
Learning Topology of Curves with Application to Clustering

Hossein Mobahi †‡ and Shankar R. Rao ‡ and Yi Ma ‡

† Department of Computer Science
‡ Coordinated Science Laboratory

University of Illinois at Urbana Champaign, Urbana, IL 61801

Abstract

We propose a method for learning the intrinsic topol-
ogy of a point set sampled from a curve embedded in
a high-dimensional ambient space. Our approach does
not rely on distances in the ambient space, and thus can
recover the topology of sparsely sampled curves, a sit-
uation where extant manifold learning methods are ex-
pected to fail. We formulate a loss function based on
the smoothness of a curve, and derive a greedy proce-
dure for minimizing this loss function. We compare the
efficacy of our approach with representative manifold
learning and hierarchical clustering methods on both
real and synthetic data.

Introduction
A fundamental task in machine learning is to learn the under-
lying structure of unorganized data. A common assumption
is that the data lies on a low-dimensional manifold embed-
ded in the high-dimensional ambient space. The structure
of the manifold can differ significantly from the structure of
the ambient space, so that data samples that are “close” in
the ambient space are not necessarily “close” on the under-
lying manifold. Thus a key step in manifold learning is to
infer the intrinsic topology of the embedded manifold from
the data. That is, given a set of unstructured data samples
believed to lie on a low-dimensional manifold, one seeks to
infer a neighborhood relationship among samples that is in-
dependent of distances in the ambient space. Such a task is
inherently ill-posed, as there are many possible ways such
connectivities can be realized.

A simple idea is to build the intrinsic topology upon local
neighborhood in the Euclidean space. For example, every
point may be connected to its neighbor points determined
by K-Nearest-Neighbors (KNN) or ε-ball. This idea is moti-
vated from the definition of a smooth manifold; tiny regions
on a manifold are topologically equivalent to patches of a
Euclidean space.

Due to its simplicity and efficiency, a majority of manifold
learning methods rely on KNN or ε-balls for learning the lo-
cal topology, including Isomap (Tenenbaum et al., 2000),
Local Linear Embedding (LLE) (Roweis & Saul, 2000),

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Laplacian Eigenmaps (Belkin & Niyogi, 2003), Semidef-
inite Embedding (Weinberger & Saul, 2005). Similarly,
Principal Curves method (Hastie & Stuetzle, 1989) relies a
neighborhood span for local averaging.

These methods tend to work well if the manifold is
densely sampled. However, in many circumstances, obtain-
ing large dense sample sets may be expensive or impossible.
To cope with the lack of samples, a natural option is to in-
volve all the samples collectively by fitting a global model
to the data. To prevent a global model from overfitting the
data, one needs a notion of model simplicity. In our con-
text, the notion of simplicity will be the smoothness of the
manifold.

A general framework for achieving this goal is to con-
sider a parameterization of the manifold and then seek a so-
lution whose parameterization is itself a smooth function.
Along this path, (Smola et al., 2001) explores kernel meth-
ods for obtaining parametric representation of manifolds.
For kernel-based methods, the definition of a smooth man-
ifold varies depending on what kernel is chosen. In addi-
tion, it is not clear how smooth parameters in kernel-based
representations are related to the actual smoothness of the
manifold.

There has been some recent effort that integrate notions
of global smoothness into manifold learning such as (Dollár
et al., 2007) and (Bengio et al., 2006). However these meth-
ods still use a KNN or ε-balls as an initialization. Finding
the intrinsic topology of a point set that maximizes smooth-
ness without resorting to these local cues is a hard prob-
lem in general. In this work we take a first step toward
this goal, by studying single 1-dimensional manifolds, aka
curves. Learning curves, e.g. obtaining principal curves
(Hastie & Stuetzle, 1989), and its applications to machine
learning and pattern recognition have been addressed in the
literature (Chang & Ghosh, 1998). This work seeks to learn
the intrinsic topology without using any local information
from a sparse set of samples. We formulate the problem
as an optimization task and propose a simple and suitable
greedy search for solving it. Our formulation is guaranteed
to converge to a solution that is locally optimal in the solu-
tion space in a finite number of steps. As we will show, our
method only requires a single parameter (the choice of `q-
norm), and empirically, we have found that q = 0.1 works
well for all of our experiments.

Figure 1: Left: Two Spiral Problem. Middle: SVM + RBF
Kernel. Right: SVM + Polynomial Kernel

We evaluate the performance of our method against
Isomap1, as a representative manifold learning from a lo-
cal neighborhood as well as typical hierarchical clustering
algorithms. We use both synthetic and real data in our tests.

From Neighbors to Smoothness
In this section we provide an intuitive motivation for our
approach using a simple example.

In the late 80s, Alexis Wieland posed the two spirals prob-
lem as a challenge to the artificial neural networks com-
munity. The goal was to learn models for two concentric
and intertwined spirals using training samples (originally 97
per spiral), so that unlabeled test samples from either spi-
ral would be correctly classified. The density of the sam-
ples increased moving inward along the spirals. Due to the
non-linearity and uneven distribution of the samples, it was
a very difficult problem for error backpropagation and rela-
tive approaches (Touretzky & Pomerleau, 1989). For many
years, this problem was a benchmark for pattern recognition.

Many modern classification methods achieve outstanding
performance on this problem. Specifically, support vector
machines (SVM) using the radial basis function (RBF) ker-
nel discovers the perfect decision boundary as illustrated in
(Cristianini, 2001). However, this performance significantly
deteriorates when the sample size is reduced. For example,
consider the instance of the problem shown in Figure 1 with
only 30 samples per spiral. The SVM results shown in Fig-
ure 1 are the best that it could achieve by a grid search for
the parameters with the best generalization performance 2.

This observation is not very surprising as these kernels
are well suited for spherical-shaped distributions while here
each spiral is a thin curve. Thus, manifold learning seems
to be a more promising avenue for learning such structure of
more sparsely sampled datasets.

We test the efficiency of Isomap to model each spiral us-
ing the reduced dataset. The set of points for each spiral
were input to Isomap separately. The intrinsic dimensional-
ity of the manifold was set to one and then the projection of
the points onto this 1-dimensional space were ordered. This

1Isomap assumes that the manifold is isometric to a convex sub-
set of Euclidean space. However, because we only consider singly
connected curves in this paper, this assumption is reasonable.

2For RBF kernel σ = 1.2255 and C = 12.4637 and for the
polynomial kernel, degree is 4 and C = 180.2722.

Figure 2: Red and Blue points ordered by Isomap. Left: k=1
, Right: k=2.

Figure 3: Left: Our method applied to 2 Spiral data. Middle:
Result smoothed by cubic spline. Right: Decision region by
nearest manifold

order was used to connected the points in the original space.
The results for neighborhoods k = 1 and k = 2 are shown
in Figure 2. As these results demonstrate, the local nature of
Isomap prevents it from inferring the global structure of the
manifold from a more sparse set of samples 3.

Now we apply the idea that we propose in this paper to
this problem. The result is shown in Figure 3. The method
will be explained in details in the next section. Briefly it
tries to find an arrangement of points such that sharp angles
are avoided (compare the angles in this figure with those
of Isomap in figure 2). Similar to Isomap case, we fed
red and blue points separately and obtained the correspond-
ing curves. Once the order of the points along the curve
is known, one can resort to spline methods for approximat-
ing the actual curve. Here we applied a cubic spline and it
perfectly coincides with the underlying curves. Finally, the
decision regions are shown by assigning each point on the
plane to the nearest (splined) curve.

Methodology
In this section we discuss our approach in detail. We first
formulate the problem as minimization of a loss function,
propose a greedy approach to the optimization, and then
summarize the method as an algorithm.

3We also applied Isomap for neighborhoods k = 3...29, but did
not observe any improvement.

Problem Formulation
Suppose we are given a collection of points S = ∪ixi , i =
1, ...n in a vector space X equipped with an inner prod-
uct, so that angles between any pair of vectors is de-
fined. The goal is to obtain a permutation of the points
P ∗ = (x̃1, x̃2, ..., x̃n) such that the (piecewise linear)
curve obtained by connecting the points in the order in-
duced by P ∗ exhibits no sharp angle. More precisely,
P ∗ = argmin

P∈P
L(P), where P is the space of all permuta-

tions of S and L is an appropriate loss function. We detail
one such loss function below.

We first form a vector Θ, where each entry θi is a function
of the angle formed at the junction of consecutive line seg-
ments. Since each angle relies on three consecutive points,
there are n− 2 components in Θ, obtained by traversing the
path (x̃1, x̃2, ..., x̃n). For three consecutive points x̃i, x̃i+1

and, x̃i+2, the trajectory along the path is most smooth
when 6 x̃ix̃i+1x̃i+2 is most obtuse and least smooth when
6 x̃ix̃i+1x̃i+2 is most acute. One such function that pos-
sesses these desired properties is:

θi = 1 + cos 6 x̃ix̃i+1x̃i+2

= 1 +
(x̃i+2 − x̃i+1) • (x̃i − x̃i+1)
‖x̃i+2 − x̃i+1‖ ‖x̃i − x̃i+1‖

(1)

We compute the loss function as the `q-norm of Θ:

L(P) = ‖Θ‖qq (2)

=
n−2∑
i=1

(
1 +

(x̃i+2 − x̃i+1) • (x̃i − x̃i+1)
‖x̃i+2 − x̃i+1‖‖x̃i − x̃i+1‖

)q
.(3)

Different choices of q affect the performance of the algo-
rithm. We have found that small q, i.e. sparsity-inducing,
tend to give the best results.

Greedy Optimization
Finding a global minimum of (3) over all permutations of
S is a combinatorial optimization. We adopt a greedy lo-
cal search scheme that attains a local minimum. The idea
is to start from a random solution and iteratively improve
it. In each iteration, the current solution is perturbed in its
neighborhood in the solution space to produce a number of
candidate solutions. The candidate which reduces the loss
function the most replaces the current solution. The opti-
mization terminates when there is no candidate able to re-
duce the loss.

One may look at P from a graph theoretic perspective
where any P ∈ P is a Hamiltonian path in an undirected
graph with n vertices. Here n vertices correspond to each of
the n points in S. Remember that a Hamiltonian path visits
each vertex exactly once.

This view leads us to a repository of methods developed
for computing optimal path in a graph. For example, a sim-
ple method called “2-opt”, obtains a neighbor solution by
eliminating two edges and reconnecting the two resulting
paths in a different way to create a new path. There is only

Algorithm 1 Smooth Curve Estimation via 2-opt
Input: Initial solution P0

Initialize P = P0

Initialize L = L(P)
repeat
L′

=∞
for i = 1 to |P | do

for j = i+ 1 to |P | do
P̃ = P
Reverse subsequence pi...pj in P̃
if L(P̃) < L′

then
L′

= L(P̃)
P

′
= P̃

end if
end for

end for
P ∗ = P ; L∗ = L
P = P

′
; L = L′

until L ≥ L′

Output: Optimal permutation P ∗

one way to reconnect the paths that yield a valid Hamilto-
nian path. Therefore, the number of neighbor solutions is
equal to the number of choosing two edges out of n edges.
The 2-opt technique was proposed for solving the Traveling
Salesman Problem (TSP) and has probably been the most
widely used heuristic for this problem (Bentley, 1992). We
choose 2-opt neighborhood for our search due to its simplic-
ity and efficiency against other graph based techniques.

Algorithm
The procedure of finding a smooth ordering of a point set
S is shown in Algorithm 1. It starts from a given initial
solution P0, possibly random, and iteratively creates 2-opt
neighbors and improves upon. When using random initial-
ization, adopting multiple start points is recommended. One
can then pick the solution that attains the lowest cost.

The algorithm is guaranteed to converge because it re-
duces the loss function at each step and because the loss
function is bounded from below by zero. In addition, al-
gorithm terminates in finite steps due to the finiteness of
the permutation space. The complexity of each iteration is
O(|S|2), assuming the loss function is precomputed in a ta-
ble.

Experiments
We test the performance of our method in a practically use-
ful task for data clustering. We assume that the data of
each cluster lie on a smooth curve Ci , i = 1, ...c, aka a 1-
dimensional manifold (c is the number of clusters). Since we
do not know in advance which point belongs to which clus-
ter, we fit a single smooth curve C to the whole data. Our
hope is that this single curve emerges from gluing together
the actual clusters, i.e. ∀i C ∩ Ci = Ci. This way all of the
points from the same Ci are clustered along the curve C.

Once such C is identified, it should be cut at the transi-
tion points to recover the clusters Ci. One way to identify
the transition points (a curve segment connecting two clus-
ters) is assuming that the transition among the pieces Ci on
C happens sharply. This way one can traverse along C and
associate any sharp point as a cutoff point. These points are
detected as the c most acute angles along the curve. Note
that when there is a sharp turn due to a transition, two ad-
jacent angles might be affected. Therefore, when extracting
the c most acute angles, we constrain them to ignore the less
acute of two adjacent angles. Now each of these c sharp an-
gles identifies a transition point, from one of two consecutive
clusters on the curve.

In the following, we investigate this idea in two differ-
ent tasks. One task involves synthetic images of three ani-
mals undergone drastic illumination changes. The goal is to
cluster the images based on the type of the animal. For the
second task, we use objects in the Columbia Object Image
Library (COIL-100) dataset, that consists of color images of
100 objects (Nene et al., 1996). This set provides different
poses of various objects. The goal is to cluster all instances
of the same object into the same group regardless of their
pose.

We compare our results against Isomap, as well as typi-
cal clustering algorithms. For clustering, we adopt a hierar-
chical framework instantiated with a large variety of possi-
bilities. We consider five “point distance metrics”, namely,
Euclidean, standardized Euclidean, cityblock, one minus co-
sine of the angle, and one minus correlation. We also con-
sider six linkages (distance between two clusters), namely
nearest distance (single), furthest distance (complete), aver-
age distance, centroid distance, median distance and ward
distances. Specifically we try all 30 combinations of clus-
tering methods from these ingredients.

We utilize the kappa index to compare the quality of a
clustering C with respect to the ground truth G. The kappa
index measures the proportional difference between posi-
tive acceptance and the expected random agreement between
partitions. It constructs the c×c contingency matrix of C,G
where c is the number of clusters. It first permutes rows (or
columns) such that the trace of the matrix is maximal. De-
noting the contingency matrix by A and |C| = |G| = n, the
kappa index is computed as follows:

κ(C,G) =
n Tr(A)−

∑c
i=1

∑c
j=1 aijaji

n2 −
∑c
i=1

∑c
j=1 aijaji

(4)

Illumination experiment
We use 3D models of three animals: a bunny, a horse, and
a dragon. The bunny and dragon were obtained from Stan-
ford 3D scanning repository (Turk & Levoy, 1994) and the
horse model is courtesy of Cyberware Inc 4. The animals
where placed in a synthetic room with a light source on top.
Some representative images are shown in Figure (4). The
environment and lighting were handled by ”Pane”, a pub-
licly available ray tracer (Banks & Beason, 2007). We took
screen shots while moving the light source from left to right.

4www.cyberware.com

Figure 4: Synthesized animals and lighting

This way, the images of each animal would lie along a 1-d
manifold in the image space. In total, five images were gen-
erated per animal, corresponding to the left, right, middle
and two in between situations, as shown in Figure (7).

The low sample size makes learning the topology of the
manifolds very challenging for local methods such as KNN.
From a distance, the images with the same lighting condi-
tions look more similar to each other albeit containing dif-
ferent animals. Thus, local methods would choose similar
lighting conditions as their neighbors along the manifold.
Each input image is 246× 200 pixels of RGB channels. No
special processing was involved; pixel values in each image
were stacked to form a 147600 dimensional feature vector.

Among all 30 combinations of typical clustering meth-
ods, city block distance plus single linkage obtained the best
κ = 0.4. The resulted clustering is shown in figure (5).
We then applied our data on Isomap, setting the intrinsic
dimensionality parameter to one. For no choice of k (num-
ber of neighbors) Isomap could detect the 3 connected com-
ponents. For k = 1 it would detect 5 curves and for all
other choices 1 curve. We investigated if the 1-component
solutions were at least in a desired order. Therefore, for
k = 2, ..., 14 that produce one connected component, we
extracted three clusters from Isomap’s solution. This was
achieved by embedding the solution in 1-dimensional space
(real line) and using their position on this line for ordering
them. This way, the best result gained κ = 0.3 for choice
of k = 2. The next best choice was k = 4 which obtained
κ = 0.2. All other choices of k > 1 resulted in poor perfor-
mance κ = 0.1. Figure 6 displays ordering for the best case
(k = 2). The figure is augmented by the angles of each three
successive points. A lot of acute angles are apparent along
the curve.

The proposed method could easily recover perfect clus-
tering. Despite the greedy nature of the algorithm, running
it from a few random initial configurations and then picking
the one with the lowest cost could always yield a perfect so-
lution. This can be supported by investigating the chance of
not seeing a perfect solution in n different runs. This prob-
ability drops exponentially fast in n. We modeled the fail-
ure/success process by a binomial distribution as the result
of each run is independent from the other. The initial solu-
tion was randomly chosen from uniform distribution in per-
mutation space. We obtained an estimation of 0.158 for the
probability of failure, by 1000 runs of the algorithm. Thus
the probability of not seeing a perfect solution in n runs is
approximately 0.158n.

Figure 5: Hierarchical clustering by cityblock distance and
single linkage

Figure 6: One dimensional embedding by Isomap (k=2)

Figure (7) displays a solution of the proposed method aug-
mented with angles in between. Comparing to figure (6),
it has much fewer sharp angles. In fact, acute angles only
happen at the transition points. This indicates that one can
identify the transition points merely by searching for acute
angles without need of knowing any additional information.

Pose experiment
Dataset The goal in this experiment is to cluster real ob-
jects undergone pose transformation. This deals with real
data from COIL-100. For this dataset, objects were placed
on a turntable and against a black background. Images of the
objects were taken at pose intervals of 5 degrees correspond-
ing to 72 poses per object. The images were normalized in
size. Since there is only one degree of freedom responsi-
ble for change in the appearance of an object, the resulting
manifold is a curve in the image space.

Figure 7: Recovered curve using the proposed method

We focus on two particular types of objects in COIL,
namely boxes and cars. Each type has 10 different instances,
as shown in figure (8). We selected these two types because
it has been reported in the literature that they contain the
most difficult objects for recognition purpose relative to the
rest of objects in COIL. See (Pontil & Verri, 1998) or (Roth
et al., 2002) for details about difficult objects.

We measure how well the methods can separate similar
objects in the same category. For computational tractabil-
ity5, we define subtasks, where each subtask is combination
of two objects in the same category. There are 45 subtasks
for each category where each gains its own clustering score.
We aggregate the performance of subtasks in different ways
to obtain a performance index of the whole category.

To investigate the effect of sample size on the per-
formance, we subsample available poses for each object.
Specifically, we consider 5 cases where 36, 24, 14, 9 and
6 views per object are available. These are respectively ob-
tained by starting from the first pose (zero angle) of each
object and skipping every 2, 3, 5, 8, and 12 images respec-
tively. The number of available views is denoted by m. In
our experiments m ∈ {6, 9, 14, 24, 36}.
Preprocessing Each image is reduced to 30× 30 and then
convolved with a Gaussian kernel t times 6. This Gaus-
sian smoothing is a means of both reducing the noise and
smoothing the underlying manifold. In the following ex-
periments, we try t ∈ T = {0, 5, 10, 15, 20, 25, 30, 35, 40}.
Each of the RGB channels are convolved separately. Finally,
each image is converted to a vector of dimension 270 by
stacking up its RGB values at any pixel.

Parameters Each of these methods has its own tuning pa-
rameters. Hierarchical clustering depends on the combi-
nation of choices for linkage and distance functions, and

5Our current implementation is on Matlab and not optimized
for speed.

6Multiple applications of a Gaussian kernel is equivalent to ap-
plying a single wider Gaussian.

Figure 8: Two hardest categories used in our experiments.

Isomap depends on choice of neighborhood parameter k.
Our method has only one parameter (the choice of `q-norm),
which we empirically obtained q = 0.1 doing a good job
across all the tasks we experimented. In addition, we con-
sider th, ti and tp (the number of applications of the Gauss-
sian convolution) as additional parameters of the hierarchi-
cal clustering, Isomap and our method.

Given a category, denote the kappa index of subtask i, j
for given parameters θ,m, t by κθ,m,t,i,j . Here i and j deter-
mine which pair of the 10 objects are considered in the sub-
task. θ denotes the parameters; linkage and distance when
applied to hierarchical clustering, k for Isomap, and empty
for our method. With this notation, we aggregate the perfor-
mance of subtasks in two different ways:

Jm,t = max
θ

1(
n
2

) n∑
i=1

n∑
j=i+1

κθ,m,t,i,j (5)

Km,t =
1(
n
2

) n∑
i=1

n∑
j=i+1

max
θ
κθ,m,t,i,j (6)

Here n is the total number of objects in the category, i.e.
10. J uses a fixed best parameter vector over the entire sub-
tasks while K picks the best parameter vector for each sub-
task independently. Of course, J is a more practical mea-
sure, but we also report results based on K as an extreme
case. In order to simplify visualization of performance, we
further reduce the degrees of freedom of the performance in-
dex by considering the best performance over all choices of
t in the following sense:

Jm = max
t∈T
Jm,t Km = max

t∈T
Km,t (7)

Results We assume the only given knowledge is the num-
ber of clusters within each subtask, which we denote by c (2
for our specific experiment). In this scenario, the hierarchi-
cal clustering stops when it reaches c clusters. For Isomap,
a result is considered correct when the number of connected

Figure 9: Performance vs. # of available views. Top: J
Index. Bottom: K Index. Left: Results for Boxes. Right:
Results for Cars.

components matches with c. If it does, then the elements of
each component are grouped to a cluster and the κ is com-
puted accordingly. Otherwise, κ is set to zero. This should
not hurt the performance measure of Isomap too much as
long as there is at least one choice of k for which Isomap
obtains the right c. This is because we only choose maximal
κ in equation 5 among all choices of the parameter k.

The results are shown in Figure 9. The vertical axis indi-
cates the performance index (J (m) and K(m)) for boxes
and cars and the horizontal axis corresponds to the num-
ber of views m provided to the algorithms per object. Note
that curve associated with our proposed method is the same
across the plots for each category as it does not depend on
any tuning parameter θ.

The proposed method outperforms the others when the
number of views reaches 14. This number seems to be the
minimal set of points that can reveal the global topology of
the pose curve for these data. In addition, it beats Isomap
when the number of views reaches 9. Note that the per-
formance of all three methods improves by increasing the
number of views. However, in the regime where the data is
moderately sparse (between 14 and 36 views, as our experi-
ment shows), using global smoothness is demonstrably use-
ful. The clustering results for two of the cars with 18 views
per object is shown in Figures (10) (11) and (12) respectively
for hierarchical clustering, Isomap and our method.

For the most computationally expensive scenario, where
the number of samples for each object is 36, and therefore
72 samples in total for the object pair, our algorithm takes
0.042 seconds to find a solution. This is based on Matlab
implementation on a 3.00Ghz machine. One should multi-
ply this time by the number of random starts. We used 100
random starts for each subtask, and among them picked the
one which attains the lowest cost.

Figure 10: Two best groups found by hierarchical clustering

Conclusion
We formulated the problem of learning the intrinsic topology
of a smooth curve without relying on any notion of geomet-
ric locality. We claim the notion helps when the sample set
is sparse and not very noisy. We proposed a simple greedy
algorithm for searching for a solution from a random initial
solution. The proposed method is guaranteed to converge
in finite steps. In addition, it has only one parameter, the
choice of `q-norm. We experimentally observed that setting
this norm to a small number (q = 0.1 in our case) produces
good results across the tasks we experimented. This itself
suggests a connection to sparse solutions.

We evaluated our method in the context of clustering. We
aimed at recovering objects invariant to illumination and
pose. Our algorithm greatly outperforms in the synthetic il-
lumination case. It also outperforms for the real data of pose
when the size of the sample set is large enough to identify
the structure of the manifold.

This paper brings a new way of formulating manifold
learning without relying on local geometry. One obvious
avenue for future research is to determine whether this for-
mulation can be extended to handle manifolds of arbitrary
dimension (e.g., using the polar sine formulation of (Chen
& Lerman, 2009)).

Acknowledgment
This work was supported by NSF IIS 07-03756, and ONR
N00014-09-1-0230 grants.

References
Banks, D. C., & Beason, K. (2007). Fast global illumi-

nation for visualizing isosurfaces with a 3d illumination
grid. Computing in Science & Engineering, 9, 48–54.

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for

Figure 11: Two connected components obtained by Isomap
(with red and green borders)

dimensionality reduction and data representation. Neural
Computation, 15, 1373–1396.

Bengio, Y., Monperrus, M., & Larochelle, H. (2006). Non-
local estimation of manifold structure. Neural Comput.,
18, 2509–2528.

Bentley, J. J. (1992). Fast algorithms for geometric travel-
ing salesman problems. ORSA Journal on Computing, 4,
387–411.

Chang, K., & Ghosh, J. (1998). Principal curve classifier: a
nonlinear approach to pattern classification. IEEE Inter-
national Joint Conference on Neural Networks (pp. 695–
700).

Chen, G., & Lerman, G. (2009). Spectral curvature cluster-
ing (scc). IJCV, 81, 317–330.

Cristianini, N. (2001). Icml tutorial about support vector
machines:.

Dollár, P., Rabaud, V., & Belongie, S. (2007). Non-isometric
manifold learning: Analysis and an algorithm. ICML.

Hastie, T., & Stuetzle, W. (1989). Principal curves. Journal
of the American Statistical Association, 84, 502–516.

Nene, S. A., Nayar, S. K., & Murase, H. (1996). Columbia
object image library (coil-100) (Technical Report CUCS-
006-96). Dept. of Computer Science, Columbia Univer-
sity.

Pontil, M., & Verri, A. (1998). Support vector machines
for 3d object recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20, 637–646.

Roth, D., Yang, M.-H., & Ahuja, N. (2002). Learning to rec-
ognize 3d objects. Neural Computation, 14, 1071–1104.

Figure 12: Two clusters discovered by the our method.

Roweis, S., & Saul, L. (2000). Nonlinear dimensionality
reduction by locally linear embedding. SCIENCE, 290,
2323–2326.

Smola, A. J., Mika, S., Schölkopf, B., & Williamson, R. C.
(2001). Regularized principal manifolds. J. Mach. Learn.
Res., 1, 179–209.

Tenenbaum, J., de Silva, V., & Langford, J. C. (2000). A
Global Geometric Framework for Nonlinear Dimension-
ality Reduction. SCIENCE, 290, 2319–2323.

Touretzky, D. S., & Pomerleau, D. A. (1989). What’s hidden
in the hidden layers? BYTE, 14, 227–233.

Turk, G., & Levoy, M. (1994). Zippered polygon meshes
from range images. SIGGRAPH 94 Conference Proceed-
ings (pp. 311–318).

Weinberger, K. Q., & Saul, L. K. (2005). Unsupervised
learning of image manifolds by semidefinite program-
ming. International Journal of Computer Vision, 70, 77–
90.

