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Abstract. The continuation method is a popular heuristic in computer
vision for nonconvex optimization. The idea is to start from a simpli-
fied problem and gradually deform it to the actual task while tracking
the solution. It was first used in computer vision under the name of
graduated nonconvexity. Since then, it has been utilized explicitly or im-
plicitly in various applications. In fact, state-of-the-art optical flow and
shape estimation rely on a form of continuation. Despite its empirical
success, there is little theoretical understanding of this method. This
work provides some novel insights into this technique. Specifically, there
are many ways to choose the initial problem and many ways to progres-
sively deform it to the original task. However, here we show that when
this process is constructed by Gaussian smoothing, it is optimal in a
specific sense. In fact, we prove that Gaussian smoothing emerges from
the best affine approximation to Vese’s nonlinear PDE. The latter PDE
evolves any function to its convex envelope, hence providing the optimal
convexification.

Keywords: Continuation Method, Diffusion Equation, Nonconvex Op-
timization, Vese’s PDE

1 Introduction

Minimization of nonconvex energy functions arises frequently in computer vision.
Examples include image segmentation [49], image alignment [67], image comple-
tion [46], dictionary learning [44], part-based models [25], and optical flow [62].
Unfortunately, a severe limitation of nonconvex problems is that finding their
global minimum is generally intractable.

Some possible options for handling nonconvex tasks include1 local optimiza-
tion methods (e.g. gradient descent), convex surrogates, and the continuation
method. Each of these ideas has its own merit and is preferred in certain set-
tings. For example, local methods are useful when most local minima produce
reasonably good solutions; otherwise the algorithm may get stuck in poor local
minima. Convex surrogates are helpful when the nonconvexity of the task is
mild, so that little structure is lost by the convex approximation. For example,

1 In this paper we only discuss deterministic schemes.
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it has been observed that for face recognition problem, the nonconvex sparsity
encouraging `0 norm can be replaced by the convex `1 and yet produce impres-
sive result [71]. Recently [23] proposed an a surrogate construction with bounded
discrepancy between the solution of the convexified and original task.

The third idea is to utilize the continuation method. It solves a sequence of
subproblems, starting from a convex (hence easy) task and progressively chang-
ing it to the actual problem while tracing the solution. Such complexity pro-
gression is in contrast to convex surrogates that produce a one-shot relaxation.
Here, the solution of each subproblem guides solving the next one. This approach
is often useful when the nonconvexity of the problem is so severe that convex
surrogates cannot provide any meaningful approximation.

In this paper, we focus on optimization by the continuation method. The idea
has been known to the computer vision community for at least three decades.
This dates back to the works of Terzopoulos and Witkin [63,69,70], Blake and
Zisserman [6], and Yuille [74,75,76,77,78]. Since then, this technique has been
used with growing interest to solve some difficult optimization problems. In
particular, it is a key component in several state-of-the-art solutions for computer
vision and machine learning problems as we discuss in Section 2.

Despite its long history and empirical success, there is little understanding
about the fundamental aspects of this method. For example, it is known that the
continuation method cannot always find the global minimizer of all nonconvex
tasks. In fact, the quality of the solution attained by this approach heavily
depends on the choice of the subproblems. However, there are endless choices for
the initial convex problem, and endless ways to progressively change it to the
original nonconvex task. Obviously, some of these choices should work better
than the others. However, to date, there is no known principle for preferring one
construction versus another.

For example, a possible way to construct the subproblem sequence is by Gaus-
sian smoothing [50,47]. The idea is to convolve the original nonconvex function
with an isotropic Gaussian kernel at various bandwidth values. This generates a
sequence of functions varying from a highly smoothed (large bandwidth) to the
actual nonconvex function (zero bandwidth). In fact, it can be proved that un-
der certain conditions, enough smoothing can lead to a convex function [43]. The
convexity implies that finding the minimizer of the smoothed function is easy.
This minimizer is used to initialize the next subproblem, with slightly smaller
bandwidth. The process repeats until reaching the last subproblem, which is the
actual task. Since this type of progression goes from low-frequency toward fully
detailed, it is also called coarse-to-fine optimization.

In this paper, we provide original insights into the choice of subproblems for
the continuation method. Specifically, we prove that constructing the subprob-
lems by Gaussian smoothing of the nonconvex function is optimal in a specific
sense. Recall that the continuation method starts from an already convex objec-
tive and progressively maps it to the actual nonconvex function. Among infinite
choices for the initial convex task, the convex envelope of the nonconvex prob-
lem is (in many senses) the best choice. Unfortunately, the convex envelope of
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an arbitrary function is nontrivial and generally expensive to compute. Vese has
shown that the convex envelope of a function can be generated by an evolu-
tionary PDE [66]. However, this PDE does not have an analytical solution. Our
contribution is to prove that the best affine approximation to Vese’s PDE results
in the heat equation. The solution of the latter is known; it is the Gaussian con-
volution of the nonconvex function. Hence, Gaussian smoothing is the outcome
of the best affine approximation of the (nonlinear) convex envelope generating
PDE.

2 Related Works

Here we review some remarkable works that rely on the concept of optimization
by the continuation method.

In computer vision, the early works around this concept were done by Blake
and Zisserman (on so called Graduated Non-Convexity (GNC)) [6] as well as
Terzopoulos and Witkin [63,69,70]. Shortly afterward, Geiger and Girosi [29] as
well as Yuille [74] used similar concepts from a statistical physics viewpoint. The
latter method is known as Mean Field Annealing (MFA). Motivated by prob-
lems in stereo and template matching, Yuille popularized MFA in a series of
works [30,74,75,76,77,78]. MFA is a deterministic variant of simulated anneal-
ing2, where the stochastic behavior is approximated by the mean state. This
model starts from high temperature (smoother energy and hence fewer extrema)
and gradually cools down toward the desired optimization task.

Since then, the concept of optimization by the continuation method has been
successfully utilized in various vision applications such as image segmentation
[9], shape matching [64], image deblurring [8], image denoising [54,51], template
matching [22], pixel correspondence [40], active contours [18], Hough transform
[39], edge detection [80], early vision [5], robot navigation [52], and image mat-
ting [53]. In fact, many computer vision methods that rely on multiscale image
representation within the optimization loop are implicitly performing the con-
tinuation method, e.g. for image alignment [47].

The growing interest in this method within computer vision community has
made it one of the most popular solutions for the contemporary nonconvex min-
imization problems. Just within the past few years, it has been utilized for low-
rank matrix recovery [45], error correction [48], super resolution [19], photometric
stereo [72], image segmentation [35], face alignment [57], 3D surface estimation
[1], motion estimation in videos [61], optical flow [10,62], shape and illumination
recovery [2], and dense correspondence of images [36]. The last three are in fact
state of the art solutions for their associated problems.

Independently, the machine learning community has been using similar ideas
for optimization. Notably, Rose popularized the method of Deterministic An-

2 There is some conceptual similarity between simulated annealing (SA) and some of
the continuation methods. However, SA is an MCMC method and is known for its
very slow convergence. The continuation methods studied here are deterministic and
converge much faster [7,40].
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nealing (DA) for clustering problems [55]. This method starts from the max-
imum entropy solution (the simple task), and gradually reduces the entropy
to only leave the actual objective function. Variants of DA have been recently
used for learning occluding objects [20], object tracking [33], image deblurring
[41], clustering boolean data [26], graph clustering [56], unsupervised language
learning [60]. Chapelle has utilized continuation in various applications such
as semi-supervised learning [12,13,59], semi-supervised structured output [21],
multiple instance learning [28], and ranking [14]. Bengio argues that some recent
breakthroughs in the training of deep architectures [34,24], has been made by
algorithms that use some form of continuation for learning [4].

Other examples that utilize continuation for optimization are clustering [32],
graph matching [31,79,42], multiple instance learning [37], language modeling
[3], manifold sampling [58], and `0 norm minimization [65]. One of the most
interesting applications, however, has been recently introduced by [16,17]. The
goal is to find optimal parameters in computer programs. The authors define
a smoothing operator acting on programs to construct smooth interpretations.
They then seek the optimal parameters by starting from highly smoothed in-
terpretations and gradually reducing the smoothing level. The idea is further
extended to smoothing the space of proofs and seeking the optimal proof to a
problem by the continuation method [15].

Throughout this paper, we use x for scalars, x for vectors, X for matrices,
and X for sets. Here ‖x‖ means ‖x‖2 and , means equality by definition. When
a function is denoted as g(x; t), the gradient ∇, Hessian ∇2 and Laplacian ∆
operators are only applied to the vector x and not t. The convolution operator is
denoted by ?. The isotropic Gaussian kernel with standard deviation σ is shown
by kσ,

kσ(x) ,
1

(
√

2πσ)dim(x)
e−
‖x‖2

2σ2 .

3 Optimization by Continuation

Given an (possible nonconvex) objective function f : X → R, where X = Rn.
Consider an embedding of f into a family of functions g : X × T , where T ,
[0,∞), with the following properties. First, g(x, 0) = f(x). Second, when t→∞,
then g(x, t) is strictly convex and has a unique minimizer (denoted by x∞).
Third, g(x, t) is continuously differentiable in x and t. Such embedding g is
sometimes called a homotopy , as it continuously transforms one function to
another.

Define the curve x(t) for t ≥ 0 as one with the following properties. First,
limt→∞ x(t) = x∞. Second, ∀t ≥ 0 ; ∇g

(
x(t), t

)
= 0. Third, x(t) is contin-

uous in t. This curve simply sweeps a specific stationary path of g originated
at x∞, as the parameter t progresses backward (See Figure 1). In general, such
curve neither needs to exist, nor needs to be unique. However, with some addi-
tional assumptions on g, it is possible to guarantee existence and uniqueness of
x(t), e.g. by Theorem 3 of [73].



On the Link Between Gaussian Homotopy Continuation & Convex Envelopes 5

Fig. 1. Plots show g versus x for each fixed time t. The marble indicates the location
for x(t).

Algorithm 1 Algorithm for Optimization by the Continuation Method

1: Input: f : X → R, Sequence t0 > t1 > · · · > tm = 0.
2: x0 = global minimizer of g(x; t0).
3: for k = 1 to m do
4: xk = Local minimizer of g(x; tk), initialized at xk−1.
5: end for
6: Output: xm

In practice, the continuation method is realized as follows. First, x∞ is ei-
ther derived analytically3 or approximated numerically as arg minx g(x; t) for
large enough t. The latter can use standard convex optimization tools as g(x; t)
approaches a convex function in x for large t. Then, the stationary path x(t)
is numerically tracked until t = 0 (See Algorithm 1). As discussed in Section 2,
for a wide range of applications, the continuation solution x(0) often provides a
good local minimizer of f(x), if not the global minimizer.

4 Motivation for Gaussian Homotopy

There are some limited number of studies on very specific problems which guar-
antee the continuation method can discover the global minimum of the problem.
An example of this kind is the work by Yuille and Kosowsky [38] on assignment
problem. However, in general, there is no guarantee for the continuation method
to reach the global minimizer of f(x).

In fact, the quality of the solution attained by the continuation method de-
pends on the choice of the homotopy map g(x; t). It is therefore crucial to choose

3 For functions whose tails vanish fast enough, this point is simply the center of mass
of the function [43].
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g(x; t) in the most sensible way. Currently, there is no pointer in the literature
to justify one homotopy versus others. For example, Fua and Leclerc [27] use
g(x, t) = f(x) + txTAx, where A � O. Blake and Zisserman [6] utilize a task-
tailored polynomial map. Methods based on deterministic annealing use negative
entropy g(x, t) = f(x) + txT log(x) (applicable to nonnegative x), e.g. by Rose
and Rossi [55,56]. Nielson [50] and Mobahi [47] use Gaussian homotopy by con-
volving f with the Gaussian kernel, i.e. g( . , t) = f?kt. When Gaussian homotopy
is used for optimization, it is sometimes called coarse-to-fine optimization4.

In this section, we claim that Gaussian homotopy is optimal in a specific
sense; it solves the best affine approximation (around the origin of the function
space, i.e. the function f(x) = 0) to a nonlinear PDE that generates convex
envelopes. We will postpone the proof to the next section.

By definition, a homotopy for optimizing f(x) = g(x; 0) must continuously
convexify it to g(x,∞). Among all convex choices g(x,∞), the convex envelope
is the optimal convexifier of f in many senses. For example, it provides the best
(largest) possible convex underestimator of the f . Furthermore, geometrically,
the convex envelope is precisely the function whose epigraph coincides with the
convex hull of the epigraph of f .

The convex envelope, however, is often unknown itself and its computation
is generally very expensive. Interestingly, Vese [66] has characterized an elegant
PDE that if its initial condition is set to f(x), it evolves toward the convex
envelope of f and reaches there in the limit t → ∞. More precisely, this is a
nonlinear PDE that evolves a function v(x; t) for v : X × T as the following,

∂

∂t
v =

√
1 + ‖∇v‖2 min{0, λmin(∇2v)} , s.t. v( . ; 0) = f( . ) , (1)

where λmin(∇2v) is the smallest (sign considered) eigenvalue of the Hessian
of v. Intuitively, this PDE acts like a conditional diffusion process. At any evolu-
tion moment t, v(x; t) is spatially diffused at points x where v(x; t) is nonconvex
and is left as is at points x where v(x; t) is convex (nonconvexity and convexity
of v here are w.r.t. to the variable x). Consequently, throughout the evolution,
nonconvex structures diminish by diffusion while convex structures sustain.

Vese’s PDE involves the nonsmooth function min, which complicates its
treatment for the purpose of this paper5. Hence, we introduce the modified Vese’s
PDE by replacing min with a smooth approximation,

∂

∂t
u =

√
1 + ‖∇u‖2m

(
λ(∇2u)

)
, s.t. u( . ; 0) = f( . ) (2)

m
(
λ
)
,

∑n
k=1 λke

−λkδ

1 +
∑n
k=1 e

−λkδ
,

4 This is because moving from large to small t reveals coarse to fine structure of the
optimization landscape.

5 The difficulty arises later in Section 5, where we need to differentiate the r.h.s. of
(1), but min is not differentiable.
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t 0 1/8 3/8 9/8 27/8

Original

Modified

Linearized

Fig. 2. Evolution of the function x4 +2x3−12x2−2x by Vese’s original PDE (1) (top),
versus its modified (middle) and linearized (3) (bottom) forms. Since the difference
between the original and modified version of Vese’s PDE is very subtle, in the middle
row the modified solution (magenta) is superimposed on the original solution (blue).
The modified version uses δ = 10 to make the the two visually distinct (with δ = 1
these plots already become indistinguishable). While all three evolutions convexify the
initial function, the original and modified Vese’s equations respectively generate the
perfect and close approximate to the convex envelope.

where δ > 0, and λ , (λ1, . . . , λn) is a n×1 vector. Observe that limδ→0+ m(λ) =
min{0, λ1, . . . , λn}. Hence, we can construct an arbitrarily close approximation
to min{0, λ1, . . . λn} by choosing a small enough δ > 0. Although Vese’s PDE
and its modified form are not identical, from practical viewpoint their difference
is often negligible (See Figure 2, the top and middle rows). Hence, we proceed
with the modified Vese’s PDE for our analysis in Section 5, solely for technical
reasons.

Neither the original nor the modified versions of Vese’s PDE can be solved
analytically due to their highly nonlinear nature. However, in Section 5 we will
prove that the best affine approximation of the modified Vese’s operator around
the origin of the function space (i.e. the function f(x) = 0) is the Laplace
operator, hence the following approximation (See Figure 2 for an illustrative
example),

∂

∂t
û =

1

n+ 1
∆û , û( . ; 0) = f( . ) . (3)

The resulted PDE (3) is essentially the heat equation [68] on the domain
X = Rn with the initial condition û(x, 0) = f(x). The solution of the heat
equation in (3) is known to have the following form,

û(x; t) = (
n+ 1

4πt
)
n
2 [f(.) ? e−

‖ . ‖2 (n+1)
4t ] (x) .
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The function û can be reparameterized in its scale parameter via σ2 = 2t
n+1 .

This only changes the speed of progression, which is not crucial for our conclusion
here. Hence, the homotopy can be expressed as the convolution of f with the
Gaussian kernel kσ as below,

ĥ(x;σ) = [f ? kσ] (x) .

This approximation buys us a significant benefit in practice, for the following
reason. While the nonlinear operator appearing in the original PDE (1) or its
modified version (2) does not allow for a closed form solution, the linear PDE (3)
makes this possible, provided that the integral for the Gaussian convolution of f
in (4) has a closed form expression. The latter is true for some important classes
of functions including polynomials and Gaussian bumps. Both of these classes
are rich enough to represent almost any function, respectively through Taylor
series and Gaussian Radial-Basis-Functions (RBF). For example, [47] uses these
function spaces in order to formulate the image alignment problem and then
solves it by Gaussian homotopy continuation.

Note that unlike Vese’s equation that always evolves the nonconvex function
to a convex one (in fact, to its convex envelope), heat equation does not nec-
essarily produce a convex function. However, it does so for functions that on
average (across all points) are convex6. There exist sufficient conditions7 on the
nonconvex functions to guarantee their convexity after enough smoothing [43].

5 Affine Approximation of Modified Vese’s Operator

Here we prove our earlier claim that the best affine approximation to the modified
Vese’s PDE around the origin of function space (i.e. the function f(x) = 0) leads
to the Laplace operator. We first need a few definitions. In the sequel, let H be
the space of twice differentiable functions h : X → R, where X , Rn. We
consider linear and nonlinear operators that have the form H → H and denote
them by L and N respectively. We say an operator is linear if and only if it
obeys ∀h1 ∈ H , h2 ∈ H , a ∈ R , b ∈ R ; L {ah1 + bh2} = aL {h1} + bL {h2}.

Definition 1 (Affine Operator). An affine operator is the form L{h} + c
where L is a linear operator in h and c is constant in h.

Definition 2 (Modified Vese’s Operator).
The modified Vese’s operator is defined as the operator acting on the function

h ∈ H to return
√

1 + ‖∇h‖2m
(
λ(∇2h)

)
, where m

(
λ
)
,

∑n
k=1 λke

−λk
δ

1+
∑n
k=1 e

−λk
δ

.

6 For example, in univariate functions f(x), the Gaussian smoothed function is
g(x;σ) , [f ? kσ](x) and hence g′′(x;σ) , [f ′′ ? kσ](x). When σ → ∞, convolu-
tion with kσ(x) acts an averaging operator. Hence if

∫
X f
′′(x) dx > 0, i.e. f is on

average convex, then ∀x ; g′′(x;σ) > 0 (i.e. g(x;σ) is convex everywhere) a large
enough σ.

7 For example, if the tails vanish fast enough and the −∞ <
∫
X f(x) dx < 0, the it is

guaranteed that for a large enough σ, g(x;σ) is convex. See [43] for details.
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Definition 3 (Best Affine Approximation of a Nonlinear Operator).
Consider a h ∈ H and suppose it is resulted by perturbing some function

h∗ ∈ H by the function εφ, that is,

h = h∗ + εφ , (4)

where φ ∈ H and ε ∈ R. Suppose N {h∗ + εφ} is differentiable in ε around
ε = 0 so that its first order expansion w.r.t. ε obeys N {h} = N {h∗ + εφ} =
N {h∗}+ε( ddεN {h

∗+εφ})|ε=0 +o(ε). The “best affine approximation” to N {h}
around the fixed function h∗ is defined as discarding the term o(ε) from the above,
so that,

copt , N {h∗} , Lopt{h} , ε(
d

dε
N {h∗ + εφ})|ε=0 . (5)

Theorem 1. The best affine approximation of the modified Vese’s operator, act-
ing on functions close to the zero function (h∗(x) = 0) and with bounded zeroth,
first and second order derivatives, is equal to 1

n+1 ∆.

Proof. The nonlinear operator of interest here is the modified Vese’s operator,

N {h} ,
√

1 + ‖∇h‖2m
(
λ(∇2h)

)
. (6)

Observe that for this operator, N {h∗ + εφ} is differentiable in ε. Since
h∗(x) = 0, (5) implies that copt = N (0) = 0. Note that we exploited the

fact that φ, ∇φ and λ(∇2φ) are bounded at any x ∈ X so that by ε = 0 one can
conclude h = εφ = 0, ‖∇h‖2 = ε2‖∇φ‖2 = 0, and λ(∇2h) = ελ(∇2φ) = 0.

We now focus on computing Lopt{h} using (5), which amounts to finding,

ε
( d
dε

√
1 + ‖∇εφ‖2m(λ(∇2εφ))

)
|ε=0

. (7)

We proceed by first computing
(
d
dε

√
1 + ε2‖∇φ‖2m(ελ(∇2φ))

)
|ε=0

. By chain

rule, this is equivalent to,

( d
dε

√
1 + ε2‖∇φ‖2

)
|ε=0

(
m(ελ(∇2φ))

)
|ε=0

+
( d
dε
m(ελ(∇2φ))

)
|ε=0

(√
1 + ε2‖∇φ‖2

)
|ε=0

.

Since ∇φ and λ(∇2φ) are assumed to be bounded, at ε = 0, the above
expression can be written as( d

dε

√
1 + ε2‖∇φ‖2

)
|ε=0

m(0) +
( d
dε
m(ελ(∇2φ))

)
|ε=0

√
1 + 0 . (8)

Hence the above sum simplifies to
(
d
dεm(ελ(∇2φ))

)
|ε=0

. Applying chain rule

again, this becomes
(
∇m(ελ(∇2φ))

)
| ε=0

•
(
d
dεελ(∇2φ)

)
| ε=0

, where • denotes

the inner product between two n × 1 vectors. Evaluating it at ε = 0 yields
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∇m(0) • λ(∇2φ). Since ∇m(0) = 1
n+11, where 1 is a n×1 vector with all entries

equal to 1, the expression becomes 1
n+1 1 • λ(∇2φ). However, 1 • λ(∇2φ) is sim-

ply the sum of the eigenvalues, thus it is Trace(∇2φ). Finally, since Trace(∇2φ) is
sum of the diagonals of the Hessian matrix for φ, it is equivalent to the Laplacian
∆φ. In summary, we just derived that,( d

dε

√
1 + ε2‖∇φ‖2m(ελ(∇2φ))

)
|ε=0

=
1

n+ 1
∆φ , (9)

Going back to the definition of Lopt{h} in (7), it follows that,

Lopt{h} , ε
( d
dε

√
1 + ‖∇εφ‖2m(λ(∇2εφ))

)
|ε=0

(10)

= ε
1

n+ 1
∆φ . (11)

We now manipulate ε 1
n+1 ∆φ. Moving ε inside, it can be equivalently be

written as 1
n+1 ∆(ε φ). However, by (4), ε φ is just the definition of h−h∗. Using

that fact that h∗ = 0, we obtain,

Lopt{h} =
1

n+ 1
∆h . (12)

ut

6 Discussion and Future Works

This work provided new insights into the optimization by homotopy continu-
ation. We showed that constructing the homotopy by Gaussian convolution is
optimal in a specific sense. That is, the Gaussian homotopy is the result of the
best affine approximation to the modified Vese’s PDE. Vese’s PDE is interest-
ing for homotopy construction because it evolves the nonconvex function to its
convex envelope. The convex envelope provides optimal convexification for non-
convex functions. However, Vese’s PDE does not have any closed form solution
due to its nonlinearity, hence cannot be used in practice. In contrast, Gaus-
sian smoothing can be computed in closed form for a large family of functions,
including those represented by polynomials or Gaussian radial basis functions.

Recall that the optimality of the Gaussian homotopy is proved here in a
certain setting; when the modified Vese’s PDE is linearized around the origin of
the function space h∗(x) = 0. Such linearization severely degrades the fidelity
of the approximation. An important question is whether linearity or working
around the origin could be relaxed without losing the advantage of closed form
solution to the PDE. Such exntension is a clear direction for future studies.

A possibility might be exploiting the conditional diffusion property of Vese’s
PDE. Remember this PDE only diffuses nonconvex regions throughout the evo-
lution, and is insensitive to convex regions. If the nonconvex and convex parts
of an objective function could be separated, applying Gaussian smoothing only
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to the nonconvex part might produce a better approximation to Vese’s PDE,
as opposed to smoothing the entire objective function. This is obviously a non-
linear evolution because it requires a switching behavior between convex and
nonconvex regions.

Another direction for improving the approximation quality is to manipulate
the objective function. For example, transforming the objective function f(x)
to − exp(−M f(x)), where M > 0 is a large constant, does not alter the global
minimizers. However, the latter form may lead to a better agreement between the
linearized and original PDE, when used as their initial condition. The intuition is
that, the transformed function is very close to zero almost everywhere (recall that
our linearization is around h∗(x) = 0). Smoothing the exponentially transformed
function is also pursued by [23], but for one-shot convexification. Note that the
exponential transform followed by the diffusion process is related to the Burgers’
PDE [11]. This connection might be of value, but does not completely answer all
questions. That is because while the solution of Burgers’ equation has a known
form, it involves Gaussian convolution of exp(−M f(x)), which may not have
an analytical form for interesting choices of f(x), e.g. polynomials. This integral
also arises in [23] and is approximated by sampling based methods.
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