al.
1999) or even involve corticosubcortical loops (Fries 1984). So it is not
exactly clear that what these connections are, but we guess that relation
of semantic memory to mirror neurons can be a possibility.

166 H. Mobahi et al.



We put together all the ideas obtained so far to develop a new model
for conceptual imitative learning and schematically show them in Figure 3.

This model is composed of two functional modes, namely, interactive
and non-interactive. During the interactive mode, the agent interacts with
the teacher in order to learn stimulus-concept relations. The behavior of
the agent is modified by reinforcement signals that the teacher issues.
Initially the agent transfers sensed stimulus to working memory. In parallel,
emotion is extracted from stimulus to direct rehearsal and consolidation.
Consolidated concepts are kept in semantic memory and sent to the mirror
neuron system. The latter system is composed of a repertoire of actions and
their relations to concepts. Ultimately, the mirror neuron system sends the
matched action to the motor system.

In the non-interactive mode, the agent detaches its contact with the tea-
cher and merely attempts to find how to imitate the observed action. This
phase is triggered when none of the actions in the agent’s repertoire
matches the observed action. So it learns how to produce that action itself
by motor babbling. Now we will review each component of our model
separately. Interaction of these components will be described in the next
subsections in the context of learning algorithm.

Sensory Memory
As the rate of stimulus generation may be higher than the time that the

agent requires to sample, process, and respond to the stimulus, it is
required that the perceived stimulus be captured and kept in a register
until the end of the processing cycle. So, sensory memory keeps a dupli-
cation of the perceived stimulus.

FIGURE 3 Proposed model (interactive and non-interactive phases are indicated by solid and dashed
arrows, respectively).
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Amygdala
This unit extracts emotional cues from stimulus and influences the hip-

pocampus using-stress hormones. This hormone is modeled by a scalar
value where its sign indicates destructiveness or constructiveness of the
emotion and its magnitude indicates the strength of the hormone. So it
acts like a reinforcement signal. Emotional cues can be extracted from
stimulus using simple features like facial expression for visual stimuli and
intonation and loudness of the voice for auditory stimuli.

Working Memory
Similar to its biological counterpart, the contents of this memory are

represented perceptually using exemplars. In our model, working memory
temporarily stores incoming stimulus to be later transferred to semantic
memory, if needed. While a stimulus is in working memory, it can be com-
pared with available concepts in semantic memory to be possibly associated
with one of them (elaborative rehearsal).

Semantic Memory
The representation in semantic memory is based on organized infor-

mation. Since our model relies on relational concepts, semantic memory
in our model consists of a number of prototypes in perceptual space that
are grouped to form different concepts. In other words, each concept is
a set of prototypes in semantic memory that have the same meaning with
respect to a criterion that the teacher has in mind.

The motivation of using prototypes instead of exemplars was the long
duration of information in long-term memory. While information in work-
ing memory is continually transferred to semantic memory, the infor-
mation in semantic memory is not moved to anywhere else. On the other
hand, since in a real environment the flow of new stimuli may be nonstop,
semantic memory can be exploded by an unbounded number of exem-
plars. However, only a few prototypes are sufficient to represent a large
number of (even infinite) stimuli.

Hippocampus
This component looks like a control mechanism for working memory.

Similar to what denate gyrus does in the brain for the hippocampus, it can
recruit new units to be used by working memory. This provides the agent
with the ability of incremental learning. It is particularly valuable for inter-
active learning applications where the number of concepts is not known a
priori. Another task of the hippocampus is controlling the consolidation
process. This happens when the stimulus is likely to belong to an exemplar
of working memory, not a prototype in semantic memory.
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Mirror Neurons
According to our hypothesis, mirror neurons get their conceptual input

from semantic memory. This highly simplifies the work of mirror neuron
system. According to the one-to-one evidence discussed previously, mirror
neurons merely form a repertoire of known actions. By putting these
actions into a sequence, a variety of complex actions can be constructed.
Mirror neurons learn with the help of the motor babbling module to
realize actions by physical motor responses.

Babbling
Babbling is a fundamental and basic mechanism in imitation (Meltzoff

and Moore 1997). It means issuing random motor commands and inspect-
ing their effects in order to discover self’s motor-percept model, also called
forward model. When babbling becomes goal-directed, it provides a basic
way to imitative learning. Although goal-directed babbling starts from the
issuance of random motor commands, the learning agent refines these
commands gradually as the learning proceeds to achieve a target effect.
In our model, babbling extends the repertoire of familiar actions to be
used by the mirror neuron system.

Besides the mentioned components, there are also two processes in our
model that are explained in the following.

Consolidation
As discussed previously, elaborative rehearsal is a necessary condition

for consolidation. Another condition for consolidation is that the environ-
ment and the teacher provide consolidation opportunity for the agent
through emotional factors and repeating chance. In fact, each time a
stimulus similar to an exemplar of working memory is experienced, the
hippocampus relates it to one of the concepts. The agent performs the cor-
responding action and receives reinforcement. The reinforcement may
support or destroy that relation. If all relations are destroyed, it means no
concept could represent the exemplar, so a new concept is created for that
exemplar. The set of the new concept is initialized by one prototype whose
position in perceptual space is the same as the mentioned exemplar.

Mirror Neuron Generation
Since mirror neurons establish a connection between concepts and

actions, once a new concept is formed in semantic memory, its correspond-
ing action must be determined for the mirror neuron system. At this time,
the hippocampus, which is able to interpret emotions in a more abstract
fashion than the amygdala, switches to the non-interactive mode. In this
mode, babbling tries to learn how to act in order to reconstruct the obser-
vation, which belongs to the new concept. Once babbling completes, the
system switches back to the interactive mode.
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Learning Algorithm

The learning algorithm is an iterative procedure. Each learning cycle
begins when a new stimulus arrives. The algorithm is illustrated in Figure 4
and its pseudo-code is shown in Figure 5. In the pseudo-code a number of
variables can be seen which are going to be introduced here. Before going
into the details of the pseudo-code, first we introduce its variables.

FIGURE 4 Flowchart of the proposed method.
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. W ¼
S

xi; xi 2 <m : This is a set of exemplars in the working memory of
the agent that it has experienced. Each exemplar is in fact a vector in
perceptual space.

. Long-term memory maintains consolidated prototypes and their seman-
tic interconnections. These two components are denoted by sets L and C,

FIGURE 5 Pseudo-code for the proposed algorithm.
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respectively. Elements of L are vectors in perceptual space and elements
of C are simple functions each of which maps a prototype index to a con-
cept index. For instance, cp returns the number of the concept associated
with prototype p.

L ¼
[

xi ; xi 2 <m

c : NjLj ! NjC j

. x 2 <m is a variable which simulates sensory memory and keeps the
perceived stimulus until the end of the cycle.

. y : NjC j ! <n is a function that maps a concept to its motor response. For
instance, yk is a vector in motor space which returns motor response to
concept k.

. W stands for the matrix which determines the internal state of the hippo-
campus in terms of rehearsal and consolidation. Rows of this matrix cor-
respond to the exemplar indices of working memory (W) and its columns
correspond to concept indices. The elements of W describe the member-
ship likelihood of an exemplar in working memory to a concept in
semantic memory.

. l : NjW j ! <n is a function which maps the index of a given prototype to
the motor response of the concept with likely correspondence. This map-
ping is created once a new entry in working memory is created. This func-
tion is later used for computation of membership likelihood in W in
Gaussian-like fashion as expð�kyq � lpk2Þ:

. G: This is a data-dependent constant that determines the degree of gen-
eralization. Small values for G are suitable for compact prototypes, while
its large values are appropriate for bulky prototypes. Currently, G must be
set manually in a trial and error fashion.

To ease explaining the algorithm, assume that it is being executed for
some cycles and both memories have some contents. Moreover, we refer to
each line in the pseudo-code using # sign.

In #1, the stimulus is stored in SM (sensory memory). Both working
memory (WM) and long-term memory (LTM) have access to SM and com-
pete to capture the stimulus. In each memory, the most similar unit (#2 for
exemplars in WM and #3 for prototypes in LTM) is chosen and the win-
ning memory is the one that has the most similar unit with the stimuli.
We used Euclidian distance in perceptual space as dissimilarity measure.

Next the concept related to the stimulus and the corresponding action
is retrieved in #4, #5, and #6. If the winning unit belongs to LTM (#6),
there exists a solid relation between the winner and its corresponding con-
cept, so the concept can be recalled definitely. However, when the winner
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belongs to WM (#5), there is no solid connection between the memory
units and the concepts. Rather, each unit is connected to all concepts with
different membership degrees. In this case, the concept with the highest
membership is chosen as the matching concept of the stimulus. Formally,
there is a membership matrix W with WM units as its rows and concepts
as its columns and each element indicates membership of unit in concept.

In either case, once the concept is retrieved, mirror neurons convert
it to its related action and motor response (#5 and #6). The agent
performs the action (#7) and logically the teacher reacts (#8). Taking
advantage of the teacher’s reinforcement, the agent examines whether
the action performed by the teacher and the one performed by itself
belong to the same or different concepts. This is where same=different
judgment gets involved. Depending on type of the reinforcement and
the winning memory, four cases happen:

. Reward and WM: In this case (#9), the correct relation between WM unit
and corresponding concept is found and therefore consolidation con-
straints are satisfied. Hence, this unit is removed from WM (#12) and
is added to LTM (#10) and connected to the concept that caused the
reward (#11).

. Reward and LTM: This situation (#13) means that the LTM unit has cor-
rectly attracted the stimulus. In this stage, the agent adjusts the winning
prototype a bit toward the stimulus so that the prototype can represent
any instance of it (#14).

. Punishment and LTM: In order to enter this branch, another constraint is
imposed which requires that the distance of the winning unit to the
stimulus (denoted by DW) is below a threshold G. This case is formulated
entirely in #15. G is a data dependent constant; while compact clusters
are best represented by small values of G, wide clusters need larger values
of it. Recall that, this situation occurs when the LTM unit has wrongly
attracted the stimulus. Since the contents of LTM are all correct (other-
wise they would not get reward to enter to LTM), there is no need to
change anything there. Instead, the stimulus may belong to another
old concept or to a new one, but there is no prototype to attract and
relate the stimulus to the correct concept. In both cases, a new unit is
created in WM to represent the stimulus (#16) and determine its con-
cept in further rehearsals. Moreover, since a new prototype is created,
its membership to all concepts must be computed in #17 by adding a
new row to membership matrix W and initializing the columns of the
row. Memberships are estimated using distance in motor space.

. Punishment and WM: If during rehearsal, WM makes a wrong decision and
the distance of stimulus from the winning WM unit falls below threshold
G (#19), the negative reinforcement weakens consolidation in that
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channel (unit to concept) in #20. Therefore, next time that this unit
attracts a stimulus, another concept will be rehearsed. If all channels
are destroyed (#21), it indicates that the unit belongs to a new concept.
In this case, first a new action is learned through babbling such that it can
result in a similar effect (#22). Next a new concept is created in LTM
(#23) and the winner is transferred from WM to LTM (#25, #26, and
#27). In other words, from one side the new concept is related to the
transferred prototype (#26) and, from the other side, the concept is con-
nected to the action resulted by babbling (#24). Eventually since a new
concept is created, a new column is added to membership matrix W and
the rows (prototypes) of that column (new concept) are initialized using
motor estimation in motor space (#28).

EXPERIMENTAL RESULTS

To evaluate our method, we carried out two experiments in phoneme
acquisition domain. We chose phoneme acquisition as our testbed for a
number of reasons. First, our model learns by babbling and babbling is best
known in phoneme acquisition by children. Second, our results indicate
that vowels are relational concepts because of forming disjoint clusters in
perceptual space. Third, the number of available vowels and the clusters
they form are very limited and therefore reinforcement learning is appli-
cable. Fourth, using loudness as an easy-to-extract emotional cue, the
human user can interact with the agent in a natural and simple way.

In order to use a compact representation (not necessarily optimal) such
that the acoustic signal can be described by an appropriate feature vector in
perceptual space, a dimensionality reduction must be performed. However,
extracting appropriate features from acoustic signal is itself a difficult prob-
lem in speech processing and recognition domain. Since machine learning
is the main concern of this paper, we tried to avoid involvement in compli-
cated speech processing problems. Therefore, we focused on the vowel
learning problem because formants3 are easy to compute and effective fea-
tures for vowel representation. We also used an articulatory model of
speech synthesis. An articulatory model is comprised of a set of simulated
muscles whose contraction is controllable. By adjusting muscle parameters,
one can produce various voices. We implemented our algorithm in C
language under a Linux operating system.

Experiment I

In this experiment, we used the Peterson and Barney data set, which is a
well-known benchmark in vowel learning (Peterson and Barney 1952). This
database contains formants of 10 American English language vowels
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spoken by 76 people (33 men, 28 women, and 15 children). In this experi-
ment, each vowel is uttered twice, so there are totally 1520 samples in this
data set. High overlap among samples of this data set has made it a difficult
learning problem. In this data set there are even 21 pairs whose first and
second formants are the same. Since such ambiguous data are not dis-
tinguishable, we removed one instance of each pair. So the number of sam-
ples in the data set was reduced to 1499.

Since the proposed algorithm requires mutual interaction between the
imitator and the teacher, in this experiment, we defined virtual teachers from
the data set. In fact, in each stage, one teacher (speaker) is chosen randomly
and utters one of the 10 vowels arbitrarily, i.e., the agent gains access to its first
two formants. Next, the imitator tries to learn how to utter something similar
to the heard sound using babbling. Then, the teacher—the software in this
experiment—finds the closest sample to the agent’s uttered sound in the
whole dataset and compares its label with the label of the original vowel
uttered by the teacher. If these labels are the same, the teacher issues a posi-
tive reinforcement; otherwise, a negative reinforcement is given to the agent.

In this experiment, instead of using a realistic articulatory model and
extracting formants from real acoustic signal, we used a simple affine trans-
form to simulate forward model. The synthesis system is composed of two
muscle parameters, namely, m1 and m2. These parameters are then con-
verted to self formants (F1,F2) using equation (9). Coefficients h1 to h6

are constant and they define the physical characteristics of the forward
model. Care was taken to avoid choosing singular coefficients. Babbling
process tries to minimize the difference between self and the heard for-
mants. Since an analytical formulation of the forward model is available,
babbling can be realized using gradient decent optimization.

F1 ¼ h1m1 þ h2m2 þ h3

F2 ¼ h4m1 þ h5m2 þ h6
ð9Þ

Returning to the learning algorithm, the learning rate g for adapting
prototypes was set to 0.1 in the experiment. This experiment was repeated
twice, once with G ¼ 100 and another time with G ¼ 10. Results indicate
that the agent could accurately develop 10 concepts, each of which corre-
sponds to one of the vowels. Figure 6 shows the average reinforcement
computed from execution of the program 10 times. Due to the discrete nat-
ure of reinforcements in our model (1,�1), the plot was smoothed so that
the underlying behavior becomes clear. The number of iterations required
to achieve an acceptable level of reinforcement was 6000 steps. This
may seem large for an algorithm that is supposed to be used in interactive
applications.
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The main reason for this large number of steps is the large number of
speakers and vowels. In fact, if we divide 6000 by the number of speakers
(76) and vowels (10), we will see that the average number of steps required
to learn each vowel uttered by each teacher is 7, which is not so high.

Average and standard deviation of the number of remained units in
WM and LTM and the number of concepts as well as the accuracy of the
agent’s performance are shown in Table 1.

There are two important issues in this table. First, the agent has learned
exactly 10 concepts. Second, the number of prototypes in LTM—denoted
by mLTM—is much larger than the number of concepts (10) and it indi-
cates that vowels could not be represented by perceptual categorization,
but relational concepts. In fact what the algorithm learns is to find these
clusters as well as the semantic relations among them. Therefore the agent
has developed the same abstract concepts that the teacher had in mind.

Another interesting piece of data in the table is that the number of pro-
totypes in LTM is very close to the number of samples in the training set
(1499). Maybe this is due to the relatively small number of utterances
per vowel for each teacher (2), comparing with the number of speakers
(76). Whatever the reason is, it is obvious that the appropriate represen-
tation for this data set is exemplar method (low values of G). This fact is

FIGURE 6 Reinforcement over time. Solid and dashed plots correspond to G ¼ 100 and G ¼ 10,
respectively.

TABLE 1 Statistics Obtained After 10 Executions in Experiment I

G mA% rA% mWM rWM mLTM rLTM mC rC

10 92.15 4.86 72.6 16.61 1246.1 110.57 10 0
100 79.25 4.91 27.7 3.56 949.8 58.48 10 0
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also reflected in two plots of Figure 6. The accuracy of the results is denoted
by A in Table 1. It is computed when the algorithm has passed all 6000
steps. At that time the whole data set is presented to the agent and its cor-
rect classifications are counted. Then accuracy is defined as the percentage
of correct classifications to the whole number of samples.

Another important issue in this experiment is the load of WM, as
shown in Figure 7. As it can be seen, initially the load of the memory is very
high. The reason for this phenomenon could be the behavior of simulated
teachers. They choose vowels randomly with a uniform distribution and
without attention to the imitator’s progress. So before the agent finds the
opportunity to complete consolidation of a vowel, another one arrives.
That increases the load of WM, however, as the learning proceeds the load
decreases because the agent finds sufficient chance for consolidation.

Experiment II

This experiment was conducted in the real world, where human sub-
jects naturally interact with the agent. The agent receives acoustic input
from a microphone and responds using speakers connected to the com-
puter; see Figure 8. Emotional expressions of the human caretaker guide
the process of concept learning. Since the focus of this experiment was
on machine learning and not speech processing, we utilized a speech ana-
lysis=synthesis tool named PRAAT (Boersmo and Weenink 1992). This pro-
gram could interact with our program in on online manner using
interprocess communication techniques.

FIGURE 7 Load of working memory. Solid and dashed plots correspond to G ¼ 100 and G ¼ 10,
respectively.
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Initially, PRAAT segments vowels by silence detection. Thanks to the rela-
tively high power in vowel spectrum, it can be easily segmented by choosing a
simple threshold for the power. Next PRAAT provides the agent with the first
two formants by extracting them from the segmented vowels. In parallel,
reinforcement signal is also extracted from the caretaker’s voice using a very
simple cue. If the speaker’s voice is abnormally loud (to cause fear), the agent
interprets it as a negative reinforcement. A similar punishment is used when
parents want to train children who are not yet able to understand language.
So this protocol is natural enough to humans to train our agent. Continuing
interaction with the agent in a normal manner is also a sign of the caretaker’s
interest and is considered as positive reinforcement. This relationship and the
utilized processes in PRAAT are illustrated in Figure 8.

PRAAT is not only an important component in the sensory circuitry of
our agent, but also in its motor system. It has a complex articulatory model
for speech synthesis composed of 29 muscles. The amount of contraction of
each muscle over time can be controlled independently. Obviously, goal-
directed motor babbling starts from a random contractions and gradually
refines these values to produce the desired sound. However, unlike Experi-
ment I, the analytical model of the articulatory system and consequent
gradient is not available here. Therefore, each time, a muscle is chosen
randomly and perturbed. If the resulted voice is closer to the goal, it is kept
as the best solution found so far; otherwise, it is ignored.

Iterating this scheme over and over yields continuing improvement in
the babbling. Babbling is stopped when learning cost drops below a thresh-
old value. The learning cost is a weighted sum of formant error like the one
used in Experiment I, plus the inverse of the signal’s energy. The latter
term forces the agent to escape from silence. Since our experiment was
merely concentrated on vowels, only a subset of muscles4 was chosen for
learning. Moreover, a few muscles,5 which were invariant during synthesis
of any vowel, were manually set to appropriate constant values. The rest
of the muscles remained inactive.

FIGURE 8 The setup for the second experiment.

178 H. Mobahi et al.



Five human subjects (3 females, 2 males) participated in this experi-
ment. They were told to only use three Persian vowels throughout their
interaction with the agent. The distribution of some of these vowels in
(F1,F2) plane is visualized in Figure 9. In this figure, each teacher is
depicted by a different spot shape. The algorithm reached five prototypes
for representing the experimental data set. Prototypes A and B belong to
the first vowel, C and D to the second vowel, and E to the last vowel. Obvi-
ously, some concepts (vowels) require more than one prototype for proper
representation. This means that phoneme acquisition in formant space
forms relational concepts. In our study, the speaker’s gender is the reason
that disjoins prototypes of the same vowel. For instance A and C belong to
female samples, while B and D belong to male samples. However, the distri-
bution of the third vowel is relatively compact regardless of the speakers’
gender.

The goal of the learning agent is not only how to utter the heard vowels,
but also to understand when they belong to the same concept. For instance,
it must learn that although samples in regions A and B trigger different
prototypes, they go to the same concept.

In this experiment parameter g was set to 0.1 and G was set to 150.
Once the gained average reward becomes fairly stable, the learning is
considered to be in a satisfactory level. It took near to 100 iterations for

FIGURE 9 Distribution of three Persian vowels in (F1, F2) plane. Male subjects are represented by dia-
mond and star and female subjects by plus, cross, and circle.
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the agent to reach such steady state. The agent’s brain was further explored
to study more details. It is observed that exactly three concepts are formed.
In addition, similar to what is shown in Figure 9, five prototypes were created
to represent the three concepts and each concept was accurately associated
to one of the vowels. In early stages of learning, the amount of contents in
the working memory was high, which was gradually transferred to semantic
memory through consolidation. In steady state, there was no item left in
working memory. The information related to this experiment is shown in
Table 2. Since real subjects were involved in this experiment and it was
not convenient to repeat the experiment several times, the values in this
table are one-time measurements.

The output of the program is compared against natural vowels uttered
by one of the female speakers, as shown in Figure 10. The figure is, in fact, a
spectrogram where horizontal axis corresponds to time and vertical axis
corresponds to frequency. The darker a point is, the higher contribution
that frequency has at that time. In PRAAT we had to draw five first formants
even though we needed the first two ones only. Formants are denoted by

TABLE 2 Information Obtained in the Steady State of Experiment 2

G A% WM LTM C

150 100 0 5 3

FIGURE 10 Spectrogram for three Persian vowels. The darker a point is the more contribution its
frequency has at that time. Left: a female teacher. Right: reconstructed signals by the agent.
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dashed horizontal lines along the dark areas. Obviously the two bottom
ones denote the first two formants, which the agent has learned to imitate.
It is apparent that the synthesized signals could induct their underlying
vowels adequately.

CONCLUSION AND FUTURE WORKS

In this article, we proposed concept-oriented imitation as a new and
important avenue in machine learning research for the AI and robotics
community. Our model was inspired by findings in cognitive science and
neuroscience domains, particularly, the representation method in the mir-
ror neuron system, as well as the role of memory in concept learning. More-
over, by mathematical analysis of a simple but general behavioral structure
for a concept-oriented agent, we related the use of functions for construct-
ing such a model with the task of the mirror neuron system in a biological
system.

Relational concepts, which are the simplest form of abstract concepts
according to Zentall’s categorization, were chosen as the basis of this work.
These concepts are, in fact, disjoint clusters in an agent’s perceptual space,
which belong to the same concept. The clusters are unified by their
semantic and functional properties. The sameness of clusters is learned by
reinforcement learning using same=different technique. Moreover, inspired
by the role of memory in forming abstract concepts and the process of mem-
ory consolidation, the model incorporated some similar characteristics for
concept learning. The experimental results on vowel imitative learning
showed the effectiveness of the proposed approach.

There are few points that should be considered in future works. For
instance, in the proposed model, all concepts are relational and therefore
in the same abstraction level. If associative concepts are incorporated into
the model, a hierarchy of concepts can be defined, i.e., associative concepts
in terms of relational concepts or less abstract associative concepts. Biologi-
cally, this is similar to congruency notion in mirror neurons, to some
extent. For example, in the phoneme-learning problem, phonemes could
be learned in the lowest level and then more abstract concept entities like
syllables and words could be constructed.

Automatic adjustment of parameter G is another issue that can be
addressed in the future. This is a data-dependent parameter whose manual
tuning requires trial and error. Problems with compact clusters are best
represented by small values of G, while large values of G are appropriate
for sparse clusters. A simple idea for the automatic finding of G could be
starting from a small G and gradually increasing the value as long as no con-
siderable drop in the average reward results.
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Finally, this article was concerned mainly with the algorithmic and
machine learning side of imitation. We conducted experiments in the
vowel learning domain in order to evaluate the proposed method in a real
problem. However, there is still a long way to assess the proposed method in
a vast range of problems in the AI and robotics domain.
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ENDNOTES

1. Our approach is inspired by some findings in the domain of neurosciences; however, our model is
not necessarily biologically plausible.

2. Note that the teacher could be an internal entity in some cases. By having an internal teacher we
mean that the agent can evaluate itself provided that it has a sufficient level of intelligence or
emotion.

3. Formants are peaks in frequency spectrum of the auditory signal.
4. Hyoglossus, styloglossus, geniogloussus, orbicularis oris, and masseter.
5. Lungs, levator palatini, interarytenoid, and cricothyroid.
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