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Abstract. The continuation method is a popular heuristic in computer
vision for nonconvex optimization. The idea is to start from a simplified
problem and gradually deform it to the actual problem while tracking
the solution. There are many choices for how to map the nonconvex ob-
jective to some convex task. One popular principle for such construction
is Gaussian smoothing of the objective function. This involves an inte-
gration which may be expensive to compute numerically. We argue that
often simple tricks at the problem formulation plus some mild approxi-
mations can make the resulted task amenable to closed form integral.
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1 Introduction

Nonconvex optimization tasks are ubiquitous in computer vision [25,32,21,13,23].
However, solving such problems (to global optimality) is generally intractable.
Hence, often the nonconvex problem is either relaxed to a convex task [28,15],
or heuristic optimization methods are utilized [7,5,29,8,24]. Each of these two
methods has its own pros and cons. The global optimum of the convex relaxed
task can be found efficiently. However, some aspects of the original problem
may be lost because of the relaxation, which sometimes could be crucial. On the
other hand, heuristic methods are not guaranteed to find the global optimum. In
return, they directly target solving the nonconvex task. Hence, they sometimes
can offer good local minima if not the global one.

A long standing deterministic heuristic for handling nonconvex tasks in com-
puter vision is Blake and Zisserman’s Graduated Non-Convexity (GNC) [6]. The
idea, introduced about three decades ago, is to start from a convex problem.
The latter is then progressively deformed to the actual objective while tracking
the solution along the way. Around the same time, Terzopoulos used similar
ideas for surface interpolation problems [30]. Outside of computer vision field,
GNC technique is known under a broader class of optimization by homotopy
continuation method [33].

The idea of optimization by continuation has been utilized in several interest-
ing works. For example, Brox’s thesis on image segmentation relies on this tech-
nique for optimization [7]. Black and Rangarajan used continuation for analyzing
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spatial discontinuities and applied it to several problems in early vision [5]. In
fact, coarse-to-fine image representation which is widely used in computer vision
is related to the continuation method [24]. Note that state-of-the-art solutions
for optical flow [29,8] and shape estimation [1] rely on multiscale representation
to avoid poor local minima.

There is also a growing interest in using similar optimization methods within
machine learning community. Some example applications include semi-supervised
kernel machines [27], multiple instance learning [14,18], semi-supervised struc-
tured output [11], and language modeling [2]. It has also been suggested that
recent training algorithms for deep architectures [17,12], which have made a
breakthrough, in fact approximate continuation methods [3].

There is an infinite number of ways to progressively deform the nonconvex
objective to some convex task. One possible principle is by Gaussian smoothing
of the objective function [26,24]. In fact, we have recently shown that Gaus-
sian smoothing has optimality for homotopy construction in a certain sense [22].
The Gaussian smoothing method convolves the nonconvex objective with an
isotropic Gaussian kernel. This results in a collection of functions ranging from a
highly smoothed to the actual nonconvex function, depending on the bandwidth
parameter of the Gaussian. The continuation method processes this collection
successive, starting the smoothed function and ending at the actual nonconvex
function. Since going from high to low bandwidth reveals more details of the ob-
jective function, optimization by Gaussian homotopy continuation is also called
coarse-to-fine optimization.

From practical viewpoint, the key challenge for using Gaussian homotopy
is computing the convolution integral. In fact, using this approach makes sense
only if this integral can be computed analytically1. This may seem disappointing
at first for several reasons. First, the integrands that lead to a closed form inte-
gration are often rare and must have a very simple and nice form. In addition,
some applications involve objective functions defined over discrete variables, for
which Gaussian convolution is not well-defined.

Despite these challenges, we argue that sometimes simple tricks at the prob-
lem formulation and some mild approximations can make the resulted task
amenable to closed form integral. To be concrete, we demonstrate this within
two example tasks2. The first one focuses on handling discrete valued variables in
a combinatorial setting. The example application is establishing correspondence
between a pair of point clouds. The second example shows the use indicator func-
tions as well as robust loss functions within an image denoising setup. For both
applications, we show that the objective becomes convex after enough smooth-

1 The dimension of the integration domain is the number optimization variables. The
numerical computation of this integral can be as expensive as exhaustive search of
the domain for finding the global optimum.

2 Both applications are formulated in their simplest form to allow focusing on the
homotopy construction task. We do not aim at beating state of the art in such a
simple setup, but rather produce comparable results against common alternatives.
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ing. In addition, we demonstrate that the minimizer of the convexified (i.e. highly
smoothed) problem can be expressed in closed form.

Although the paper investigates two example applications, the underlying
ideas may be generalized to some other tasks. Specifically, the energy function
in both applications consist of polynomials and Gaussian functions. Both of
these forms are amenable to closed form Gaussian convolution. Hence, Gaussian
smoothing can be analytically computed for any energy function that can be
constructed from these components. Note that these two components are very
rich. For example, in the alignment example we will show that discrete variables
can be replaced by continuous through simple polynomial penalties. Further-
more, in the denoising example, we will show that indicator functions and some
robust loss functions can be expressed by a Gaussian form.

Throughout this paper, we use x for scalars, x for vectors, X for matrices,
and X for sets. Here ‖x‖ means ‖x‖2 and ∇ means ∇x, and , means equality
by definition. The convolution operator is denoted by ?. The isotropic Gaussian
kernel with standard deviation σ is shown by kσ,

kσ(x) ,
1

(
√

2πσ)n
e−
‖x‖2

2σ2 .

2 Discrete Valued Variables

In this section we show how simple tricks at the problem formulation level can
handle discrete valued variables. We use 3D point cloud alignment as the example
task.

2.1 Formulation

Given two sets of points P = {pi}mi=1 and Q = {qj}nj=1, where each point is in

Rd and d = 3 for 3D point clouds. Consider the affine transformation Ap + b,
where A is d × d and b is d × 1. We define the optimal affine alignment as the
following,

(A∗, b∗, c∗) = arg min
A,b,c

m∑
i=1

n∑
j=1

(ci,j‖Api + b− qj‖)2 (1)

s.t. ∀ j
m∑
i=1

ci,j = 1, , ∀ i∀ j ci,j ∈ {0, 1} .

The binary variables ci,j determine the correspondence among the point pairs
in P and Q. We arranged the elements ci,j into vector of size mn denoted by c.
Without loss of generality, we assume that the point set P is uncorrelated and
has zero mean, with the largest variance being one as below,
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1

m

m∑
i=1

pi = 0 ,
1

m

m∑
i=1

pip
T
i = diag([1 , λ2 , λ3]) , (2)

where 1 ≥ λ2 ≥ λ3 > 0. If P does not have this property, we can easily
process the points to get them this way 3, as explained in the following. Suppose
the original point sets are named P◦ and Q◦. Let the spectral decomposition of
P◦ be as below,

1

m

m∑
i=1

(p◦i − p̄◦)(p◦i − p̄◦)
T

= V diag(d)V T , (3)

where p̄◦ = 1
m

∑m
i=1 p

◦
i , d is the vector of eigenvalues and V is a matrix with

columns being eigenvectors of the covariance of P◦. Then we define the sets P
and Q by applying the shift p̄◦, rotation V , and scaling 1/max(d) to the initial
sets P◦ and Q◦ as shown below,

∀p◦i ∈ P◦,pi ,
1

max(d)
V T (p◦i − p̄◦)V (4)

∀q◦j ∈ Q◦, qj ,
1

max(d)
V T (q◦j − p̄◦)V . (5)

It is easy to check that the transformed set P now has the assumed proper-
ties. Thus, we can apply the proposed affine alignment algorithm. Suppose the
algorithm returns affine parameters A and b in the sense that it best trans-
forms the set P to the set Q via Ap + b. We can easily use this solution to
relate the original sets P◦ and Q◦ via A◦p◦ + b◦, where A◦ = V AV T and
b◦ = (I −A◦)p̄◦ + max(d)V bV T .

2.2 Smoothing

In order to apply Gaussian smoothing, the optimization must be in continuous
variables and unconstrained. To achieve the first property, we express the discrete
constraint ci,j ∈ {0, 1} equivalently by the continuous equality constraint of form
ci,j(1− ci,j) = 0. Thus, the optimization task becomes as the following,

(A∗, b∗, c∗) = arg min
A,b,c

∑
i,j

(ci,j‖Api + b− qj‖)2 (6)

s.t. −1 +

m∑
i=1

ci,j = 0 , ci,j(1− ci,j) = 0.

3 If the point set is degenerate, i.e. its covariance matrix has some eigenvalues equal
to zero, then we cannot have P in the desired form. In that case, the null space of
the data can be removed to obtain a lower dimensional representation for the points.
Everything else in the paper remains the same for the new set, as there is nothing
special in our analysis to force d = 3.
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To satisfy the second property, we approximate the problem by replacing
equality constraints h(c) = 0 by the objective penalty h2(c). Thus, the approx-
imate objective function becomes as the following,

f(A, b, c) ,
ε

mn

( m∑
i=1

n∑
j=1

c2i,j‖Api + b− qj‖2
)

+
1

mn

( n∑
j=1

(1−
m∑
i=1

ci,j)
2 +

m∑
i=1

n∑
j=1

c2i,j(1− ci,j)2
)
, (7)

where ε > 0 is a small number. We can now convolve the objective function
with the Gaussian kernel kσ

(
vec(A, b, c)

)
, where vec concatenates all variables

into a long vector as below,
Due to diagonal form of the covariance, we first compute convolution w.r.t.

variables {ci,j}, and then convolve the result with variables vec(A, b). Convolu-
tion in variables {ci,j} is easily computed as follows,

g1(A, b, c;σ) , [f ? k( . ;σ2)] (c)

=
ε

mn

m∑
i=1

n∑
j=1

(c2i,j + σ2)
(
‖Api + b− qj‖2

)
+

1

mn

n∑
j=1

(1−
m∑
i=1

ci,j)
2 +

1

mn

m∑
i=1

n∑
j=1

(ci,j − 1)2c2i,j + 6σ2(ci,j −
1

2
)2 .

We now apply the convolution w.r.t. θ , vec(A, b), and denote the affine
transform by as τ

(
p;θ

)
, Ap+ b.

g(θ, c;σ) ,
[
g1( . , c;σ) ? k( . ;σ2)

]
(θ)

=
ε

mn

(m,n∑
i,j

(ci,j + σ2)

∫
R3

‖r − qj‖2kσ√1+‖pi‖2
(τ (pi,θ)− r) dr

)
(8)

+
1

mn

n∑
j=1

(1−
m∑
i=1

ci,j)
2 +

1

mn

m,n∑
i,j

(ci,j − 1)2c2i,j + 6σ2(ci,j −
1

2
)2

=
ε

mn

m,n∑
i,j

(c2i,j + σ2)
(
‖Api + b− qj‖2 + 3σ2(1 + ‖pi‖2)

)
+

1

mn

( n∑
j=1

(1−
m∑
i=1

ci,j)
2 +

m,n∑
i,j

(ci,j − 1)2c2i,j + 6σ2(ci,j −
1

2
)2
)
. (9)

where (8) uses the transformation kernel for the affine map [24]. This kernel
allows writing the high dimensional convolution w.r.t. θ equivalently by a d-
dimensional integral transform, where here d = 3.
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2.3 Asymptotic Minimizer

It is easy to check that, as σ → ∞, the Hessian of the objective converges to a
matrix with zero off-diagonals and positive diagonals (hence asymptotically con-
vex). In addition, zero crossing the gradient when σ →∞ leads to the following
asymptotic minimizer,

A∗ = (
1

mn

m∑
i=1

n∑
j=1

qjp
T
i ) diag([1 ,

1

λ2
,

1

λ3
])

b∗ =
1

n

n∑
j=1

qj , c∗i,j =
1

2 + ε (1 + ‖pi‖2)
. (10)

2.4 Continuation Updates

The continuation process moves from the stationary point attained at the previ-
ous smoothing level σ to the (possibly local) minimum of the current objective
function formed by a smaller σ, i.e. reduced smoothing. For each fixed σ, the
stationary point of the problem is obtained by looping over gradient descent with
the line search until convergence. The sequence for σ is generated by starting
from σ0 = 2 and updating it by σk+1 = 0.9σk, until the value of σ falls below
0.01.

A great advantage of the low-order polynomial formulation of the alignment
task is that, we can compute the optimal line search in closed form as explained
below. The gradient of g(A, b, c;σ) in (9) can be expressed as follows,

∂g

∂A
= 2ε

m∑
i=1

n∑
j=1

c2i,j

( (
Api + b− qj )pTi

)
, (11)

∂g

∂b
= 2ε

m∑
i=1

n∑
j=1

c2i,j

(
Api + b− qj

)
. (12)

∂g

∂ci,j
= ε
(
‖Api + b− qj‖2 + 3σ2(1 + ‖pi‖2)

)
− 2 + 2

m∑
k=1

ck,j

+ 2
(
ci,j(ci,j − 1)(2ci,j − 1) + 6σ2(ci,j −

1

2
)
)
. (13)

Define the updated solution as A+ , A+α ∂g
∂A , b+ , b+α∂g∂b , and c+ , c+

α∂g∂c . The optimal step size α can be obtained by zero crossing d
dαg(A+, b+, c+;σ).

By collecting different exponents of α, the latter can be written as below,

d

dα
g(A+, b+, c+;σ) = t3α

3 + t2α
2 + t1α+ t0 , (14)
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where t0, t1, t2, and t3 are constants introduced for brevity4.
It is obvious that (14) is a cubic equation with the following closed-form roots

for choices of w ∈ {−2, 1 + i
√

3, 1− i
√

3} .

α = − 1

6t3

(
2t2 + w(

T1 +
√
T 2
1 − T2

2
)

1
3 + w∗(

T1 −
√
T 2
1 − T2

2
)

1
3

)
,

where w∗ is the complex conjugate of w, and the auxiliary variables T1 and
T2 are defined as follows,

T1 , 2t32 − 9t1t2t3 + 27t0t
2
3 , T2 , 4(t22 − 3t1t3)3 .

Obviously, we only consider the real roots of the above equation. We can
evaluate g(A+, b+, c+;σ) at all the real roots (at most three) and choose the
one that attains the smallest value of g(A+, b+, c+;σ).

Algorithm 1 shows the procedure for affine alignment by Gaussian smoothing
and path following.

2.5 Results

In this section, we present that result obtained by Algorithm 1. We use Iterative
Closest Point (ICP) algorithm [4] as a baseline result. The idea of ICP is to
alternate between creating a correspondence between pair of points (of the two

4 The constants t0, t1, t2, and t3 have the following form,

t0 ,
∑
i,j

2
∂g

∂ci,j
(2ci,j − 1)

(
(ci,j − 1)ci,j + 3σ2)

+3εσ2 ∂g

∂ci,j
(1 + ‖pi‖

2) + ε
∂g

∂ci,j
‖Api + b− qj‖

2

+2ci,jε(Api + b− qj)
T (

∂g

∂A
pi +

∂g

∂b
) + 2

n∑
j=1

((

m∑
i=1

∂g

∂ci,j
)(−1 +

m∑
i=1

ci,j))

t1 ,
∑
i,j

2(
∂g

∂ci,j
)2
(
1 + 6ci,j(ci,j − 1) + 6σ2)

+2εci,j‖
∂g

∂A
pi +

∂g

∂b
‖2 + 2

n∑
j=1

(

m∑
i=1

∂g

∂ci,j
)2

+4ε
∂g

∂ci,j
(Api + b− qj)

T (
∂g

∂A
pi +

∂g

∂b
)

t2 ,
∑
i,j

3
∂g

∂ci,j

(
2(

∂g

∂ci,j
)2(2ci,j − 1) + ε‖ ∂g

∂A
pi +

∂g

∂b
‖2
)

t3 ,
∑
i,j

4(
∂g

∂ci,j
)4 .
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Algorithm 1 Point Cloud Alignment by Gaussian Homotopy Continuation

1: Input: Point clouds P (as eq. (2)) and Q, a small ε > 0, a sequence σ1 > σ2 >
· · · > σN > 0.

2: A = ( 1
mn

∑m
i=1

∑n
j=1 qjp

T
i ) diag([1 , 1

λ2
, 1
λ3

])

3: b = 1
n

∑n
j=1 qj

4: ci,j = 1
2+ε (1+‖pi‖2)

5: for k = 1→ N do
6: repeat
7: A = A + α ∂g

∂A
.

8: b = b + α ∂g
∂b

.

9: c = c + α ∂g
∂c

10: until Convergence
11: end for
12: Output: (A, b, c)

clouds) and refining the geometric transformation between the corresponding
points. Both algorithms share the same initialization, which is the asymptotic
minimizer of the alignment objective presented in (10). For the continuation
algorithm, we set ε = 0.01.

We use some of the 3D objects provided by Stanford’s dataset [9,19,31], each
of which comprises a set P. We then create Q by rotating points in P by n
degrees along all three x, y and z axes, where n varies between 30 degrees to 90
degrees, in steps of 15 degrees. This way, for each P, we derive a set of problems
{Qn} that are increasingly more challenging as n grows.

Figures 1 and 2 indicate that ICP gets stuck is poor local minima more often
than the continuation method, before reaching a reasonable alignment.

Fig. 1. The point set Q for each 3D object.

3 Indicator Function and Robust Loss

In this section we show how indicator function and a robust loss function (trun-
cated quadratic) can be approximated in a way that become amenable to closed
form integration. This is shown through an example task for image denoising.
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30 45 60 75 90

Fig. 2. Each object occupies there successive rows, where each row has the following
role. (Top) Input P, which is a rotated version of Q. (Middle) Transformed P to match
Q using ICP. (Bottom) Transformed P to match Q using proposed method.
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3.1 Formulation

Given an image matrix V whose entries are affected additively by independent
Gaussian noise. The resulted noisy image is denoted by Ṽ . The noise has zero
mean and unknown variance. Suppose the original image has a piecewise constant
structure5. The denoising problem can be formulated as the following,

U∗ = arg min
U

∑
i,j

λ (ui,j − ṽi,j)2 + I‖∇ui,j‖6=0, (15)

where I is an indicator function that is one if its argument is true and zero
otherwise. This regularization resembles the `0 norm of gradient’s magnitude
map. Here ∇ui,j is the finite difference approximation of the gradient at the

entry ui,j , i.e. ‖∇ui,j‖2 , (ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2. The parameter λ
balances between fidelity and regularization.

Observe that an indicator function Ix 6=0 can be also expressed as 1−limε→0 e
− x2

2ε2 .

For practical applications, 1−e−
x2

2ε2 with a small enough ε provides a reasonable
approximation to the limit case (Figure 3-Left). The advantage of this partic-
ular approximation for the indicator function is this it allows for a closed-form
Gaussian convolution. Using that, the objective can be written as below,

f(U) =
∑
i,j

λ (ui,j − ṽi,j)2 + 1− e−
‖∇ui,j‖

2

2ε2

=
∑
i,j

λ (ui,j − ṽi,j)2 + 1− e−
(ui+1,j−ui,j)

2+(ui,j+1−ui,j)
2

2ε2 .

Note that the Gaussian function, which a larger choice of ε, can also provide
a good approximation for the truncated quadratic form (Figure 3-Right). This
approximation maintains the key property of robust loss functions, which is
having flat tails. In the following, however, we continue with the simple (non-
robust) quadratic loss.

3.2 Smoothing

Convolving this objective with Gaussian kernels in variables ui,j and dropping
constant terms leads to the following,

g(U , σ) =
∑
i,j

λ (ui,j − ṽi,j)2

−ce−
ε2‖∇ui,j‖

2+2σ2(u2i,j+u
2
i,j+1+u2i+1,j−ui,j+1ui+1,j−ui,j(ui,j+1+ui+1,j))

2(σ2+ε2)(3σ2+ε2) ,

where c is a constant factor.

5 That is the case for most shape images.
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Fig. 3. Using the function e
− x2

2ε2 to approximate indicator function (Left) by ε = 0.005
and (robust) truncated quadratic loss (Right) by ε = 1/2. Both cases are plotted in
the range x ∈ [−4, 4]

3.3 Asymptotic Minimizer

As σ → ∞, the regularization term vanishes and only the convex quadratic
term remains. Hence, this problem is asymptotically convex, and its asymptotic
minimizer is simply the solution of the convex quadratic part, which is ui,j = ṽi,j .

3.4 Continuation

The sequence for σ is generated by starting from σ0 = 2 and updating it by
σk+1 = 0.9σk, until the value of σ falls below 0.01. Sensitivity parameter ε
is set to 2

255 , which means 2 intensity levels out of 255 possible levels in an
8-bit representation. For each value of σ, gradient descent loop is performed
until convergence. The loop starts by initializing the solution obtained from
the previous value of σ. The exponential form appearing in this application
prevents finding the optimal line search in closed form. Thus, here we use the
plain gradient descent.

3.5 Results

The method is applied to an example shape image degraded by Gaussian noise.
The intensity values of the image range between zero and one, and the standard
deviation of the noise is 0.5, which is quite severe. We apply four other methods
to these data for comparison. Specifically, we use isotropic and anisotropic total
variation [16] using publicly available code6, BM3D denoising package7 [10],
and KMeans clustering [20] shipped with Matlab. Total variation essentially
penalizes the `1 norm of the gradient’s magnitude. Note that `1 norm is the
convex envelope for the `0 norm, hence the best possible convex approximation
of the actual problem.

6 We used Matlab code published by Benjamin Tremoulheac.
7 Authors of this package have made their code publicly available. We used version

2.0 of this package.
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Fig. 4. Plots of PSNR value versus algorithm’s parameter. Left: BM3D (horizontal axis
shows multipliers of noise standard deviation, e.g. 2 means twice the value of the stan-
dard deviation). Right: Total Variation (the parameter balances between regularization
and fidelity).

For BM3D, we provide the algorithm with the true value of noise variance,
which is to the advantage of this method. The total variation method, like ours,
depends on a λ parameter that balances fidelity versus regularization. These
parameters were carefully searched for each method to obtain maximally possible
PSNR value (Figure 4). To ensure KMeans’s solution has not been unlucky with
initialization, it is run 100 times, and only the one with the lowest cost function
is reported here.

The output of each method and their associated PSNR values are shown in
Figure 5.

Input Noisy KMeans ATV ITV BM3D Homotopy

9.36 9.16 14.34 14.30 15.26 22.96

Fig. 5. Denoising a shape image using different methods. The best PSNR attained by
each method is show below its image.

4 Conclusion

In this work we argue that the convolution integral associated with the Gaussian
homotopy continuation can be computed in closed form for some interesting
scenarios. Such closed form expression is of great importance and it makes the
Gaussian homotopy method useful in practice. We explored this idea within two
simple scenarios that involve difficult combinatorial nonconvexities.
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