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Abstract. We show how nonlinear semi-supervised embedding algo-
rithms popular for use with “shallow” learning techniques such as kernel
methods can be easily applied to deep multi-layer architectures, either
as a regularizer at the output layer, or on each layer of the architecture.
Compared to standard supervised backpropagation this can give signifi-
cant gains. This trick provides a simple alternative to existing approaches
to semi-supervised deep learning whilst yielding competitive error
rates compared to those methods, and existing shallow semi-supervised
techniques.

26.1 Introduction

In this chapter we describe a trick for improving the generalization ability of
neural networks by utilizing unlabeled pairs of examples for semi-supervised
learning. The field of semi-supervised learning [7] has the goal of improving gen-
eralization on supervised tasks using unlabeled data. One of the tricks they use
is the so-called embedding of data into a lower dimensional space (or the related
task of clustering) which are unsupervised dimensionality reduction techniques
that have been intensively studied. For example, researchers have used nonlinear
embedding or cluster representations as features for a supervised classifier, with
improved results. Many of those proposed architectures are disjoint and shal-
low, by which we mean the unsupervised dimensionality reduction algorithm is
trained on unlabeled data separately as a first step, and then its results are fed
to a supervised classifier which has a shallow architecture such as a (kernelized)
linear model. For example, several methods learn a clustering or a distance mea-
sure based on a nonlinear manifold embedding as a first step [8, 9]. Transductive
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Support Vector Machines (TSVMs) [26] (which employs a kind of clustering) and
LapSVM [2] (which employs a kind of embedding) are examples of methods that
are joint in their use of unlabeled data and labeled data, while their architecture
is shallow. In this work we use the same embedding trick as those researchers,
but apply it to (deep) neural networks.

Deep architectures seem a natural choice in hard AI tasks which involve several
sub-tasks which can be coded into the layers of the architecture. As argued
by several researchers [14, 3] semi-supervised learning is also natural in such a
setting as otherwise one is not likely to ever have enough data to perform well.
This is both because of the dearth of label data, and because of the difficulty of
training the architectures. Secondly, intuitively one would think that training on
labeled and unlabeled data jointly should help guide the best use of the unlabeled
data for the labeled task compared to a two-stage disjoint approach. (However,
to our knowledge there is no systematic evidence of the latter, and there might
be reasons to train disjointly, for example label prediction tends to overfit faster
than the embedding because you have less data to fit them. Doing unsupervised
pretraining first and supervised fine-tuning afterwards might naturally solve this
problem. On the other hand, it is only because the problem is non-convex that
a two-stage approach does anything at all – all the learning from the first stage
may be “forgotten”).

Several authors have recently proposed methods for using unlabeled data in
deep neural network-based architectures. These methods either perform a greedy
layer-wise pre-training of weights using unlabeled data alone followed by super-
vised fine-tuning (which can be compared to the disjoint shallow techniques for
semi-supervised learning described before), or learn unsupervised encodings at
multiple levels of the architecture jointly with a supervised signal. Only consid-
ering the latter, the basic setup we advocate is simple:

1. Choose an unsupervised learning algorithm.
2. Choose a model with a deep architecture.
3. The unsupervised learning is plugged into any (or all) layers of the architec-

ture as an auxiliary task.
4. Train supervised and unsupervised tasks using the same architecture simul-

taneously (with a joint objective function).

Theaim is that theunsupervisedmethodwill improveaccuracyon the task athand.
In this chapter we advocate a simple way of performing deep learning by leveraging
existing ideas from semi-supervised algorithms developed in shallow architectures.
In particular, we focus on the idea of combining an embedding-based regularizer
with a supervised learner to perform semi-supervised learning, such as is used in
Laplacian SVMs [2]. We show that this method can be: (i) generalized to multi-
layer networks and trained by stochastic gradient descent; and (ii) is valid in the
deep learning framework given above.Experimentally,we also show that it seems to
work quite well. We expect this is due to several effects: firstly, the extra embedding
objective acts both as a data-dependent regularizer but secondly also as a weakly-
supervised task that is correlated well with the supervised task of interest. Finally,
adding this training objective at multiple layers of the network helps to train all
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the layers rather than just backpropagating from the final layer as in supervised
learning.

Although the core of this chapter focuses on a particular algorithm (embed-
ding) in a joint setup, we expect the approach would also work in a disjoint
setup too, and with other unsupervised algorithms, for example the approach of
Transductive SVM has also been generalized to the deep learning case [15].

26.2 Semi-supervised Embedding

Our method will adapt existing semi-supervised embedding techniques for shal-
low methods to neural networks. Hence, before we describe the method, let us
first review existing semi-supervised approaches. A key assumption in many semi-
supervised algorithms is the structure assumption1: points within the same struc-
ture (such as a cluster or a manifold) are likely to have the same label. Given this
assumption, the aim is to use unlabeled data to uncover this structure. In order to
do this many algorithms such as cluster kernels [8], LDS [9], label propagation [30]
and LapSVM [2], to name a few, make use of regularizers that are directly related
to unsupervised embedding algorithms. To understand these methods we will first
review some relevant approaches to linear and nonlinear embedding.

26.2.1 Embedding Algorithms

We will focus on a rather general class of embedding algorithms that can be de-
scribed by the following type of optimization problem: given the data x1, . . . , xU
find an embedding f(xi) of each point xi by minimizing

U∑

i,j=1

L(f(xi, α), f(xj , α),Wij)

w.r.t. the learning paramaters α, subject to

Balancing constraint.

This type of optimization problem has the following main ingredients:

– f(x) ∈ R
n is the embedding one is trying to learn for a given example

x ∈ R
d. It is parametrized by α. In many techniques f(xi) = fi is a lookup

table where each example i is assigned an independent vector fi.
– L is a loss function between pairs of examples.
– The matrixW of weightsWij specifies the similarity or dissimilarity between

examples xi and xj . This is supplied in advance and serves as a kind of label
for the loss function.

– A balancing constraint is often required for certain objective functions so
that a trivial solution is not reached.

1 This is often referred to as the cluster assumption or the manifold assumption [7].
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As is usually the case for such machine learning setups, one can specify the model
type (family of functions) and the loss to get different algorithmic variants. Many
well known methods fit into this framework, we describe some pertinent ones
below.

Multidimensional scaling (MDS) [16] is a classical algorithm that attempts to
preserve the distance between points, whilst embedding them in a lower dimen-
sional space, e.g. by using the loss function

L(fi, fj,Wij) = (||fi − fj || −Wij)
2

MDS is equivalent to PCA if the metric is Euclidean [29].

ISOMAP [25] is a nonlinear embedding technique that attempts to capture
manifold structure in the original data. It works by defining a similarity metric
that measures distances along the manifold, e.g. Wij is defined by the shortest
path on the neighborhood graph. One then uses those distances to embed using
conventional MDS.

Laplacian Eigenmaps [1] learn manifold structure by emphasizing the preserva-
tion of local distances. One defines the distance metric between the examples by
encoding them in the Laplacian L̃ = W −D, where Dii =

∑
jWij is diagonal.

Then, the following optimization is used:
∑

ij

L(fi, fj,Wij) =
∑

ij

Wij ||fi − fj ||2 = f�L̃f (26.1)

subject to the balancing constraint:

f�Df = I and f�D1 = 0. (26.2)

Siamese Networks [4] are also a classical method for nonlinear embedding. Neural
networks researchers think of such models as a network with two identical copies of
the same function, with the same weights, fed into a “distance measuring” layer to
compute whether the two examples are similar or not, given labeled data. In fact,
this is exactly the same as the formulation given at the beginning of this section.

Several loss functions have been proposed for siamese networks, here we de-
scribe a margin-based loss proposed by the authors of [13]:

L(fi, fj,Wij) =

{
||fi − fj||2 if Wij = 1,
max(0,m− ||fi − fj ||2)2 if Wij = 0

(26.3)

which encourages similar examples to be close, and dissimilar ones to have a
distance of at least m from each other. Note that no balancing constraint is
needed with such a choice of loss as the margin constraint inhibits a trivial
solution. Compared to using constraints like (26.2) this is much easier to optimize
by gradient descent.
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26.2.2 Semi-supervised Algorithms

Several semi-supervised classification algorithms have been proposed which take
advantage of the algorithms described in the last section. Here we assume the
setting where one is givenM+U examples xi, but only the firstM have a known
label yi.

Label Propagation [30] adds a Laplacian Eigenmap type regularization to a
nearest-neighbor type classifier:

min
f

M∑

i=1

||fi − yi||2 + λ
M+U∑

i,j=1

Wij ||fi − fj ||2 (26.4)

The algorithm tries to give two examples with large weighted edge Wij the same
label. The neighbors of neighbors tend to also get the same label as each other
by transitivity, hence the name label propagation.

LapSVM [2] uses the Laplacian Eigenmaps type regularizer with an SVM:

min
w,b
||w||2 + γ

M∑

i=1

H(yif(xi)) + λ
M+U∑

i,j=1

Wij ||f(xi)− f(xj)||2 (26.5)

where H(x) = max(0, 1 − x) is the hinge loss, and the final classifier will be
f(x) = w · x+ b.

Other Methods In [9] a method called graph is suggested which combines a
modified version of ISOMAP with an SVM. The authors also suggest to combine
modified ISOMAP with TSVMs rather than SVMs, and call it Low Density
Separation (LDS).

26.3 Semi-supervised Embedding for Deep Learning

We would like to use the ideas developed in semi-supervised learning for deep
learning. Deep learning consists of learning a model with several layers of non-
linear mapping. In this chapter we will consider multi-layer networks with N
layers of hidden units that give a C-dimensional output vector:

fi(x) =

d∑

j=1

wO,i
j hNj (x) + bO,i, i = 1, . . . , C (26.6)

where wO are the weights for the output layer, and typically the kth layer is
defined as

hki (x) = S
(∑

j

wk,i
j hk−1

j (x) + bk,i
)
, k > 1 (26.7)
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h1i (x) = S
(∑

j

w1,i
j xj + b

1,i
)

(26.8)

and S is a non-linear squashing function such as tanh. Here, we describe a stan-
dard fully connected multi-layer network but prior knowledge about a particular
problem could lead one to other network designs. For example in sequence and
image recognition time delay and convolutional networks (TDNNs and CNNs)
[17] have been very successful. In those approaches one introduces layers that
apply convolutions on their input which take into account locality information
in the data, i.e. they learn features from image patches or windows within a
sequence.

The general method we propose for deep learning via semi-supervised embed-
ding is to add a semi-supervised regularizer in deep architectures in one of three
different modes, as shown in Figure 26.1:

(a) Add a semi-supervised loss (regularizer) to the supervised loss on the entire
network’s output (26.6):

M∑

i=1

�(f(xi), yi) + λ

M+U∑

i,j=1

L(f(xi), f(xj),Wij) (26.9)

This is most similar to the shallow techniques described before, e.g. equation
(26.5).

(b) Regularize the kth hidden layer (26.7) directly:

M∑

i=1

�(f(xi), yi) + λ

M+U∑

i,j=1

L(fk(xi), f
k(xj),Wij) (26.10)

where fk(x) = (hk1(x), . . . , h
k
HUk

(x)) is the output of the network up to the
kth hidden layer (HUk is the number of hidden units on layer k).

(c) Create an auxiliary network which shares the first k layers of the original
network but has a new final set of weights:

gi(x) =
∑

j

wAUX,i
j hkj (x) + b

AUX,i (26.11)

We train this network to embed unlabeled data simultaneously as we train
the original network on labeled data.

One can use the loss function (26.3) for embedding, and the hinge loss

�(f(x), y) =

C∑

c=1

H(y(c)fc(x)),

for labeled examples, where y(c) = 1 if y = c and -1 otherwise. For neighboring
points, this is the same regularizer as used in LapSVM and Laplacian Eigenmaps.
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Fig. 26.1. Three modes of embedding in deep architectures

Algorithm 26.1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . ,M , unlabeled data xi, i =M+1, . . . , U ,
set of functions f(·), and embedding functions gk(·), see Figure 26.1 and equa-
tions (26.9), (26.10) and (26.11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize �(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

For non-neighbors, where Wij = 0, this loss “pulls” points apart, thus inhibiting
trivial solutions without requiring difficult constraints such as (26.2). To achieve
an embedding without labeled data the latter is necessary or all examples would
collapse to a single point in the embedding space. This regularizer is therefore
preferable to using (26.1) alone. Pseudocode of the overall approach is given in
Algorithm 26.1.

Some possible tricks to take into consideration are:

– The hyperparameter λ: in most of our experiments we simply set this to λ = 1
and it worked well due to the alternating updates in Algorithm 26.1. Note
however if you are using many embedding loss functions they will dominate
the objective in that case.

– We note that near the end of optimization it may be advantageous to re-
duce the learning rate of the regularizer more than the learning rate for the
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term that is minimizing the training error so that the training error can be
as low as possible on noiseless tasks (however we did not try this in our
experiments).

– If you use an internal embedding on the first layer of your network, it is
likely that this embedding problem is harder than an internal embedding on
a later layer, so you might not want to give them all the same learning rate
or margin, but that complicates the hyperparameter choices. An alternative
idea would be to use auxiliary layers on earlier layers, or even go through
two auxiliary layers, rather than one to make the embedding task easier.
Auxiliary layers are thrown away at test time.

– Embedding on the last output layer may not always be a good idea, de-
pending on the type of network. For example if you are using a softmax last
layer the 2-norm type embedding loss may not be appropriate for the log
probability representation in the last layer. In that case we suggest to do the
embedding on the last-but-one layer instead.

– Finally, although we did not try it, training in a disjoint fashion, i.e. doing
the embedding training first, and then continuing training with a fine tuning
step with only the labeled data, might simplify these hyperparameter choices
above.

26.3.1 Labeling Unlabeled Data as Neighbors (Building the Graph)

Training neural networks online using stochastic gradient descent is fast and can
scale to millions of examples. A possible bottleneck with the described approach
is computation of the matrix W , that is, computing which unlabeled examples
are neighbors and have valueWij = 1. Embedding algorithms often use k-nearest
neighbor for this task. Many methods for its fast computation do exist, for
example hashing and tree-based methods.

However, there are also many other ways of collecting neighboring unlabeled
data that do not involve computing k-nn. For example, if one has access to
unlabeled sequence data the following tricks can be used:

– For image tasks one can make use of the temporal coherence of unlabeled
video: two successive frames are very likely to contain similar content and
represent the same concept classes. Each object in the video is also likely
to be subject to small transformations, such as translation, rotation or de-
formation over neighboring frames. Hence, using this with semi-supervised
embedding could learn classes that are invariant to those changes. For exam-
ple, one can take images from two consecutive (or close) frames of video as a
neighboring pair with Wij = 1. Such pairs are likely to have the same label,
and are collected cheaply. Frames that are far apart are assigned Wij = 0.

– For text tasks one can use documents to collect unsupervised pairs. For
example, one could consider sentences (or paragraphs) of a document as
neighbors that contain semantically similar information (they are probably
about the same topic).

– Similarly, for speech tasks it might be possible to use audio streams in the
same way.
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26.3.2 When Do We Expect This Approach to Work?

One can see the described approach as an instance of multi-task learning [6] us-
ing unsupervised auxiliary tasks. In common with other semi-supervised learning
approaches, and indeed other deep learning approaches, given a k-nn type ap-
proach to building unlabeled pairs we only expect this to work if p(x) is useful
for the supervised task p(y|x), i.e. if the structure assumption is true. That is,
if the decision rule lies in a region of low density with respect to the distance
metric chosen for k-nearest neighbors. We believe many natural tasks have this
property.

However, if the graph is built using sequence data as described in the previous
section, it is then possible that the method does not rely on the low density
assumption at all. To see this, consider uniform two-dimensional data where the
class label is positive if it is above the y-axis, and negative if it is below. A nearest-
neighbor graph gives no information about the class label, or equivalently there
is no margin to optimize for TSVMs. However, if sequence data (analogous to a
video) only has data points with the same class label in consecutive frames then
this would carry information. Further, no computational cost is associated with
collecting video data for computing the embedding loss, in contrast to building
neighbor graphs. Finally, note that in high dimensional spaces nearest neighbors
might also perform poorly, e.g. in the pixel space of images.

26.3.3 Why Is This Approach Good?

There are a number of reasons why the deep semi-supervised embedding trick
might be useful compared to competing approaches:

– Deep embedding is very easy to optimize by gradient descent as it has a
very simple loss function. This means it can be applied to any kind of neu-
ral network architecture cheaply and efficiently. As well as being generally
applicable, it is also quite easy to implement.

– Compared to a reconstruction based loss function, such as used in an autoen-
coder, our approach can be much cheaper to do the gradient updates. In our
approach there is an encoding step, but no decoding step. That is, the loss
is measured in the usually relatively low-dimensional embedding space. For
high-dimensional input data (even if that data is sparse) e.g. text data, the
reconstruction can be very slow, e.g. a bag-of-words representation with a
dictionary of tens of thousands of words. Further, in a convolutional-pooling
network architecture it might be hard to reconstruct the original data, so
again an encoder-decoder system might be hard to do, but our method only
requires an encoder.

– Our approach does not necessarily require the so called low density assump-
tion which most other approaches depend upon. Many methods only work
on data when that assumption is true (which we do not know in advance
in general). Our method may still work, depending on how the pair-data is
collected. This point was elaborated in the previous subsection.
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Table 26.1. Datasets used in our experiments. The first three are small scale datasets
used in the same experimental setup as found in [9, 24, 10]. The following six datasets
are large scale. The Mnist 1h, 6h, 1k, 3k and 60k variants are MNIST with a labeled
subset of data, following the experimental setup in [10]. SRL is a Semantic Role La-
beling task [20] with one million labeled training examples and 631 million unlabeled
examples. COIL100 is an object detection dataset [19].

data set classes dims points labeled
g50c 2 50 500 50
Text 2 7511 1946 50
Uspst 10 256 2007 50
Mnist1h 10 784 70k 100
Mnist6h 10 784 70k 600
Mnist1k 10 784 70k 1000
Mnist3k 10 784 70k 3000
Mnist60k 10 784 70k 60000
SRL 16 - 631M 1M
COIL100 (30 objects) 30 72x72 pixels 7200 120
COIL100 (100 objects) 100 72x72 pixels 7200 400

26.4 Experimental Evaluation

We test the semi-supervised embedding approach on several datasets summa-
rized in Table 26.1.

26.4.1 Small-Scale Experiments

g50c, Text and Uspst are small-scale datasets often used for semi-supervised
learning experiments [9, 24, 10]. We followed the same experimental setup, aver-
aging results of ten splits of 50 labeled examples where the rest of the data is un-
labeled. In these experiments we test the embedding regularizer on the output of
a neural network (see equation (26.9) and Figure 26.1(a)). We define a two-layer
neural network (NN) with hu hidden units. We define W so that the 10 nearest
neighbors of i have Wij = 1, and Wij = 0 otherwise. We train for 50 epochs of
stochastic gradient descent and fixed λ = 1, but for the first 5 we optimized the
supervised target alone (without the embedding regularizer). This gives two free
hyperparameters: the number of hidden units hu = {0, 5, 10, 20, 30, 40, 50} and
the learning rate lr = {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.

We report the optimum choices of these values optimized both by 5-fold cross
validation and by optimizing on the test set in Table 26.2. Note the datasets are
very small, so cross validation is unreliable. Several methods from the literature
optimized their hyperparameters using the test set (those that are not marked
with (cv)). Our EmbedNN is competitive with state-of-the-art semi-supervised
methods based on SVMs, even outperforming them in some cases.
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Table 26.2. Results on Small-Scale Datasets. We report the best test error over the
hyperparameters of our method, EmbedNN, as in the methodology of [9] as well as the
error when optimizing the parameters by cross-validation, EmbedNN(cv). LDS(cv) and
LapSVM(cv) also use cross-validation.

g50c Text Uspst
SVM 8.32 18.86 23.18
TSVM 5.80 5.71 17.61
LapSVM(cv) 5.4 10.4 12.7
LDS(cv) 5.4 5.1 15.8
Label propagation 17.30 11.71 21.30
Graph SVM 8.32 10.48 16.92
NN 10.62 15.74 25.13
EmbedNN 5.66 5.82 15.49
EmbedNN(cv) 6.78 6.19 15.84

Table 26.3. Results on MNIST with 100, 600, 1000 and 3000 labels. A two-layer
Neural Network (NN) is compared to an NN with Embedding regularizer (EmbedNN)
on the output (O), ith layer (Ii) or auxiliary embedding from the ith layer (Ai) (see
Figure 26.1). A convolutional network (CNN) is also tested in the same way. We com-
pare to SVMs and TSVMs. RBM, SESM, DBN-NCA and DBN-rNCA (marked with
(∗)) taken from [21, 23] are trained on a different data split.

Mnst1h Mnst6h Mnst1k Mnst3k
SVM 23.44 8.85 7.77 4.21
TSVM 16.81 6.16 5.38 3.45
RBM(∗) 21.5 - 8.8 -
SESM(∗) 20.6 - 9.6 -
DBN-NCA(∗) - 10.0 - 3.8
DBN-rNCA(∗) - 8.7 - 3.3
NN 25.81 11.44 10.70 6.04
EmbedONN 17.05 5.97 5.73 3.59
EmbedI1NN 16.86 9.44 8.52 6.02
EmbedA1NN 17.17 7.56 7.89 4.93
CNN 22.98 7.68 6.45 3.35
EmbedOCNN 11.73 3.42 3.34 2.28
EmbedI5CNN 7.75 3.82 2.73 1.83
EmbedA5CNN 7.87 3.82 2.76 2.07

Table 26.4. Mnist1h dataset with deep networks of 2, 6, 8, 10 and 15 layers; each
hidden layer has 50 hidden units. We compare classical NN training with EmbedNN
where we either learn an embedding at the output layer (O) or an auxiliary embedding
on all layers at the same time (ALL).

2 4 6 8 10 15
NN 26.0 26.1 27.2 28.3 34.2 47.7
EmbedONN 19.7 15.1 15.1 15.0 13.7 11.8
EmbedALLNN 18.2 12.6 7.9 8.5 6.3 9.3
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Table 26.5. Full Mnist60k dataset with deep networks of 2, 6, 8, 10 and 15 layers, using
either 50 or 100 hidden units. We compare classical NN training with EmbedALLNN
where we learn an auxiliary embedding on all layers at the same time.

2 4 6 8 10 15
NN (HUs=50) 2.9 2.6 2.8 3.1 3.1 4.2
EmbedALLNN 2.8 1.9 2.0 2.2 2.4 2.6
NN (HUs=100) 2.0 1.9 2.0 2.2 2.3 3.0
EmbedALLNN 1.9 1.5 1.6 1.7 1.8 2.4

26.4.2 MNIST Experiments

We compare our method in all three different modes (Figure 26.1) with conven-
tional semi-supervised learning (TSVM) using the same data split and validation
set as in [10]. We also compare to several deep learning methods: RBMs (Re-
stricted Boltzmann Machines), SESM (Sparse Encoding Symmetric Machine),
DBN-NCA and DBN-rNCA (Deep Belief Nets - (regularized) Neighbourhood
Components Analysis). (Note, however the latter were trained on a different
data split). In these experiments we consider 2-layer networks (NN) and 6-layer
convolutional neural nets (CNN) for embedding. We optimize the parameters
of NN ( hu = {50, 100, 150, 200, 400} hidden units and learning rates as before)
on the validation set. The CNN architecture is fixed: 5 layers of image patch-
type convolutions, followed by a linear layer of 50 hidden units, similar to [17].
The results given in Table 26.3 show the effectiveness of embedding in all three
modes, with both NNs and CNNs.

26.4.3 Deeper MNIST Experiments

We then conducted a similar set of experiments but with very deep architectures
– up to 15 layers, where each hidden layer has 50 hidden units. Using Mnist1h,
we first compare conventional NNs to EmbedALLNN where we learn an aux-
iliary nonlinear embedding (50 hidden units and a 10 dimensional embedding
space) on each layer, as well as EmbedONN where we only embed the outputs.
Results are given in Table 26.4. When we increase the number of layers, NNs
trained with conventional backpropagation overfit and yield steadily worse test
error (although they are easily capable of achieving zero training error). In con-
trast, EmbedALLNN improves with increasing depth due to the semi-supervised
“regularization”. Embedding on all layers of the network has made deep learning
possible. EmbedONN (embedding on the outputs) also helps, but not as much.

We also conducted some experiments using the full MNIST dataset, Mnist60k.
Again using deep networks of up to 15 layers using either 50 or 100 hidden
units EmbedALLNN outperforms standard NN. Results are given in Table 26.5.
Despite the lack of availability of extra unlabeled data, we still the same effect
as in the semi-supervised case that NN overfits with increasing capacity, whereas
EmbedNN is more robust (even if it exhibits some overfitting compared to the
optimal depth, it is nowhere near as pronounced.) Increasing the number of
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hidden units is likely to improve these results further, e.g. using 4 layers and
500 hidden units on each layer, one obtains 1.27% using EmbedALLNN. Overall,
these results show that the regularization in EmbedNNALL is useful in settings
outside of a semi-supervised learning.

Table 26.6. A deep architecture for Semantic Role Labeling with no prior knowledge
outperforms state-of-the-art systems ASSERT and SENNA that incorporate knowledge
about parts-of-speech and parse trees. A convolutional network (CNN) is improved
by learning an auxiliary embedding (EmbedA1CNN) for words represented as 100-
dimensional vectors using the entire Wikipedia website as unlabeled data.

Method Test Error
ASSERT [20] 16.54%
SENNA [11] 16.36%
CNN [no prior knowledge] 18.40%
EmbedA1CNN [no prior knowledge] 14.55%

26.4.4 Semantic Role Labeling

The goal of semantic role labeling (SRL) is, given a sentence and a relation
of interest, to label each word with one of 16 tags that indicate that word’s
semantic role with respect to the action of the relation. For example the sen-
tence "The cat eats the fish in the pond" is labeled in the following way:
"TheARG0 catARG0 eatsREL theARG1 fishARG1 inARGM−LOC theARGM−LOC

pondARGM−LOC" where ARG0 and ARG1 effectively indicate the subject and
object of the relation “eats” and ARGM-LOC indicates a locational modifier.
The PropBank dataset includes around 1 million labeled words from the Wall
Street Journal. We follow the experimental setup of [11] and train a 5-layer con-
volutional neural network for this task, where the first layer represents the input
sentence words as 50-dimensional vectors. Unlike [11], we do not give any prior
knowledge to our classifier. In that work words were stemmed and clustered us-
ing their parts-of-speech. Our classifier is trained using only the original input
words.

We attempt to improve this system by, as before, learning an auxiliary embed-
ding task. Our embedding is learnt using unlabeled sentences from the Wikipedia
web site, consisting of 631 million words in total using the scheme described in
Section 26.3. The same lookup table of word vectors as in the supervised task is
used as input to an 11 word window around a given word, yielding 550 features.
Then a linear layer projects these features into a 100 dimensional embedding
space. All windows of text from Wikipedia are considered neighbors, and non-
neighbors are constructed by replacing the middle word in a sentence window
with a random word. Our lookup table indexes the most frequently used 30,000
words, and all other words are assigned index 30,001.

The results in Table 26.6 indicate a clear improvement when learning an
auxiliary embedding. ASSERT [20] is an SVM parser-based system with many
hand-coded features, and SENNA is a NN which uses part-of-speech information
to build its word vectors. In contrast, our system is the only state-of-the-art
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Table 26.7. Test Accuracy on COIL100 in various settings. Both 30 and 100 objects
were used following [27]. The semi-supervised embedding algorithm using temporal
coherence of video (Embed CNN) on the last but one layer of an 8 layer CNN, with
various choices of video, outperforms a standard (otherwise identical) 8-layer CNN
and other baselines. (Note that with 100 objects this is a transductive approach, as
we use the test set as unlabeled data during training, whereas with 30 objects a semi-
supervised approach is used.)

Method 30 objects 100 objects
Nearest Neighbor 81.8 70.1
SVM 84.9 74.6
SpinGlass MRF 82.79 69.41
Eigen Spline 84.6 77.0
VTU 89.9 79.1
Standard CNN 84.88 71.49
Embed CNN 95.03 92.25

method that does not use prior knowledge in the form of features derived from
parts-of-speech or parse tree data. The use of neural network techniques for
this application is explored in much more detail in [12], although a different
semi-supervised technique is used in that work.

26.4.5 Object Recognition Using Unlabeled Video

Finally, we detail some experiments using unlabeled video for semi-supervised
embedding, more details of these experiments can be found in [18]. We used the
COIL100 image dataset [19] which contains color pictures of 100 objects, each
72x72 pixels. There are 72 different views for every object, i.e. there are 7200
images in total. The images were obtained by placing the objects on a turntable
and taking a shot for each 5 degree turn. Note that the rotation of the objects
can be viewed as an unlabeled video which we can use in our semi-supervised
embedding approach.

The setup of our experiments is as follows. First, we use a standard convo-
lutional neural network (CNN) without utilizing any temporal information to
establish a baseline. We used an 8-layer network consisting of three sets of con-
volution followed by subsampling layers, a final convolution layer and a fully
connected layer that predicts the outputs.

For comparability with the settings available from other studies on COIL100,
we choose two experimental setups. These are (i) when all 100 objects of COIL
are considered in the experiment and (ii) when only 30 labeled objects out of
100 are studied (for both training and testing). In either case, 4 out of 72 views
(at 0, 90, 180, and 270 degrees) per object are used for training, and the rest of
the 68 views are used for testing. The results are given in Table 26.7 compared
to some existing methods [22, 27, 5]. Note that using 100 objects is a harder
task than using 30 objects (classes).
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To use the semi-supervised embedding trick on our CNN for video, we treat
COIL100 as a continuous unlabeled video sequence of rotating objects with 72
consecutive frames per each object (after 72 frames the continuous video switches
object). We perform the embedding on the last but one layer of our 8 layer CNN,
i.e. on the representation yielded by the successive layers of the network just
before the final softmax. For the 100 object result, the test set is hence part of
the unlabeled video (a so-called “transductive” setting). Here we obtained 92.25%
accuracy (Embed CNN) which is much higher than the best alternative method
(VTU) and the standard CNN that we trained.

A natural question is what happens if we do not have access to test data
during training, i.e. the setting is a typical semi-supervised situation rather than
a “transductive” setting. To explore this, we used 30 objects as the primary
task, i.e. 4 views of each object in this set were used for training, and the rest
for test. The other 70 objects only were treated as an unlabeled video sequence
(again, images of each object were put in consecutive frames of a video sequence).
Training with 4 views of 30 objects (labeled data) and 72 views of 70 objects
(unlabeled video sequence) resulted in an accuracy of 95.03% on recognizing 68
views of the 30 objects. This is about 10% above the standard CNN performance.

26.5 Conclusion

In this chapter, we showed how one can improve supervised learning for deep
architectures if one jointly learns an embedding task using unlabeled data.
Researchers using shallow architectures already showed two ways of using em-
bedding to improve generalization: (i) embedding unlabeled data as a separate
pre-processing step (i.e., first layer training) and; (ii) using embedding as a reg-
ularizer (i.e., at the output layer). It appears similar techniques can also be used
for multi-layer neural networks as well, using the tricks described in this chapter.
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