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Abstract. We present a novel algorithm for unsupervised segmentation
of natural images that harnesses the principle of minimum description
length (MDL). Our method is based on observations that a homoge-
neously textured region of a natural image can be well modeled by a
Gaussian distribution and the region boundary can be effectively coded
by an adaptive chain code. The optimal segmentation of an image is the
one that gives the shortest coding length for encoding all textures and
boundaries in the image, and is obtained via an agglomerative clustering
process applied to a hierarchy of decreasing window sizes. The optimal
segmentation also provides an accurate estimate of the overall coding
length and hence the true entropy of the image. Our algorithm achieves
state-of-the-art results on the Berkeley Segmentation Dataset compared
to other popular methods.

1 Introduction

The task of partitioning a natural image into regions with homogeneous tex-
ture, commonly referred to as image segmentation, is often a crucial first step
for high-level image understanding, significantly reducing the complexity of con-
tent analysis of images. Image segmentation and its higher-level applications
are largely designed to emulate functionalities of human visual perception (e.g.,
object recognition and scene understanding), and hence dominant criteria for
measuring segmentation performance are based on qualitative and quantitative
comparisons with human segmentation results. In the literature, investigators
have explored several important models and principles that can lead to good
image segmentation:

1. Different texture regions of a natural image admit a mixture model [1]. For
example, Normalized Cuts (NC) [2] and F&H [3] formulate the segmentation
as a graph-cut problem, while Mean Shift (MS) [4] seeks a partition of a color
image based on different modes within the estimated empirical distribution.
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2. Region contours/edges convey important information about the saliency of
the objects in the image and their shapes [5–7]. Several recent methods have
been proposed to combine the cues of homogeneous color and texture with
the cue of contours in the segmentation process [8, 9].

3. The properties of local features (including texture and edges) usually do not
share the same level of homogeneity at the same spatial scale. Thus, salient
image regions can only be extracted from a hierarchy of image features under
multiple resolutions [10–12].

Despite much work in this area, good image segmentation remains elusive to
obtain for practitioners, mainly for the following two reasons: 1. There is little
consensus on what criteria should be used to evaluate the quality of image seg-
mentations. It is difficult to strike a good balance between objective measures
that depend solely on the intrinsic statistics of imagery data and subjective
measures that try to empirically model human perception. 2. In the search for
objective measures, there has been a lack of consensus on good models for a
unified representation of image segments including both their textures and con-
tours.

Recently an objective metric based on the notion of lossy minimum descrip-
tion length (MDL) has been proposed for evaluating clustering of general mixed
data [13]. The basic idea is that, given a potentially mixed data set, the “opti-
mal segmentation” is the one that, over all possible segmentations, minimizes the
coding length of the data, subject to a given quantization error. For data drawn
from a mixture of Gaussians, the optimal segmentation can often be found effi-
ciently using an agglomerative clustering approach. The MDL principle and the
new clustering method have later been applied to the segmentation of natural
images, known as compression-based texture merging (CTM) [12]. Preliminary
success of this approach leads to the following important question: To what
extent is segmentation obtained by image compression consistent with human
perception?

However, although the CTM method utilizes the idea of data compression, it
does not exactly seek to compress the image per se. First, it “compresses” feature
vectors or windows extracted around all pixels by grouping them into clusters
as a mixture of Gaussian models. As a result, the final coding length is highly
redundant due to severe overlap between windows of adjacent pixels, and has no
direct relation to the true entropy of the image. Second, the segmentation result
encodes the membership of pixels using a Huffman code that does not taking into
account of spatial adjacency of pixels nor smoothness of boundaries. Thus, CTM
does not give a good estimate of the true entropy of the image and its success
cannot be used to justify a strong connection between image segmentation and
image compression.

Contributions. In this paper, we contend that, much better segmentation results
can be obtained if we follow more closely the principle of image compression, by
correctly counting only the necessary bits needed to encode a natural image for
both the texture and boundaries. The proposed algorithm precisely estimates



the coding length needed to encode the texture of each region based on the rate
distortion of its probabilistic distribution and the number of non-overlapping
windows inside. In order to adapt to the different scales and shapes of texture
regions in the image, a hierarchy of multiple window sizes is incorporated in the
segmentation process. The algorithm further encodes the boundary information
of each homogeneous texture region by carefully counting the number of bits
needed to encode the boundary with an adaptive chain code.

Based on the MDL principle, the optimal segmentation of an image is defined
as the one that minimizes its total coding length, in this case a close approxi-
mation to the true entropy of the image. With any fixed quantization, the final
coding length gives a purely objective measure for how good the segmentation
is in terms of the level of image compression. We conduct extensive experiments
to compare the results with human segmentation, using the Berkeley Segmenta-
tion Dataset (BSD) [14]. Although our method is conceptually simple and the
measure used is purely objective, the segmentation results match extremely well
with those by human, exceeding or competing with the best segmentation al-
gorithms. The source code of our algorithm, as well as a detailed report of the
segmentation results are available online at
http://perception.csl.illinois.edu/coding/image_segmentation/.

2 Adaptive Texture and Boundary Encoding

In this section, we present a unified information-theoretic framework to encode
both the texture and boundary information of a natural image. The implemen-
tation of the algorithm for adaptive image segmentation and the experiments to
validate its performance will be presented in Sections 3 and 4.

2.1 Constructing Texture Vectors

We discuss how to construct texture vectors that represent homogeneous tex-
tures in image segments. Given an image in RGB format, we convert it to the
L∗a∗b∗ color space. It has been noted in the literature that such a color metric
better approximates the perceptually uniform color space. In order to capture
the variation of a local texton, one can directly apply a w × w cut-off window
around a pixel across the three color channels, and stack the color values inside
the window in a vector form as in [12].

Figure 1 (left) illustrates our process for constructing features. Let the w-
neighborhoodWw(p) be the set of all pixels in a w×w window centered at pixel
p. We construct a set of features X by taking the w-neighborhood around each
pixel in I, and then stacking each window as a column vector:

X
.= {xp ∈ R3w2

: xp =Ww(p)S for p ∈ I}. (1)

For ease of computation, we reduce the dimensionality of these features by pro-
jecting the set of all features X onto their first D principal components. We



denote the set of features with reduced dimensionality as X̂. We have observed
that for many natural images, the first eight principal components of X contain
over 99% of the energy. In this paper, we choose to assign D = 8.

Over the years, there have been many proposed methods to model the repre-
sentation of image textures in natural images. One model that has been shown
to be successful in encoding textures both empirically and theoretically is the
Gaussian Mesh Markov Model (MMM) [15]. Particularly in texture synthesis,
the Gaussian MMM provides consistent estimates of the joint distribution of the
pixels in a window, which then can be used to fill in missing texture patches via
a simple nonparametric scheme [16].

However, to determine the optimal compression rate for samples from a dis-
tribution, one must know the rate-distortion function of that distribution [12].
Unfortunately, the rate-distortion function for MMMs is, to our knowledge, not
known in closed form, and difficult to estimate empirically. Over all distribu-
tions with the same variance, it is known that the Gaussian distribution will
have the highest rate-distortion, and is in this sense, the worst case distribution
for compression. Thus by using the rate-distortion for a Gaussian distribution,
we obtain an upper bound for the true coding length of the MMM.
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Fig. 1. Left: We construct features by stacking w × w windows around all pixels of
a L∗a∗b∗ image I into a data matrix X and then using PCA. Right: (color) KL
divergence of RGB and L∗a∗b∗ windows from a true Gaussian distribution.

In the following, we provide an empirical experiment to determine in which
color space (RGB or L∗a∗b∗) feature windows from a region with homogeneous
texture are better fit by a Gaussian distribution. We use as the ground truth
training images from the BSD that were manually segmented by humans. Given
the feature vectors within each region, we model the distribution both paramet-
rically and non-parametrically. The parametric model Q is a multivariate normal
distribution whose parameters are estimated from the samples using maximum
likelihood. The non-parametric model P is obtained by kernel density estima-
tion. If the true distribution is indeed normal, then P and Q should be very
similar. Thus the KL divergence DKL(P ‖ Q) can be used to measure the non-
Gaussianity of the distribution. The overall non-Gaussianity of each image is
simply the average of the non-Gaussianity over all regions. We repeat the above
procedure for the entire manually segmented image dataset and estimate the
distribution of KL divergence by kernel density estimation for RGB and L∗a∗b∗



spaces. As Figure 1 (right) shows, between the two color metrics, L∗a∗b∗ has
lower mean and standard deviation and hence is better modeled by a Gaussian
distribution.

2.2 Adaptive Texture Encoding

We now describe encoding the texture vectors based on the lossy MDL principle.
First, we consider a single region R with N pixels. Based on [12], for a fixed
quantization error ε, the expected number of bits needed to code the set of N
feature windows X̂ up to distortion ε2 is given by:

Lε(X̂)
.
= D

2
log2 det(I + D

ε2Σ)| {z }
codebook

+ N
2

log2 det(I + D
ε2Σ)| {z }

data

+ D
2

log2(1 + ‖µ‖2
ε2 )| {z }

mean

, (2)

where µ and Σ are the mean and covariance of the feature windows in X̂.
Equation (2) is the sum of three coding-lengths: the D Gaussian principal vectors
as the codebook, the N windows w.r.t. that codebook, and the mean of the
Gaussian distribution.

The coding length function (2) is uniquely determined by the mean and
covariance (µ, Σ). To estimate them empirically, we need to exclude the windows
that cross the boundary of R (as shown in Figure 2). Such windows contain
textures from the adjacent regions, which cannot be well modeled by a single
Gaussian as the interior windows. Hence, the empirical mean µ̂w and covariance
Σ̂w of R are only estimated from the interior of R:

Iw(R) .= {p ∈ R : q ∈ R,∀q ∈ Ww(p)}. (3)

�(µ̂ w, Σ̂ w)

w×w

RI

Fig. 2. Only windows from the interior of a region are used to compute µ̂w and Σ̂w.

Furthermore, in (2), encoding all texture vectors in X̂ to represent region R
is highly redundant because the N windows overlap with each other. Thus, to
obtain an efficient code of R that closely approximates its true entropy, we only
need to code the nonoverlapping windows that can tile R as a grid. Ideally, if R
is a rectangular region of size mw × nw, where m and n are positive integers,
then clearly we can tile R with exactly mn = N

w2 windows. So for coding the
region R, (2) becomes:

Lw,ε(R) .= (D
2 + N

2w2 ) log2 det(I + D
ε2 Σ̂w) + D

2 log2(1 + ‖µ̂w‖
2

ε2 ). (4)
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Fig. 3. Left: The Freeman chain code of an edge orientation along 8 possible direc-
tions. Middle: Representation of the boundary of a region in an image w.r.t. the
Freeman chain code. Right: Representation w.r.t the difference chain code.

Real regions in natural images normally do not have such nice rectangular
shapes. However, (4) remains a good approximation to the actual coding length
of a region R with relatively smooth boundaries.4

2.3 Adaptive Boundary Encoding

To code windows from multiple regions in an image, one must know to which
region each window belongs, so that each window can be decoded w.r.t. the
correct codebook. For generic samples from multiple classes, one can estimate
the distribution of each class label and then code the membership of the samples
using a scheme that is asymptotically optimal for that class distribution (i.e., the
Huffman code used in [12]). Such coding schemes are highly inefficient for natural
image segmentation, as they do not leverage the spatial correlation of pixels in
the same region. In fact, for our application, pixels from the same region form a
connected component. Thus, a more efficient way of coding group membership
for regions in images is to code the boundary of the region containing the pixels.

A well-known scheme for representing boundaries of image regions is the
Freeman chain code. In this coding scheme, the orientation of an edge is quan-
tized along 8 discrete directions, shown in Figure 3 (left). Let {ot}Tt=1 denote
the orientations of the T boundary edges of R. Since each chain code can be
encoded using three bits, the coding length of the boundary of R is

B(R) = 3
7∑

i=0

#(ot = i). (5)

The coding length B(R) can be further improved by using an adaptive Huff-
man code that leverages the prior distribution of the chain codes. Though the
distribution of chain codes is essentially uniform in most images, for regions
4 We briefly explain why (4) is a good approximation for the entropy of a large region

with smooth boundary. In this case, the number of boundary-crossing windows is
much smaller than the number of interior windows. The average coding length of
boundary-crossing windows is then roughly proportional to the number pixels inside
the region if the Gaussian distribution is sufficiently isotropic.



with smooth boundaries, we expect that the orientations of consecutive edges
are similar, and so consecutive chain codes will not differ by much. Given an
initial orientation (expressed in chain code) ot, the difference chain code of the
following orientation ot+1 is ∆ot

.= mod (ot − ot+1, 8). Figure 3 compares the
original Freeman chain code with the difference chain code for representing the
boundary of a region. Notice for this region, the difference encoding uses only
half of the possible codes, with most being zeroes, while the Freeman encoding
uses all eight chain codes. Given the prior distribution P [∆o] of difference chain
codes, B(R) can be encoded more efficiently using a lossless Huffman coding
scheme:

B(R) = −
7∑

i=0

#(∆ot = i) log2(P [∆o = i]). (6)

For natural images, we estimate P [∆o] using natural images from the BSD that
were manually segmented by humans. We compare our distribution with one es-
timated by Liu and Zalik [17], who used 1000 images of curves, contour patterns
and shapes obtained from the web. As seen in Table 1, over 58% of the difference
chain codes obtained from manual segmentation of the BSD are zeroes, corre-
sponding to no change in angle along the boundary. Thus, regions of natural
images tend to have smoother boundaries when segmented by humans.

Table 1. The prior probability of the difference chain codes estimated from the BSD
and by Liu and Zalik [17].

Difference Code 0 1 2 3 4 5 6 7

Angle change 0◦ 45◦ 90◦ 135◦ 180◦ −135◦ −90◦ −45◦

Probability (BSD) 0.585 0.190 0.020 0.000 0.002 0.003 0.031 0.169

Probability (Liu-Zalik) 0.453 0.244 0.022 0.006 0.003 0.006 0.022 0.244

3 Image Segmentation Algorithm

In this section, we show how to use the coding length functions we developed in
Section 2 to construct a better compression-based image segmentation algorithm.
We describe the basic approach below, and then propose a hierarchical scheme
to deal with small and/or thin regions.

3.1 Segmentation by Minimizing Coding Length

Suppose an image I can be segmented into non-overlapping regions
R = {R1, . . . , Rk}, ∪k

i=1Ri = I. The total coding length of the image I is

LS
w,ε(R) .=

k∑
i=1

Lw,ε(Ri) + 1
2B(Ri). (7)



Here, the boundary term is scaled by a half because we only need to represent
the boundary between any two regions once. The optimal segmentation of I is
the one that minimizes (7). Finding this optimal segmentation is, in general, a
combinatorial task, but we can often do so using an agglomerative process.

To initialize the optimization process, similar to [12], we utilize an overseg-
mentation step to initialize the optimization by superpixels.5 A superpixel is a
small region in the image that does not contain strong edges in its interior. Su-
perpixels provide a coarser quantization of an image than the underlying pixels,
while respecting strong edges between the adjacent homogeneous regions. There
are several methods that can be used to obtain a superpixel initialization, in-
cluding those of Mori et al. [18], Felzenszwalb and Huttenlocher [3], and Ren et
al. [11]. We have compared the three methods in the experiment and found that
[18] works well for our purposes.

Given an oversegmentation of the image, at each iteration, we find the pair
of regions Ri and Rj that will maximally decrease (7) if merged:

(R∗i , R
∗
j ) = argmax

Ri,Rj∈R
∆Lw,ε(Ri, Rj), where

∆Lw,ε(Ri, Rj)
.
= LS

w,ε(R)− LS
w,ε((R\{Ri, Rj}) ∪ {Ri ∪Rj})

= Lw,ε(Ri) + Lw,ε(Rj)− Lw,ε(Ri ∪Rj)

+ 1
2
(B(Ri) +B(Rj)−B(Ri ∪Rj)). (8)

∆Lw,ε(Ri, Rj) essentially captures the difference in the lossy coding lengths of
the texture regions Ri and Rj and their boundaries before and after the merging.
If ∆L > 0, we merge R∗i and R∗j into one region, and repeat this process,
continuing until the coding length LS

w,ε(R) can not be further reduced.
To model the spatial locality of textures, we further construct a region ad-

jacency graph (RAG): G = (V, E). Each vertex vi ∈ V corresponds to region
Ri ∈ R, and the edge eij ∈ E is present if and only if regions Ri and Rj are
adjacent in the image. To perform image segmentation, we simply apply a con-
strained version of the above agglomerative procedure – only merging regions
that are adjacent in the image.

3.2 A Hierarchical Implementation

The above region-merging scheme is based on the assumption of a fixed texture
window size, and clearly cannot effectively deal with regions or superpixels that
are very small and/or thin. In such cases, the majority or all texture windows will
intersect with the boundary of the regions. We say that a region R is degenerate
w.r.t. window size w if Iw(R) = ∅. For such a region, the w-neighborhoods of all
pixels will contain pixels from other regions, and so µ̂ and Σ̂ cannot be reliably
estimated. These regions are degenerate precisely because of the window size;
for any w-degenerate region R, there is 1 ≤ w′ < w such that Iw′(R) 6= ∅.
5 One could assume each pixel (and its windowed texture vector) belongs to a group

of its own. However, in this case, texture windows of any size greater than one will
(initially) intersect other adjacent regions (i.e., other neighboring pixels).



We say that R is marginally nondegenerate w.r.t. window size w if Iw(R) 6= ∅
and Iw+2(R) = ∅. To deal with these degenerate regions, we propose to use a
hierarchy of window sizes. Starting from the largest window size, we recursively
apply the above scheme with ever smaller window sizes till all degenerate regions
have been merged with their adjacent ones. In this paper, we start from 7×7 and
reduce to 5× 5, 3× 3, and 1× 1. For segmentation at smaller windows sizes, our
scheme only allows adjacent regions to be merged if at least one of the regions
is marginally nondegenerate.

Notice that at a fixed window size, the region-merging process is similar to the
CTM approach proposed in [12]. Nevertheless, the new coding length function
and hierarchical implementation give much more accurate approximation to the
true image entropy and hence lead to much better segmentation results (see
Section 4). We refer to our overall algorithm as Texture and Boundary Encoding-
based Segmentation (TBES).6 On a Quad-Core Intel Xeon 2.5GHz machine, the
superpixel initialization using the method of [18] takes roughly five minutes and
our MATLAB implementation of TBES takes about ten minutes per image.

4 Experiments

In this section, we conduct extensive evaluation to validate the performance of
our method. We first describe our experimental setup, and then show both qual-
itative and quantitative results on images from the publicly available Berkeley
Segmentation Dataset (BSD).7

To obtain quantitative evaluation of the performance of our method we use
three metrics for comparing pairs of image segmentations: the probabilistic Rand
index (PRI) [20], the variation of information (VOI) [21], and the precision and
recall of boundary pixels [6].8 In cases where we have multiple ground-truth
segmentations, to compute a given metric for a test segmentation, we simply
average the results of the metric between the test segmentation and each ground-
truth segmentation. With multiple ground-truth segmentations for an image we
can also estimate the human performance w.r.t. these metrics by treating each
ground-truth segmentation as a test segmentation and computing the metrics
w.r.t. the other ground-truth segmentations.

To apply TBES to a natural image, we must choose the quantization level ε.
As Figure 4 shows, a given image can have multiple plausible segmentations. We
seek to find ε∗ that tends to best match with human segmentation. To determine
ε∗ we run TBES on each of the 100 test images in BSD for sixteen choices of ε
ranging from ε = 25 to ε = 400. We then choose ε that obtains the best average
performance w.r.t. the various metrics. In our experiments we found that the

6 Detailed pseudocode for our TBES algorithm is available in our technical report [19].
7 Please refer to our website for segmentation results on all images of the BSD, as well

as additional experiments on the MSRC Object Recognition Database.
8 We use the harmonic mean of precision and recall, known as the global F-measure,

as a useful summary score for boundary precision and recall.



choice of ε∗ = 150 results in the best balance between the PRI and VOI metrics,
so for all our subsequent experiments, we use this choice of ε.

(a) Originals (b) ε = 50 (c) ε = 150 (d) ε = 400

Fig. 4. (color) Results of TBES on two images for varying choices of ε.

The Berkeley Segmentation Dataset consists of 300 natural images, each of
which has been hand segmented by multiple human subjects. Figure 6 illustrates
some representative segmentation results. We compare the performance of our
method to five publicly available image segmentation methods, which we refer
to as “CTM” [12], “MS” [4], “NC” [2], “UCM” [6], and “F&H” [3], respectively.
Table 2 and Figure 5 summarize the performance of our method based on the
various metrics for the BSD: the indices PRI and VOI in Table 2 are used to
evaluate goodness of the regions; and the precision-recall curve and F-measure
in Figure 5 evaluate the segmentation boundaries.

Table 2. Comparison of PRI and VOI for various algorithms on the BSD.

Index / Method Human TBES (ε = 150) CTM MS NC UCM F&H

PRI (Higher is better) 0.87 0.80 0.76 0.78 0.75 0.77 0.77

VOI (Lower is better) 1.16 1.76 2.02 1.83 2.18 2.11 2.15

Notice that in Table 2, for both indices, our method achieves the best per-
formance compared to all popular segmentation methods. It is also surprising
that it does so with a fixed ε whereas CTM needs to rely on a heuristic adaptive
scheme. For our segmentation results, if we could choose the best ε adaptively for
each image to optimize the PRI index, the average PRI over the entire database
would become 0.849; similarly for the VOI index, using the best ε for each image
brings this index down to 1.466, both strikingly close to that of human segmen-
tation. This suggests there is still plenty of room to improve our method by
designing better schemes for choosing ε adaptively.

5 Conclusion

We have proposed a novel method for natural image segmentation. The algo-
rithm uses a principled information-theoretic approach to combine cues of image
texture and boundaries. In particular, the texture and boundary information of



Fig. 5. (color) Precision vs. Recall of boundaries on the BSD. The green lines are level
sets of the F-measure, ranging from 0.1 (lower left) to 0.9 (upper right). Our method
(TBES) is closest to human performance (brown dot), achieving an F-measure of 0.645.

each texture region is encoded using a Gaussian distribution and adaptive chain
code, respectively. The partitioning of the image is sought to achieve the maxi-
mum lossy compression using a hierarchy of window sizes. Our experiments have
validated that this purely objective and simple criterion achieves state-of-the-art
segmentation results on a publicly available image database, both qualitatively
and quantitatively.
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