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 Abstract - Imitation equips robots with a simple and 
natural interface to learn new tasks. Although abstraction is a 
remarkable feature of imitation that discriminates it from 
mimicking, there has been no enough research on this 
dimension of imitation. Relational concepts are the simplest 
type of abstract concepts and can be an appropriate start 
point. These concepts may be learned by combining perceptual 
categorization and classical conditioning. The paper will first 
formalize relational concept learning within an imitative 
context. Internal modules of the learning agent are considered 
to be functions. We will prove that in this case the concept-
motor mapping becomes one-to-one which simplifies learning. 
A learning algorithm for the model will be also proposed and 
evaluated in a phoneme acquisition experiment with a large 
number of highly overlapped samples. 
 
 Index Terms – Imitation, Categorization, Concept Learning, 
Reinforcement Learning. 
 

I.  INTRODUCTION 

A dream of robotics has been having intelligent robots 
as a part of human everyday lives in natural environments. 
Recent years has experienced intensive efforts on reaching 
this goal, particularly as caretakers for the elderly and 
disabled, museum tour guides, machine pets and toys for 
children. One of the most challenging issues in this context 
is how to teach a robot new behaviors by demonstration 
instead of reprogramming. Imitation is a good candidate that 
equips the robot with a simple and natural interface to learn 
new tasks merely by observing the human instructor. 

Apparent copying or mimicking should not be confused 
with imitation. In fact, mimicking just records and replays 
an observed behavior and this does not necessarily imply 
any learned or cognitive component that, for example, 
would allow for generalization. In contrast, imitation is 
based on abstraction and conceptualization [2,5,20]. 
Conceptualized imitation provides the learning agent with 
generalization and novel behaviors. Moreover, it can be an 
efficient means for symbol grounding problem [10] which 
enables the agent to deal with cognitive tasks involved in 
symbol manipulation, e.g. language. Despite the 
fundamental nature of abstract concepts in imitation, there 
has not been enough work by AI/Robotics community in 
this domain. 

The first efforts in robotics that made use of learning by 
imitation were mainly focused on assembly task-learning 
from observation [3,15]. These methods were very task-
specific and could not be applied to a changing 
environment. Later, by moving toward categorization better 
generalization could be achieved. For instance by use of 

parameterized motor primitives, Mataric et al. modeled a 
wide variety of natural human movements [8]. In parallel, 
perceptual categorization, which is the most basic step in 
concept formation, was evolved and recently has drawn 
attentions in robotics [9,13]. However, these works are 
mainly focused on perceptual categorization and they 
cannot handle abstract concepts. In a recent work, Jansen et 
al. [12] combined perceptual categorization and learning by 
imitation to achieve a shared repertoire of action categories. 
Unlike previous robots where categorization was purely 
based on unsupervised learning, Jansen used reinforcement 
learning through an imitation game. Therefore, creation of a 
new concept was influenced by teacher's signal which 
controlled the desired granularity of the observed behaviors 
[1]. 

Nevertheless, Jansen's robot could not develop abstract 
concepts either.  In contrast to perceptual concepts which 
are well clustered in the perceptual space, instances of an 
abstract concept can be scattered irregularly in the same 
space. Relational concepts are the simplest type of abstract 
concepts. They can be learned by combining perceptual 
categorization and classical conditioning. In this paper we 
will take the first steps in developing a model and algorithm 
capable of learning such abstract concepts. 

This paper is organized as follows. In section II we will 
review basics of concepts and related theories. Section III 
describes a model and learning algorithm for concept-
oriented agents. In IV we will carry out experiments in a 
phoneme acquisition task and analyze the results to evaluate 
the method. Paper ends in section V by drawing conclusions 
and proposing future paths of our research. 

II. CONCEPTS 

A. Basics 
 A Concept is an internal representation of the world in 
agent's mind. It can be a set of objects or events that are 
similar with respect to a principle [22]. The principle may 
be related physical or functional characteristics of the item. 
Concept acquisition in natural environments must be able to 
cope with some constraints [7]. First, concepts should be 
learned gradually because we do not encounter all instances 
of a concept at one point in time. Moreover, they should be 
learned in parallel, i.e. the type and order of incoming 
instances is arbitrary. At last, learning must be 
accomplished relatively fast in the sense that we are able to 
learn a fairly useful concept representation just by 
encountering instances of the category on a few occasions.  
 



 
Fig. 1  Three types of concept: Perceptual, Relational and Associative 

B. Abstract Levels 
As we discussed earlier, observations are categorized 

to concepts with respect to some principles which depend 
on physical and/or functional characteristics of the items. 
From this perspective, Zentall has categorized concepts to 
three levels of abstraction [22]: 

Perceptual: These concepts are formed solely by 
measuring similarity of instances in perceptual space. 
Such data can be categorized by simple clustering 
algorithms in an unsupervised fashion. 

Relational: In this type of concepts, although 
perceptual similarity still contributes to categorization, it 
is not sufficient to form the correct concepts. External 
information must link perceptual categorizes and form the 
right concept. This can be achieved by classical 
conditioning. 

Associative: In learning these concepts, the stimuli 
within classes bear no obvious physical similarity to one 
another, but rather cohere because of shared functional 
properties. 

We interpreted this classification as schematically 
shown in Fig. 1. Returning to our main concern, Human-
Robot Interaction (HRI), we assume that the robot is 
unable to communicate with human instructor verbally (at 
least in its infancy!). Therefore, similar to infants and 
animals, it must learn by reinforcement. This is because 
neither it understands supervisor's (verbal) instructions 
nor like non-interactive robots there is a direct access to 
robot's brain. Therefore, we focus on relational rather than 
associative concepts. The latter one usually needs the 
robot to be told explicitly what to do in a supervised 
fashion. 

One of the simplest methods for teaching relational 
concepts is called same/different. In this method, two (or 
more) stimuli are given to the learning agent and it must 
decide whether these stimuli belong to the same concept 
or not. Depending on agent's response, it will be either 
rewarded (correct answer) or punished (wrong answer). It 
has been shown that pigeons, parrots, rhesus monkeys, 
baboons, and chimpanzees are capable of learning 
abstract concepts by same/different method [6]. This can 
be motivating for AI community that usually finds animal 
intelligence more reachable than human intelligence. 

C. Theories 
 There are three general theories of concepts namely 
exemplar, prototype and rule theories [14]: 

 Exemplar: Merely instances of a concept are 
memorized. A new stimulus is classified according its 
similarity to all the known instances of the various 
candidate concepts. The specification of contents 

(exemplars) is not a global summary but is instead a 
collection of piecemeal information. 
 Prototype: It might seem inefficient or wasteful to 
remember every instance of a category. Perhaps some 
summarization could be done on instances. The summary, 
also called a prototype, should be representative of the 
various instances of the category, .e.g. average or 
idealized caricature of instances. 
 Rule: A rule-based model uses either a strict 
match/mismatch process or a boundary representation. An 
example of a rule-based model is one that uses featural 
rules that specify strict necessary and sufficient conditions 
that define category membership. 
 Our model is based on prototype theory. However, as 
the number of prototypes per category increases, there can 
eventually be one prototype per instance, and such models 
become equivalent to exemplar models [17]. Therefore, 
these theories are the extremes of a range of 
prototypeness. Our algorithm will allow adjustment of 
prototypness degree by a parameter named granularity 
radius. 

III. CONCEPT ORIENTED IMITATION 

A. Concept-Oriented Agent 
 In order to propose an appropriate architecture and 
learning scheme for conceptually imitating agents, first 
the problem must be formalized. Our ultimate goal is to 
apply the proposed method in HRI. Therefore, we assume 
that the teacher agent is a naïve human, who does not 
know programming, but can issue reinforcement signal by 
evaluating the observed behavior, just like what (s)he 
does with infants. Briefly, behavior is the only resource 
for issuing reinforcement signals. Let's denote the ideal 
behavior of the learning agent by )(xhy =  where 

mx ℜ∈  and ny ℜ∈  are sensory data and motor 
commands respectively. By ideal behavior we mean the 
one which maximizes incoming reinforcement rewards. 

 Unlike an observer who merely sees the behaviors of 
the agent, the agent itself should conceptualize events in 
its mind. That means linking regions of continuous input 
and output spaces through a discrete concept set. So there 
are two functions involved, sensory-concept and concept-
motor mappings.  

 These functions are shown in (1) and the process is 
depicted in Fig. 2. Abstract concepts can be used by a 
symbol manipulator for complex cognitive tasks like 
language learning. Currently we do not use symbols for 
this purpose, but the role of symbol manipulator is shown 
in the figure for extended works. 



 
Fig.2 A model for Concept-Oriented Agent 
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 In one hand, this structure must be capable of 
reconstructing the ideal behavior )()( xhxgof = , i.e. 
maximizing the expected reward. On the other hand, it 
must minimize the number of concepts to keep them as 
general as possible (in the worst case, each sample is 
assigned to a single concept). These two constraints act in 
opposite directions, because if p is minimized too much, 
the structure becomes too restricted to reconstruct the 
ideal behavior and if high reward is desired, p should be 
large enough to make a flexible model. These constraints 
and the discrete nature of concepts make it a non-linear 
multi-objective optimization task (2).  
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 Concepts are linked to continuous regions of input 
and output spaces. We represent each region by a 
prototype; the nearest prototype in the perceptual space 
catches a given stimulus. Then the prototype is translated 
into a concept. According to the prototype viewpoint, the 
functions f and g can be rewritten by simpler ones as 
shown in (3) where q and r are sensor and motor 
prototype indices and p is the concept index. Finding the 
prototype vectors and concept/prototype mappings are up 
to the learning algorithm. Note that qp ≤  and pr ≤  are 
necessary conditions for f and g to be functions. 
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 Nevertheless, due to the discrete nature of indices of 
concepts and prototypes, theoretically any many-to-many 
mapping of them can be converted to many-to-one 
(function) by extending the set of indices to its power set. 
Hence, we will let the function constraint remain for the 
sake of simplicity. 

 So far, four functions have been introduced for 
behavior construction namely f1, f2, g1, g2. Here we claim 
that for any arbitrary structure h obtained by combining 
these functions, there always exists an equivalent 
structure h′ whose 1g ′ is one-to-one.  

 
Fig. 3  Simplified Model of a Concept-Oriented Agent 

 If 1g is not one-to-one, then there exists at least two 
values with the same map: 
 212111 ;)()( nnkngng ≠==  (4) 

 However, 1n and 2n are themselves obtained from 
(.)2f  as below: 

 )(;)( 222121 mfnmfn ==  (5) 

 Now we define our 2f ′ and 1g ′ functions as: 
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 It is easy to check that: 
 { }212121 ,;))(())(( nnnnfgnfg ∈′′=  (7) 

 Now let's consider 22 gg =′ and 11 ff =′ ; so 
while hh =′ , 1g ′ is one-to-one. Although h and h' are 
behaviorally the same, they are different in number of 
concepts. As g'1 is one-to-one so p'=r' and for non one-to-
one cases like g1, p>r. But r=r' because g'2=g2. 
Combining these results gives p>p'. Since the one-to-one 
case takes less number of concepts, it is preferred by (2).  
 In fact, there could be a dual case, another equivalent 
where f'2 was one-to-one and g'1 was many-to-one. 
However, relational concepts require different regions to 
be mapped to the same concept. Therefore, for naturally 
and efficiently representing relational concepts (without 
power sets) this case is avoided. Returning to the one-to-
one g1 which can be now denoted by ppg NN →:1 , its 
task is now limited to a simple permutation. This is 
immaterial and can be eliminated. The model is therefore 
simplified as written in (8):  
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 To ease understanding these functions, we rename 
f1(x) to prototyper denoted by p(x), f2(q) to conceptualizer 
denoted by c(i), and g2(p) to action selector denoted by 
a(k). The new model is depicted in Fig. 3. 

B. Learning Algorithm 
 The learning algorithm is an iterative procedure; a 
new cycle starts once a stimulus is sensed. For 
understanding the algorithm, let's assume we are 
monitoring it in the middle of execution where some 
concepts are already formed and a new stimulus x (in 
imitation case, observation of self or teacher's action) is 
just detected.  



 
Fig. 4 The three spaces and prototypes in percept and motor. 

 The agent maps the stimulus to the nearest perceptual 
prototype and translates it into the corresponding concept. 
Then the action linked to the concept is performed and 
reinforcement is received from the teacher (Fig. 4). 
 If the reinforcement is positive (reward), then every 
thing is correct and just a simple adaptation is performed 
by moving the perceptual prototype toward x. However, if 
it is negative (punishment), a modification in concepts is 
required. Schank et al. [19] point out, any dynamic and 
autonomous theory of concept acquisition must specify at 
least three processes: when to create a new concept, when 
to modify a concept, and what part of the concept to 
change. In order to answer these questions, we must first 
find the source of the problem. The failure may be caused 
by any (or a combination) of the following modules: 
 Prototyper: The concept corresponding to the 
stimulus already exists, but it was caught by a prototype 
that belongs to a different concept. The prototyper must 
create a new prototype about x and link it to the right 
concept so that it is caught by this prototype next time. 
Conceptualizer: There may be two reasons here. First, 
prototypes are correct and they grab what they are 
supposed to catch. In addition, the corresponding concept 
exists, but the prototype-concept link is wrong; so the 
prototype must try another concept. Switching among 
concepts continues until the right connection is found. 
Another cause may be due to a non-existent concept. We 
identify this case when the product of switching is 
punishment for all concepts. At this time, a new concept 
must be created for x. 
 Action Selector: Each concept is linked to only one 
action. So if the above two steps were passed and 
punishment was still coming, the concept is linked to a 
wrong action, i.e. one that does not correspond to it. Here, 
learning (imitating) the right action must be repeated. 
 Potentially each prototype belongs to a concept, 
albeit the correspondence is not discovered yet. A new 
prototype must be temporarily considered as an 
independent concept until checked against all existing 
concepts during learning. Ultimately the prototype will 
either match with one of the existing concepts or it will be 
rejected by all and becomes permanently an independent 
concept. Therefore, there are two types of prototypes, 
erratic (still switching) and steady (settled), stored in two 
different sets namely working memory and long term 
memory denoted by W and L. The other set seen in the 
algorithm is concept set denoted by C. 
 Although there exists only one map for an L-type 
prototype, a W-type prototype should be first checked 
with all concepts, before it forms a new concept. So L-

types can be mapped by the conceptualizer function, but 
there is a vector Wi for i'th W-type prototype connected to 
all concepts with different weights. The weights are 
initialized in a Gaussian fashion which is a function of 
motor prototypes centered at the winning motor 
prototype. These weights influence the order of switching 
over concepts for the W-type, aiming to first try concepts 
that are more likely to be the answer. Since there is a one-
to-one correspondence between actions and concepts, 
they share the same index. Now depending on which 
perceptual memory catches the stimulus and what 
reinforcement it gets next, one of the following cases 
happens: 
 Working Memory gets Reward: So the corresponding 
concept for this prototype is found. Move this prototype 
to Long Term Memory. New/Delete function 
creates/removes an entry in/from a set.  
 Long Term Memory gets Reward: Everything is ok, 
so just move the winning prototype toward the stimulus. 
 Long Term Memory gets Punishment: This unit 
should not have caught the stimulus. So create a new 
prototype in Working Memory for the stimulus. 
 Working Memory gets Punishment: Prototype has 
been connected to a wrong concept. So switch over 
concepts. However, if all concepts have been explored 
here (and got punishment), a new concept must be 
created. 
 Now the question is how the agent knows what new 
action should it create to increase reward. In fact, unlike 
grid-world algorithms that deal with a limited set of 
predetermined actions, ours is to work on real robots with 
a continuous high-dimensional motor space. The agent 
cannot explore the whole motor space by itself. This is 
where imitation makes learning feasible; teacher 
demonstrates the desired behavior and the agent must 
observe and follow these states/actions. If the agent maps 
its observation to a wrong concept which will in turn 
result in a wrong action, teacher will issue a punishment 
so that the agent modifies the concept of its observed 
behavior. The pseudo-code of the algorithm is shown in 
Fig. 5. Note that the algorithm initially needs a dummy L-
type prototype connected to a dummy concept. 
 There are three constants in the algorithm: η is the 
learning rate of perceptual prototypes. G stands for 
Granule Radius, the threshold which determines the 
maximum allowed distance for prototypes to catch 
sensory data. Low values of G push the representation 
toward exemplars, but high values move it toward 
prototypes. It is a data-dependent factor. Clearly, 
prototypes are preferred due to their higher performance, 
but this choice depends on regularity and distribution of 
instances in space. 
 The other constant F is Confidence Radius, the 
maximum allowed distance for a prototype to consider a 
stimulus as its member with respect to corresponding 
concept. Low values of F slow down the algorithm, 
because the narrower the confidence radius becomes, the 
more time is expected to observe a stimulus falling in this 
region. 
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Fig. 5 Pseudo-Code for the Proposed Algorithm 

 Improper choice of F results in wrong number of 
concepts and inappropriate choice of G reduces the 
expected reward. Normally F and G should be the same; 
if a prototype is allowed to catch a stimulus, it is natural 
to let it determine the corresponding concept as well. 
However, for highly interleaved data like what we will 
use in our experiments, this balance may be disturbed. For 
instance we preferred to tolerate some reward decrement 
to gain a smaller prototype set in return, whereas creating 
inaccurate number of concepts was not accepted at all.  

IV. EXPERIMENTAL RESULTS 
 Our test problem is phoneme acquisition; the agent 
should learn phonemes of caretaker language through 
interaction. There are related studies on interactive 
phoneme acquisition [11, 21]. However, they merely 
reproduce the heard acoustic waves without understating 
phonemes. Our goal is to achieve the set of symbols 
which exactly correspond to the phonemes (that teacher 
has in mind). 

 Frequency peaks in the sound wave of vowels, called 
formants, were used to represent vowels, due to their 
efficiency and simplicity. We used Peterson and Barney 
dataset [18] which contains formant frequencies from 10 
American English monophthongal vowels as spoken by 
76 speakers (33 men, 28 women and 15 children). Every 
vowel was pronounced twice, so that there are 1520 
recorded vowels in total. This dataset is very hard to learn 
due to the large overlap between vowels in the space of 
the first two formants (f1,f2). Even there are 21 pairs in 
this set that have exactly the same (f1,f2) values but 
belong to different vowels. Since ambiguous percepts are 
not accounted in our model; we excluded one element of 
each ambiguous pair. Biological evidences confirm that 
human brain creates sharp and not graded boundaries in 
transforming acoustic signals to phonemes too [16]. Thus 
the brain cannot decide about ambiguous percepts either.  
 Due to the complexity of this dataset, it seems a good 
test bed for evaluating the proposed algorithm. Our results 
will confirm the necessity of relational concepts for 
learning this hard dataset. Each phoneme was considered 
as a single concept, so there were totally 1499 samples of 
10 concepts. Currently an arbitrary affine transform was 
used as the forward model of motor-formant mapping. 
Imitation was achieved by gradient decent minimizing the 
difference between self and model's formants by adjusting 
self's motor parameters. This learning is similar to 
babbling where an infant tries to imitate caretaker's 
speech by continually exploring his/her articulatory space.  
 Constant parameters of the algorithm were set as 
η=0.1 , F=0 , G=10 and G=100. F was zero due to the 
high overlap in the dataset. If we could set F to a larger 
value, a faster convergence would be achieved. The 
experiment was repeated for two values of G, 10 times for 
each. In all runs, the number of concept was correctly 
obtained 10. The average reinforcement over time is 
showed in Fig. 6. Note that due to the discrete nature of 
reinforcement (-1,1), the result in the figure was smoothed 
to clearly reflect the expected behavior. 
 Some useful statistics about accuracy and consumed 
prototypes in each memory, computed in the end of each 
simulation (6000th step), are listed in Table 1. It can be 
seen that the number of L-Type prototypes is much larger 
than the number of concepts. This indicates that these 
vowels could not be learned by simpler conceptual 
imitative learning methods like [12]. This is because those 
methods cannot cope with relational concepts and they 
grow concept set as large as prototype set and prevent the 
symbol grounding that teacher has in mind (10 vowels). 
Large number of L-types for achieving satisfactory 
expected reward indicates that the dataset can be best 
described by exemplar theory. This fact can be also seen 
by accuracy, denoted by A in the table, which was 
computed by presenting the whole dataset to the learned 
system and computing the ratio of rewards to the number 
of reinforcements. An interesting observation is the load 
of working memory; it has an overshoot at the beginning 
and then calms down, see Fig. 7. 



   
  Fig. 6  Reinforcement Values over Time. Solid: G=100, Dashed: G=10             Fig. 7 Contents of Working Memory over time. Solid: G=100, Dashed: G=10 

TABLE I 
STATISTICAL INFORMATION OF 10 RUNS WITH DIFFERENT G'S 

G µ A% σ A% µ WM σ WM µ LTM σ LTM 
10 92.15 4.86 72.6 16.61 1246.1 110.57 

100 79.25 4.91 27.7 3.56 949.8 58.48 

 

V.  CONCLUSION AND FUTURE WORKS 

 We discussed about the essence of abstract concepts 
in imitation and introduced concept-oriented imitation as 
a fertile ground for robotic research. Relational concepts 
was chosen as the basis of our research and connected to 
imitation through self/different method. We formalized 
the structure of a concept-oriented agent using 
mathematical functions and proposed a learning algorithm 
for it. We also proved that within this formalism there is 
always a one-to-one correspondence between concepts 
and actions.  
 Theoretically, any many-to-many mapping can be 
used inside the modules, thanks to the power set 
extension. However, in practice this may be a limitation 
for some applications, e.g. relating a concept to a 
combination of motor prototypes [8]. Nevertheless, there 
are a many real-world problems like phoneme acquisition, 
where one-to-one concept-motor mapping seems natural. 
The method was evaluated in a phoneme acquisition 
experiment. Although the number of prototypes was high 
(due to the complexity of the dataset), the agent 
succeeded to categorize data to 10 concepts associated 
with the phonemes (in teacher's mind).  
 We are currently working on a more realistic 
experiment where the forward model is replaced by the 
articulatory speech synthesizer of PRAAT [4]. PRAAT 
can itself extract formants from speech signal too. So the 
agent may interact with a real human whose voice is 
captured by microphone and converted to (f1,f2) by 
PRAAT. The reinforcement can be also modulated in the 
human voice. Simple emotional cues in speech can be 
extracted to determine reward/punishment signals. 
 The current model deals with concepts that are all in 
the same level of abstraction. So another path for our 
future study is incorporation of hierarchical concepts that 
are learned by reinforcement. This will allow more 
abstract concepts to be constructed from less abstract 
ones, .e.g. concepts of vowel and consonant from 
phoneme symbols. 
 Another feature to be added is automatic adjustment 
of Granularity Radius. This can be achieved by starting 
from a low value of G and increasing it gradually until the 
expected reward fall below a threshold. At this point, the 
increment of G can be stopped.  
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