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Abstract

Optimization via continuation method is a widely
used approach for solving nonconvex minimization
problems. While this method generally does not
provide a global minimum, empirically it often
achieves a superior local minimum compared to
alternative approaches such as gradient descent.
However, theoretical analysis of this method is
largely unavailable. Here, we provide a theoreti-
cal analysis that provides a bound on the endpoint
solution of the continuation method. The derived
bound depends on a problem specific character-
istic that we refer to as optimization complexity.
We show that this characteristic can be analyt-
ically computed when the objective function is
expressed in some suitable basis functions. Our
analysis combines elements of scale-space theory,
regularization and differential equations.

1 Introduction

Nonconvex energy minimization problems arise fre-
quently in learning and inference tasks. For exam-
ple, consider some fundamental tasks in computer vi-
sion. Inference in image segmentation (

), image completion (

), and optical flow ( ),
as well as learning of part-based models (

), and dictionary learning (

), all involve nonconvex objectives. In noncon-
vex optimization, computing the global minima are
generally intractable and as such, heuristic methods
are sought. These methods may not always find the
global minimum, but often provide good suboptimal
solutions. A popular heuristic is the so called contin-
uation method. It starts by solving an easy problem,
and progressively changes it to the actual complex task.
Each step in this progression is guided by the solution
obtained in the previous step.

This idea is very popular owing to its ease of imple-
mentation and often superior empirical performance’
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!That is finding much deeper local minima, if not the
global minima.

against alternatives such as gradient descent. Instances
of this concept have been utilized by the artificial intel-
ligence community for more than three decades. Exam-
ples include graduated-nonconvexity (

), mean field theory ( ), determin-
istic annealing ( ), and
optimization via scale-space (

). It is widely used in various state-of-the-
art solutions (see Section 2). Despite that, there exists
no theoretical understanding of the method itself?. For
example, it is not clear which properties of the prob-
lem make its associated optimization easy or difficult
for this approach.

This paper provides a bound on the objective value
attained by the continuation method. The derived
bound monotonically depends on a particular charac-
teristic of the objective function. That is, lower value
of the characteristic guarantees attaining lower objec-
tive value by the continuation. This characteristic re-
flects the complexity of the optimization task. Hence,
we refer to it as the optimization complexity. Im-
portantly, we show that this complexity parameter is
computable when the objective function is expressed
in some suitable basis functions such as Gaussian Ra-
dial Basis Function (RBF).

‘We provide a brief description of our main result here,
while the complete statement is postponed to Theorem
7. Let f(z) be a nonconvex function to be minimized
and let & be the solution discovered by the continua-
tion method. Let f! be the minimum of the simplified
objective function. Then,

(@) <wi fT+wav/a, (1)

where w; > 0 and ws > 0 are independent
of f and « is the optimization complexity of f.
When f can be expressed by Gaussian RBFs f(x) =

K _mom)? . -
Y p—jare 2% , then in Proposition 9 we show

that its optimization complexity « is proportional to

2We note that prior “application tailored’ analysis is
available, e.g. ( ). However, there
is no general and application independent result in the lit-
erature.
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Our analysis here combines elements of scale space
theory (Loog, Duistermaat, and Florack 2001), differen-
tial equations (Widder 1975), and regularization theory
(Girosi, Jones, and Poggio 1995).

We clarify that optimization by continuation, which
traces one particular solution, should not be confused
by homotopy continuation in the context of finding all
roots of a system of equation®. Homotopy continuation
has a rich theory for the latter problem (Morgan 200¢
Sommese and Wampler 2005), but that is a very dlffer—
ent problem from the optimization setup.

Throughout this article, we use £ for equality by def-
inition, x for scalars, x for vectors, and X for sets. De-
note a function by f(.), its Fourier transform by f (),
and its complex conjugate by f(.). We often denote the
domain of the function by X = R? and the domain of
its Fourier transform by Q £ R%. Let k,(z), for o > 0,
denote the isotropic Gaussian kernel,

A 1 _l=?
ko(x) & ———€ 207 .
(V2mo)?
Let ||.| indicate ||.|2, and Ry y 2 {z € R|z >

0}. Finally, given a function of form g : R? x R, ,
Vo(mit) £ Vag(mit), Vg(ait) £ Vig(ast), and
g(xz;t) 2 %g(a:;t). Finally, Ag(x;t) £ Zi:l %.

k

2 Optimization by Continuation

Consider the problem of minimizing a nonconvex ob-
jective function. In optimization by continuation, a
transformation of the nonconvex function to an easy-to-
minimize function is considered. The method then pro-
gressively converts the easy problem back to the origi-
nal function, while following the path of the minimizer.
In this paper, we always choose the easier function to
be convex. The minimizer of the easy problem can be
found efficiently.

This simple idea has been used with great success
for various nonconvex problems. Classic examples in-
clude data clustering (Gold, Rangarajan, and Mjolsness
1994), graph matching (Gold and Rangarajan 1996;
Zaslavskiy, Bach, and Vert 2009; Liu, Qiao, and Xu
2012), semi-supervised kernel machines (Sindhwani,
Keerthi, and Chapelle 2006), multiple instance learning
(Gehler and Chapelle 2007; Kim and Torre 2010), semi-
supervised structured output (Dhillon et al. 2012), lan-
guage modeling (Bengio et al. 2009), robot navigation
(Pretto, Soatto, and Menegatti 2010), shape matching
(Tirthapura et al. 1998), £y norm minimization (Trza-
sko and Manduca 2009), image deblurring (Boccuto et

3In principle, one may formulate the optimization prob-
lem as finding all roots of the gradient and then evaluating
the objective at those points to choose the lowest. However,
this is not practical as the number of stationary points can
be abundant, e.g. exponential in number of variables for
polynomials.

al. 2002), image denoising (Rangarajan and Chellappa
1990; Nikolova, Ng, and Tam 2010), template match-
ing (Dufour, Miller, and Galatsanos 2002), pixel cor-
respondence (Leordeanu and Hebert 2008), active con-
tours (Cohen and Gorre 1995), Hough transform (Le-
ich, Junghans, and Jentschel 2004), and image matting
(Price, Morse, and Cohen 2010), finding optimal pa-
rameters in computer programs (Chaudhuri and Solar-
Lezama 2011) and seeking the optimal proofs (Chaud-
huri, Clochard, and Solar-Lezama 2014).

In fact, the growing interest in this method has made
it one of the most favorable solutions for the contempo-
rary nonconvex minimization problems. Just within the
past few years, the method has been utilized for low-
rank matrix recovery (Malek-Mohammadi et al. 2014),
error correction by £y recovery (\[ulnnmm et al. 2010),
super resolution (Coupe et al. 2013), photometric stereo
(Wu and Tan 2013), image segmentation (Hong, Lu,
and Sundaramoorthi 2013), face alignment (Saragih
2013), shape and illumination recovery (Barron 2013),
3D surface estimation (Balzer and Morwald 2012),; and
dense correspondence of images (I<im et al. 2013). The
last two are in fact state of the art solutions for their
associated problems. In addition, it has recently been
argued that some recent breakthroughs in the training
of deep archltectures (Hinton, Osindero, and Teh 2006;
Erhan et al. 2009), has been made by algorithms that
use some form of continuation for learning (Bengio
2009).

We now present a formal statement of optimization
by the continuation method. Given an objective func-
tion f : X — R, where X = R?. Consider an em-
bedding of f into a family of functions g : X x T,
where 7 £ [0, 00), with the following properties. First,
g(x,0) = f(x). Second, g(x,t) is bounded below and
is strictly convex in & when ¢t tends to infinity *. Third,
g(x,t) is continuously differentiable in x and t.

Such embedding g is sometimes called a homotopy,
as it continuously transforms one function to another.
The conditions of strict convexity and bounded from
below for g(.,t) with ¢t — oo imply that there exists a
unique minimizer for the g(.,t) when t — co. We
call this minimizer .

Define the curve x(t) for ¢ > 0 as one with the fol-
lowing properties. First, lim; o, ®(t) = . Second,
Vvt >0 ; Vg(x(t),t) = 0. Third, (t) is continu-
ous in t. This curve simply sweeps a specific stationary
path of g originated at x.,, as the parameter t pro-
gresses backward (See Figure 1). In general, such curve
neither needs to exist, nor be unique. However, these
conditions can be guaranteed by imposing extra condi-
tion Vt > 0; det(V2g(x(t);t)) # 0 (see e.g. Theorem 3
of (Wu 1996)). Throughout this paper, it is assumed
that x(t) exists.

In practice, the continuation method is used as the
following. First, @, is either derived analytically or

4A rigorous definition of such asymptotic convexity is
provided in the supplementary appendix.
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Figure 1: Plots show g versus x for each fixed time t.

Algorithm 1 Algorithm for Optimization by Continu-
ation Method
1: Input: f: X — R, Sequencety >t; > - >, =0.

[\.]

: @ = global minimizer of g(x; o).

: for k=1tondo

@) = Local minimizer of g(x;tx), initialized at
LTp—1-

: end for

: Output: x,

= W

o Ot

approximated numerically by argming, g(x;t) for large
enough t. The latter can use standard convex opti-
mization tools as g(x;t) approaches a convex function
in x for large ¢. Then, the stationary path x(t) is nu-
merically tracked until ¢ = 0 (See Algorithm 1). As
mentioned in the introduction, for a wide range of ap-
plications, the continuation solution x(0) often provides
a good local minimizer of f(x), if not the global mini-
mizer.

Although this work only focuses on the use of ho-
motopy continuation for nonconvex optimization, there
is also interest in this method for convex optimization,
e.g. to improve or guarantee the convergence rate (Xiao
and Zhang 2012).

3 Analysis

Due to the space limitation, only the statement of re-
sults are provided here. Full proofs are available in a
supplementary appendizx.

3.1 Path Independent Analysis

The first challenge we confront in developing a guaran-
tee for the value of g(«(0);0) is that g(.;0) must be

evaluated at the point x(0). However, we do not know
2(0) unless we actually run the continuation algorithm
and see where it lands at upon termination. This is ob-
viously not an option for the theoretical analysis of the
problem. Hence, the question is whether it is possible
to say something about the value of g(2(0);0) without
knowing the point x(0).

Here we prove that this is possible and we derive an
upper bound for g(x(0);0) without knowing the curve
x(t) itself. We, however, require the value of g at the
initial point to be known. In addition, we require a
global (curve independent) inequality to relate g(a;t)
and g(x;t). Our result is stated in the following lemma.

Lemma 1 (Worst Case Value of g(x(t);t)) Given
a function f : X — R and its associated homotopy
map g. Given a point xy that is the stationary
point of g(x;ty) (w.r.t. ). Denote the curve of
stationary points originated from x1 at t1 by x(t),
i.e. Vt € [0,t1]; Vg(z(t),t) = 0. Suppose this curve
ezrists. Given continuous functions a and b, such that
Yt € [0,t1] Ve € X5 a(t)g(x;t) + b(t) < g(x;t). Then,
the following inequality holds for any t € [0,t1],

g(z(t);t) (2)
< (g(@t)it) - / el e ds)em e

The proof of this lemma essentially consists of apply-
ing a modified version of the differential form of Gron-
wall’s inequality. This lemma determines our next
challenge, which is finding the a(t) and b(t) for a given
f. In order to do that, we need to be more explicit
about the choice of the homotopy. Our following devel-
opment relies on Gaussian homotopy.

3.2 Gaussian Homotopy

The Gaussian homotopy g : X x T — R for a func-
tion f: X — R is defined as the convolution of f with
ko, 9(@io) 2 [fxko)(@) 2 [y () ko(z —y) dy.

In order to emphasize that the homotopy parameter
t coincides with the standard deviation of the Gaussian,
from here on, we switch to the notation g(x; o) for the
homotopy instead of previously used g(x;t). A well-
known property of the Gaussian convolution is that it
obeys the heat equation (Widder 1975),

g(x;0) = cAg(x;0). (3)

This means that in Lemma 1, the condition
a(o)g(x;0) + b(o) < g(x;0) can be replaced by
a(o)g(x;0) +b(o) < o Ag(x;0o). In order to find such
a(o) and b(o), we first obtain a lower bound on Ag(x; o)
in terms of g(x; o). Then, we will set a(c)g(x;0)+b(o)
to be smaller than the lower bound.

Gaussian homotopy has useful properties in the con-
text of the continuation method. First, it enjoy some
optimality criterion in terms of the best convexifica-
tion of f(a) (Mobahi and Fisher I11'). Second, for some



complete basis functions, such as polynomials or
Gaussian RBFs, Gaussian convolution has a closed
form expression. Finally, under mild conditions, a
large enough bandwidth can make g(x;c) unimodal

) and hence easy
to minimize. In fact, the example in Figure 1 is con-
structed by Gaussian convolution. Observe how the
original function (bottom) gradually looks more like a
convex function in the figure.

3.3 Lower Bounding Ag as a Function of g

Here we want to relate Ag(x; o) to g(x;0). Since the
differential operator is only w.r.t. variable @, we can
simplify the notation by disregarding dependency on o.
Hence, we work with h(x) £ g(x;0) for some fixed o.
Hence, the goal becomes lower bounding Ah(x) as a
function of h(x).

The lower bound must hold at any arbitrary point,
say x¢. Remember, we want to bound Ah(zg) only as
a function of the value of h(xy) and not x¢ itself. In
other words, we do not know where x( is, but we are
told what h(xg) is. We can pose this problem as the
following functional optimization task, where hy £
h(zg) is a known quantity.

Y= }2}{ Af(wl) , st f(ml) =ho , f(x) = h’(x) :
(4)

Then it follows® that y < Ah(x). However, solving
(4) is too idealistic due to the constraint f(x) = h(x)
and the fact that h(x) can be any complicated func-
tion. A more practical scenario is to constrain f(x) to
match with A(z) in terms of some signatures. These
signatures must be easy to compute for h(x) and allow
solving the associated functional optimization in f.

A potentially useful signature for constraining the
problem is function’s smoothness. We quantify the

) by [o g(\‘ld)l‘\) dw where G is

a decreasing function called stabilizer. This form
essentially penalizes higher frequencies in f. Func-
tional optimization involving this type of constraint
has been studied in the realm of regularization the-
ory in machine learning (

). Deeper mathematical details can be found in

latter for a function f(x

The smoothness constraint plays a crucial role in our
analysis. We denote it by a for brevity, where o £

—d @) - -
2m)~2 [, &l dw, and refer to this quantity as the

optimization complexity. Hence, the ideal task (4)
can be relaxed to the following,

°If h is a one-to-one map, f(x1) = ho and f(x) = h(x)
imply that 1 = xo and hence y = Ah(xo).

j= inf Af(z:) (5)

frz1

) @l
st Jw)=ho. [ G

Since (5) is a relaxation of (4) (because the con-
straint f(x) = ( ) is replaced by the weaker con-

|f(w _ [A(w)|? foll h
& dw = Jo Gy dw), it follows that

g < y. Since y < Ah(mo) we get ¢ S Ah(xg), hence
the desired lower bound.

In the setting (5), we can indeed solve the associated
functional optimization. The result is stated in the fol-
lowing lemma.

= (V2r)%a

straint fQ

Lemma 2 Consider f : X — R with well-defined

Fourier transform. Let G Q — Ryt be any
decreasing function. Suppose  f(x1) = ho and

fQ |fGé'2| dw = « for given constants hg and .

Then infy oz Af(z1) = c1AG(0) — c2AAG(0), where
(c1,¢2) is the solution to the following system,

ClG( ) — CQAG( ) 0
i [ G(w)dw + 2¢1¢0 [ ||w||2G( Ydw... . (6)
+c3 [ Hw||4G( ) dw = (v27)%a

Here AA means the application of the Laplace op-
erator twice. The lemma is very general, working for

any decreasing function G:Q— R, . An interesting

choice for the stabilizer G is the Gaussian function
(this is a familiar case in the regularization theory due
to Yuille ( )). This leads to
the following corollary.

Corollary 3 Consider f : X — R with well-defined

. 2w2

Fourier transform. Let G(w) £ ede~ 5 Sup-
pose f(gcl) = hO and fQ ‘g?); dw = (\/271')(10( fO’l‘

given constants hg and «. Then inf; . Af(x1) =

ho+2v2y/a—h?
T e

2

Example Consider h(x) = — = Let Glw) 2 e T

; — ; h(w)? —
(i.e. set e =1). It is easy to check that [, %) dw =
V2m. Hence, « = 1. Let xg = 0. Obviously, h(xg) =
—1. Using Corollary 3 we have infy 5, f"(x1) = —(—1+
2v/2,/1 — (=1)2) = 1. We now show that the worst

case bound suggested by Corollary 3 is sharp for this
1:2
(1 — 2%)e~ 7, which

example. It is so because h'’(z) =
at xg = 0 becomes h"(zg) = 1.

3.4 Extension to the Smoothed Objective
Corollary 3 applies to any functions f() that has well-
defined Fourier transform and any stabilizer of form
G(w). This includes any parameterized family of func-
tions and stabilizer, as long as the parameter(s) and



x are independent of each other. In particular, one
can choose the parameter to be ¢ and replace f (x) by

() |w|?

g(x;0) and G(w) by G(w;0) £ ¢?(o)e~ 2 . Note
that ¢ and x are independent.

This simple argument allows us to express Corollary
3 in the the following parametric way.

Corollary 4 Consider f : X — R with well-defined
Fourier transform. Define g(xz;0) = [h x ky)(x).

[ 62 o w 2
Let G(w;o) = ed(a)e_ (el Suppose g(x1;0) =

go(0) and [, %dw = (V2m)ea(o) for given val-

ues go(o) and (o).

_ go(0)+2v2y/a(0)— go(Cf
(o)

3.5 Choice of ¢(0)

For the purpose of analysis, we restrict the choice of
e(c) > 0 as stated by the following proposition. This
results in monotonic a(o), which greatly simplifies the
analysis.

Then infg( 0),21 Ag(xy;0) =

Proposition 5 Suppose the function e(o) > 0 satisfies
0 <e(o)é(o) <o. Then &(o) <0.

This choice can be further refined by the following
proposition.

Proposition 6 The only form for e(c) > 0 that satis-
fies 0 < e(o)é(o) < o s,

o) =pvo2+ ¢, (7)

for any 0 < B <1 and { > —0o?.

3.6 Lower Bounding o Ag(x;0) by
a(o)g(x;0) + b(o)

The goal of this section is finding continuous func-

tions a and b such that a(o)g(z;o) + b(o) <

o Ag(zx;0). By manipulating Corollary 4, one can de-

g(mo,a)+2\/§\/a(a g(xzos;0

rive Ag(xo;o) > 2(0 , where

(V2m)da(o) & Tz) Jolg(w; o) dw.
By multiplying both sides by o (remember o >
0) and factorizing a(c) the above inequality can be

(o) Jlw|?
P

equivalently written as, o Ag(xg;o) > —% -
%’3) 1-— %. This inequality implies
g(zg3o)
oalxn:o 204/2a(0o) I+ [a(o)
Ag(mo;a) > - gg(;) ) _ €2 (o) ( \/1 7(2 )a where

0 < v < 1 is any constant and we use the fact that
_ . — 2 < tou i
V(u,v) € [-1,1] x [0,1); V1 —u? < i (with

g(z0;0) 1 1
Jalo) being u). The inequality now has the affine form

o Ag(xg;0) > a(o)g(xo; o) + b(o), where

o 2v20 bo) = 20+/2a(0)

(0) (o)y1-72

(8)

2(0)y/1—2

Note that the continuity of € as stated in (7) implies
continuity of a and b.

3.7 Integrations and Final Bound
Theorem 7 Let f : X — R be the objective function.
Given the initial value g(az(al);al). Then for any 0 <
o < o1, and any constants 0 < v < 1, 0 < B < 1,
¢ > —a?, the following holds,

A 1 [ 2V/2y 'y V2

where p = 252(ﬂ 1) and ¢ WA
The proof essentially combines (8) with the fact

g(x;0) = 0 Ag(x;0) (i.e. the heat equation) to obtain

g(x;0) > a(o)g(x;0) + b(o), where a(o) = (\j% —

- 204/2a(o
1)% and b(O') = —W%
amenable to Lemma 1. Using the form of e(cr) in (7),
2v2y
/1 72

1) log(0? 4 ¢). Finally, using the Holder’s inequality

I glli < lIfll1 llgllso, We can separate /(o) from the
remaining of the integrand in form of sup y/a(c). The

latter further simplifies to \/a(o) due to non-increasing
property of a stated in Proposition 5

We now discuss the role of optimization complex1ty
a(o) in (9). For brevity, let wy(o,01) = (”zig)p, and
ws(o,01) = c(1 — (ZZig)p) Observe that w; and woy

1
are independent of f, while ¢ and o depend on f.
It can be proved that ws is nonnegative (Proposi-

tion 8), and obviously so is y/«a(c). Hence, lower opti-
mization complexity a(c) results in a smaller objective
value g(x(a); 0). Since the optimization complexity «
depends on the objective function, it provides a way
to quantify the hardness of the optimization task at
hand.

A practical consequence of our theorem is that one
may determine the worst case performance without run-
ning the algorithm. Importantly, the optimization com-
plexity can be easily computed when f is represented
by some suitable basis form; in particular by Gaussian
RBFs. This is the subject of the next section. Note
that while our result holds for any choice of constants
within the prescribed range, ideally they would be cho-
sen to make the bound tight. That is, the negative and
positive terms respectively receive the large and small
weights.

Before ending this section, we present the following
proposition which formally proves ws is positive.

V2 £
Va it and p

This form is now

[ a(r) dr can be computed analytically to 3 52 (

Proposition 8 Let ¢ £



0 < B < 1. Suppose 0 < 0 < o1 and ( > —c2. Then

0_2
c(1 — (U%jgy’) >0

3.8 Analytical Expression for a(o)

In order to utilize the presented theorem in practice for
some given objective function f, we need to know its
associated optimization complexity a(o). That is,

we must be able to compute fQ |hA("’)| dw analytically.

Is this possible, at least for a Clabb of interesting func-
tions? Here we show that this is possible if the function
f is represented in some suitable form. Specifically,
here we prove that the integrals in a(o) can be com-
puted analytically when f is represented by Gaussian
RBFs.

Before proving this, we provide a brief description of
Gaussian RBF representation. It is known that, under
mild conditions, RBF functions are capable of univer-
sal approximation ( ). The lit-
erature on RBF is extensive (

: ). This representa-
tion has been used for interpolation and approximation
in various practical applications. Examples include but
are not limited to neural networks (

), object recognition (

), computer graphics ( ), and

medical imaging ( ).
(@—my)?
Proposition 9 Suppose h(xz) = Zle ape” 25t

2w 2

and let G(w) £ ele™ 3
the following holds,

and suppose € < 6. Then,

7 K K 2
()2 # e
——dw = ( ajage 2(262—€2)
(10)

_ (m—m)?

Observing that when f(x) = Zk ! age” 252
)2
then g(z;0) 2 Yr 1(\/(;ré,_s_fﬂ)dake 2(5?“?)7 the fol-
lowing is a straightforward Corollary of Proposition 9,
which allows us to compute a(o) for RBF represented
f-
A K _(m—=y)?
Corollary 10 Suppose f(x) = >, are 232
(e—=zy)?2

so that g(z;0) = Ylape 267+e5 . Let

Glw;o) 2 and suppose €(o) <
V02 + o2. Then, the following holds,

Zie (7t
el()e* (@)l

/ Gl V2rs° v
Q )

G(w;o 0)/26% + 202 — (o)
K K B (m]__mk)z
X E E ajae 2(262+202—€2(0)) |

4 Conclusion & Future Works

In this work, for the first time, we provided a theo-
retical analysis of the optimization by the continuation
method. Specifically, we developed an upper bound on
the value of the objective function that the continu-
ation method attains. This bound monotonically de-
pends on a characteristic of the objective function that
we called the optimization complexity. We showed how
the optimization complexity can be computed analyti-
cally when the objective is represented in some suitable
basis functions such as Gaussian RBFs.

Our analysis visited different areas such as scale
space, differential equations, and regularization theory.
The optimization complexity depends on the choice of
the stabilizer G. In this paper, we only use Gaussian
G. However, extending G to other choices G can be
investigated in the future.
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SUPPLEMENTARY APPENDIX

A Asymptotic Convexity

Informally, g(a,t) is called asymptotically strictly convex if it becomes strictly convex when ¢ — oo. The formal
definition is provided below.

Asymptotic Strict Convexity The function g¢g(x;t) is called asymptotically strict convex if VM >
0,3ty , Va1, Vaa , YA€ [0,1], VE > 5, : |l@1|| < MA|z2|| < M = g(Azi+(1-N)xa;t) < Ag(m1, £)+(1—-N)g(x2, t).

.2
Example Consider the objective function of form f(z) = —e 2% for some small € > 0. This function resembles the
£y norm, the latter being a central object in the literature of sparse representation. Note that f provides a much
better approximation for £g norm, compared to the widely used ¢; norm. However, f(x) is concave everywhere,
except at its tip, hence a difficult component in a minimization task.
,E2

Let the homotopy be defined as g(x;t) £ —e 2=+ . Observe that at g(z;t)i—o = f(x). The function g(z;t) is
asymptotically convex according to the formal definition. Qualitatively, the interval on which g(x;t) is convex can
grow without bound by increasing the value of ¢ (See Figure 2).

_____

44444444444444

z2
Figure 2: Left to Right: The function —e 2(c*+#) with increasing values of ¢ € {0, %, %, 1}. Convex regions are

colored by blue.

B Proofs

Lemma 1 (Worst Case Value of g(x(t);t)) Given a function f : X — R and its associated homotopy map g.
Given a point Ty that is the stationary point of g(x;t1) (w.r.t. x). Denote the curve of stationary points originated
from x1 at t1 by x(t), i.e. Vi € [0,t1]; Vg(x(t),t) = 0. Suppose this curve exists. Given continuous functions
a and b, such that Vt € [0,t1]Vx € X ; a(t)g(z;t) + b(t) < g(zx;t). Then, the following inequality holds for any
te [0, tl],

ta t t1
g(z(t);t) < (g(w(tl);tl) —/ et alm) dry(g) ds)e—ft a(r)dr

t

Proof
< glat):1) (11)
Vo)) a(t) + g(t);1) (12)
0+ g(@(t);1), (13)

where (12) uses derivative’s chain rule, and (13) applies the fact that Vg(a(t);t) = 0 (because by definition for
any t, x(t) is a stationary point for g(.,t)).

Recall the assumption a(t)g(x;t) + b(t) < ¢(z;t). This in particular (by setting = to x(t)) implies that
a(t)g(x(t);t) + b(t) < g(x(t);t). Plugging it into (13) implies that,

< o(@(0);1) > alt)gla(0):1) + (1) (14)
4 i

59(6) 2 alt)g' (1) + b(0), (15)



where gf(t) £ g(x(t);t) is introduced to reduce the mathematical clutter. Since a(t) and b(t) are assumed to be
continuous and gT(t) to be continuously differentiable, we can use the differential form of Gronwalls inequality,
it is implied that®,

gT(t) < (gT(tl) _/ ef drb( )ds)e_ S a(r)dr ) (25)
t
|
Lemma 2 Consider f : X — R with well-defined Fourier transform. Let G:Q— R be any decreasing function.
Suppose f(x1) = ho and ( fQ ‘fGSZ';; dw = «a for given constants hg and o. Then infy 5, Af(x1) = c1AG(0) —

coAAG(0), where (c1,c2) is the solution to the following system,

ClG( ) - C2AG( ) = ho o (26)

A [ G(w) dw + 2¢1¢2 [, ||w||2G( )dw + 3 [, |lw||*G(w) dw = (vV27)%a

Proof Our goal is to solve the following optimization problem,
}nf Af(xy) (27)
s.t. f(:l:l) = h() (28)
f(w)[?

— ——d 29
v 271) /Rd G(w) (29)

We can write this as a nested optimization, where we first compute inf w.r.t. f and parametrically in @1, and
then we take another inf of the result w.r.t. x;.

5 Gronwall’s inequality states that, for any t < ¢;, when Eg(t) > a(t)g(t) + b(t), for a and b being continuous functions, it
follows that g(t) < (g(tl) _ fttl e.fstl a(’l‘)d'r‘b(s) ds) e ft a('r)dr.

We first prove that %(g(s)efst1 a(r)dry > el<t alrdrp(s) as below,

i f:l a(r)dr _ f:l a(r)d’ri i f:l a(r)dr

= (g()e ) = e T9(s) +9(s) e (16)
. efstl a,(r)dri (s) + (S)efstl a(r)d'r(i /tl a(r)dr) (17)
N ds? 9 ds J,
= e L () g(s)elt I Ta(s) (18)
> O (a(s)g(s) + b(s) — g(s)a(s)) (19)
U OF (20)

where (16) uses product rule, (17) applies chain rule, (18) utilizes uses Leibniz’s rule, and (19) uses the assumption % g'(t) >

a(t)g' (t) + b(t).

Applying fundamental theorem of calculus to the derived inequality leads to,

d7( ( ) ftl a(r)dr) > efstl a('r)drb(s) (21)
d f 1 a(r)dr h Ji a(r)dr
= d— )ds > els b(s)ds (22)
t
t1
= g(tl)eftl a(r)dr _ g(t)e.[ttl a(r)dr Z / efstl a(r)drb(s) ds (23)
t
t1 .
= g(t) < (g(t1) _ / 6‘[;1 a('r)drb(s) d8)67 I a(r)dr7 (24)
t

where (22) is because integration preserves inequality, and (23) uses the fundamental theorem of calculus.



s.t. f(x1) = ho (31)

N Admm

We first focus on the inner inf, i.e. w.r.t. f. We can express this in the equivalent Fourier form,

inf(—=)" [ Pl fw)e" (33)
St. h%ﬂéjwwwﬁ—mw (34)
L a |f(w)|2 _
o /R Clw) “=° (35)
The Lagrangian becomes,
2 = () [ Pl fw)ee”™ do+ (=) [ @) du o (36)
V21’ Jra V21 Jra

L[ e
+/“Ll((\/ﬂ) /Rd é(w) d

70{)

L \a / 2y 7\ iwT | ( )
= — T4 d ho — 37
(m) » ((po = [w]*) f(w)e Clw )) w — proho — 1 (37)
1 d/ 2\ f iw T ( )f( w)
_ . Tw m1+ / d _ h _ 38
(\/%) g ((ko — llew]l*) f(w)e M e w) ) dw — poho — pal (38)
(39)
Taking functional derivative w.r.t. f(w),
5. L, N f(w)
—_— = —— — ||W 6“" 1 + = . 40
o = ) (el mze) (40)
The solution f* (w) is necessarily a stationary point of the Lagrangian. Zero crossing the derivative gives,
Px 1 A iwlx, iwl @z A
fH(w) = EG(w)(HC«JII2 — ho)e = (1 + eoflw]?) e’ *1 G (w). (41)
Consequently,
f(@) =caG(x —x1) — AG(x — x1) . (42)

Coefficients ¢; and ¢y can be found by plugging this solution into the two equality constraints. This is done by
evaluating f*(x) = ¢;G(x—x1) —c2AG(x—x1) at * = x; and putting the result into f* (:cl) = ho (hence eliminating

f*(z)), and plugging f*(w) = ¢1G(w)e™ @1 + co||w||2G(w)e™ @1 into ( )4 fpa M IF @) “’)l dw = « (hence eliminating
f*(w)) That is, solving the following system of equations in ¢; and cs.
{ClG(O) — CQAG(O) = ho

cGAwei“Tml col|lw zéwei""Tmlr‘) . (43)
i J, lnCter oG g,

When Vw ; é(w) # 0, the integrand of the second equation further simplifies,




le1G(w)e™ @1 4 oo w]|2G(w)ei«” =1 |2

- (44)
) G(Aw)
_ 1aGw) + alwlfGw)? )
G(w) B B
_ (ch(w) —+ CQ||w||2G(w2) (ch(w) + 02||w||2G(w)) (46)
G(w)
= (o1 +erlwl?) (@0w) + v Gw) (a7)
= dG(w) +2c6|w]|’G(w) + &llw|'G(w) . (48)
Hence, we actually need to solve the following system,

C1G(O)7— CQAG(O) = ho . . (49)

& fa Gw) dw + 2613 fya |W]PC(w) dw + 3 [y [w]*Glw) dw = (v27)%a

We now solve the system of equations in variables (¢1, ¢2) and plug in its solution into the objective value A f*(x1).
Note that we already derived f*(z) = ¢1G(z — x1) — coAG(x — 1), hence inf; Af(z1) £ Af*(z1) = c1AG(0) —
c2[A(AG)](0) (where the inf; is obviously subject to the provided constraints).

Remember from (30) that we still have a inf;, to work out on top of the solution for inf;. However, since
in inf; Af(z1) = c1AG(0) — c2[A(AG)](0), the RHS does not depend on @1, it follows that infg, inf; Af(xq) =
c1AG(0) — c2[A(AG)](0) (obviously subject to the provided constraints).

(Il

A g —lew)?

Corollary 3 Consider f : X — R with well-defined Fourier transform. Let G’(w) £ e%e =z . Suppose f(x1) = hyg
and [, % dw = (V27)% for given constants hg and o. Then inff 4, Af(x1) = —% Voohy,

Jle 2 2w)?

Proof Let G(z) £ ¢ 27 (and hence G(w) £ ele= 2 ). Then the following identities hold,

GO) = 1 (50)
AG(0) = —;iz (51)
AAG(0) = d(dejQ) (52)

| Glwydw = (Var)! (53)

[ wba = A2 54)

d(d + 2)(v2m)*

4

| lolGi) o (5)

€

Since G(w) > 0 and is decreasing, Lemma 2 can be applied, which states that infs g, Af(x1) = ¢;AG(0) —
2 AAG(0) = —de% — %, and (cy, ¢2) is the solution of,

=~ = =~ . 56
A3 Jpa Gw) dw + 2¢1¢2 [pa |w]2G (W) dw + ¢ [pa [|w]*G(w) dw = (V27) % (56)

Using the identities provided earlier, this system can be easily solved. Due to its quadratic nature, it leads to a
pair of potential solutions for (¢1,c2), which once plugged into inf; 5, Af(x1) = —de% - d(dtif

)2 hecomes,
) —hy + 2v2/a — h2  —hg — 2v/2+/a — h?
inf Af(a) € {———3 , —— °}. (57)

fre1

{ch(O) — &, AG(0) = hy




Out of this pair, the one which leads to smaller inf 5, Af(x1) obviously is,

inf Af(zy) = 0 z‘gv o hg (58)

fre1

(]
Corollary 4 Consider f: X — R with well-defined Fourier transform. Define g(x;0) 2 [h* ko] (). Let G(w;o) 2
e(o)e " el . Suppose g(x1;0) = go(o) and fQ M dw = (v/27)%a(o) for given values go(c) and a(c). Then

o)
infy( o)z Ag(T150) = —

90(0)+2v2y/a(0) =B (0)

Proof The proof is elementary use of the previous Corollary. The previous Corollary applies to any functions f(x)
that has well-defined Fourier transform and any smoothness kernel G (w). This includes any parameterized family of
functions and smoothness kernels, as long as the parameter (particularly o) and the spatial variable x are independent
of each other. In particular, one can choose the function as g(x; o). That is because as long as f(x) has well-defined

Fourier transform, so does g(x; o). In addition ¢ and « are independent. Furthermore, with some abuse of notation,
_E@)lw)?

one can define G as G(w; o) £ ¢?(o)e” 2 again because o is independent of w.
]
Proposition 5 Suppose the function e(c) > 0 satisfies 0 < e(0)é(0) < o. Then &(o) < 0.
Proof Recall the definition of a(o),
|g w; o)
a(o 59
©) = (" [ % (59)
In order to prove &(o) < 0, it is sufficient to show that %% < 0. The latter is proved in the following,
2 1 _lewl?e? 5
d [§(w;0)2 d |f(w)Zz=em |
Lo & £ (60)
do G(w’ o do G(w, O')
1 d ¢ 2 d 7“ ”2 2 1
= (=— w)|F—e ¥ ——— 61
(o) (@) el (61)
Ly oy 2-L pllwl?(—o?+ 24
= (— o — 62
(5o (@) e o (62)
= GV e P (-0 + e(o)ito)) - 1) (03
27 (o) (o)
< 0 (64)
(|

Proposition 6 The only form for e(o) > 0 that satisfies 0 < e(0)é(0) < 0 is (o) = By/o2 +( for any 0 < <1
and ¢ > —o?.

Proof The condition 0 < €(0)é(0) < o can be equivalently expressed as €(o)é(o) = 320 for any 3 € [0, 1]. This now
becomes a separable differential equation,

d
€€= o (65)
= ede=podo (66)
= /edezc—I—/ﬁdiJ (67)
= %62 =c+ 16202 (68)

e-:l:ﬂ,/@JrUQ (69)



Obviously, the solution exists only when ZS > —o?. Since by definition we have (o) > 0, only the positive solution
is acceptable, so that € = 3 % + 02, Also to maintain €(o) > 0, 8 = 0 and % = —0? must be excluded. That
changes the conditions to 8 € (0,1] and /23—2 > —0¢2. Finally, since c in % can be any real number, we can define
C& %, which is any real number that satisfies ¢ > —o?2.

O

Theorem 7 Let f : X — R be the objective function. Given the initial value g(w(al); 01), Then for any 0 < o < oy,
and any constants 0 <y <1,0< 3 <1, ( > —a?, the following holds,

. o*+ G
g(z(0);0) < (01 .

where p £ ﬁ(j‘% —1) and c £ ﬁ

Proof We start by combining (8) with the fact ¢(x;0) = 0 Ag(x;0) (i.e. the heat equation) we obtain that for

o2 +C)p)

)P g(x(01);01) + ev/a(o) (17(0%+C (70)

any € € X and 0 € Ry, g(x;0) > a(o)g(x;0) + b(o), where a(o) = (\2/‘% - 1) =5y and b(o) = :?07 ;\2/0%

As long as a(o) and b(c) are continuous functions, we can apply Lemma 1 to obtain g(x(c);0) < (g(:c(m); o1) —

f:’l ej‘;’l a(r) drb(s) dS)ei JZva(r) dr.
Recalling the form of €(o) in (7), [a(r)dr can be analytically computed,

/a(a)do = (\j%—l) /%da (71)

- i QIW /52 250" (2

_ W(;%—l)/ﬂicda (73)

= 2;2(;%1)1%(0%0. (74)

Therefore,

sal0)io) < (alatorion) = [ e o0y as)e St e (75)
= (sletoion) - [ OB T g as) G (76)
N T

< (g(w(al);01)+(ses[ggl] Va(s) :1 B:Qgii%) Z;ig)” (78)

- (stetmn) + 22D [Tt Gy (1)

= (stotosm) + 52T (G P ) G F Y s

_ (212)252(&%_1)9(“;(”1) o) + 2\573&\(;1)—772( (Z;Ig)uwj%—n) (81)
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where (78) applies Holder’s inequality || f g|li < ||f]l1 llglloo, and || .]|c denotes the sup norm. Furthermore, (79)
uses the fact that a(c) is non-increasing, hence sup¢(, ,,) vV (s) = a(s).
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0<o <oy and ¢ > —o?. Then c(l—(gig) ) >0
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Proposition 8 Let ¢ =

Proof First we show that p and ¢ always have the same sign, i.e. pc > 0. To see that, just write the definitions,

e= Ly 2v2y ) V2 _ V2
T T e T T

Now for brevity define n £ z+< and observe that 7 < 1. The goal is to show ¢(1 — n?) > 0. Since p and ¢ have

the same sign, we investigate two possible scenarios, when p and ¢ are bot negative and when they are both positive.
First suppose p > 0 and ¢ > 0. Since 7 < 1, we have n? < 1 and so 1 —n? > 0. Hence ¢(1 —nP) > 0. Now suppose
p <0 and ¢ <0. Since n < 1, we have n” > 1 and so 1 — n? < 0. Hence ¢(1 —n?) > 0. d

(83)
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Proposition 9 Suppose h(x) = Z,[f:l are” 2% and let G(w) £ ele=—7 —, and suppose € < &. Then, the
following holds,
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j=1k=1

Proof We provide the proof for one dimensional functions. The extension to multi dimensional case is straight
forward.
Derive the Fourier transform of h(x),
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Hence,
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Therefore,
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where (90) uses the identity [, e~ T Q= Y2773 | The latter is true due to the following,
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Hence, the definite integral becomes,
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When computing integral limits above, we used the fact that a > 0 and that erf(co) = 1 and erf(—o0) = —1.



