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ABSTRACT

It is well-known that global optimization of a nonconvex function, in general,

is computationally intractable. Nevertheless, many objective functions that

we need to optimize may be nonconvex. In practice, when working with

such a nonconvex function, a very natural heuristic is to employ a coarse-

to-fine search for the global optimum. A popular deterministic procedure

that exemplifies this idea can be summarized briefly as follows. Consider

an unconstrained optimization task of minimizing some nonconvex function.

One starts from a highly “smoothed” version of the objective function

and hopes that the smoothing eliminates most spurious local minima. More

ideally, one hopes that the highly smoothed function would be a convex

function, whose global minimum can be found efficiently. Once the minimum

of the smoothed function is found, one could gradually reduce the smoothing

effect and follow the continuous path of the minimizer, eventually towards a

minimum of the objective function. Empirically, people have observed that

the minimum found this way has high chance to be the global minimum.

Despite its empirical success, there has been little theoretical understand-

ing about the effect of smoothing on optimization. This work rigorously

studies some of the fundamental properties of the smoothing technique. In

particular, we present a formal definition for the functions that can even-

tually become convex by smoothing. We present extremely simple sufficient

condition for asymptotic convexity as well as a very simple form for an asymp-

totic minimizer. Our sufficient conditions hold when the objective function

satisfies certain decay conditions.

Our initial interest for studying this topic arise from its well-known use in

geometric image alignment. The alignment problem can be formulated as an

optimization task that minimizes the visual difference between the images

by searching the space of transformations. Unfortunately, the cost function

associated to this problem usually contains many local minima. Thus, unless
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very good initialization is provided, simple greedy optimization may lead to

poor results.

To improve the attained solution for the alignment task, we propose smooth-

ing the objective function of the alignment task. In particular, we derive the

theoretically correct image blur kernels that arise from (Gaussian) smoothing

an alignment objective function. We show that, for smoothing the objective

of common motion models, such as affine and homography, there exists a

corresponding integral operator on the image space . We refer to the

kernels of such integral operators as transformation kernels . Thus, in-

stead of convolving the objective function with a Gaussian kernel in trans-

formation space, we can equivalently compute an integral transform in the

image space, which is much cheaper to compute.
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CHAPTER 1

INTRODUCTION

It is well-known that global optimization of a nonconvex function, in general,

is computationally intractable [3]. Unfortunately, many objective functions

that arise in real applications are nonconvex. Good news is, however, real

problems often have some kind of regularity and structure. Sometimes, by

recognizing and exploiting these structures, it is possible to find a reason-

able solution for a non-convex optimization task in reasonable time. In this

dissertation, we focus on a particular structure, in which local minima are

brittle and easy to filter out by smoothing. We provide intuitive and for-

mal definitions for the smoothing concept. We describe how smoothing can

be utilized within a continuation framework. The latter essentially means

following the path of the minimizer of the smoothed function back to the

original objective.

1.1 Nonconvex Optimization

Nonconvex optimization methods can be broadly categorized into deter-

ministic and stochastic methods; regardless of the ability to finding the

global minimum or just a local minimum. As their names suggest, the deter-

ministic methods generate the same solution every time they run. However,

the stochastic methods may find completely different solution every time they

are used.

A representative example of the stochastic methods is simulated an-

nealing (SA) [4]. This algorithm is inspired from annealing in metallurgy

which involves heating and controlled cooling of materials. SA algorithm is

an iterative scheme, where each iteration replaces the current solution with a

random one. The distribution by which new samples are drawn is such that

the points closer to the current solution are more likely to be chosen. The
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newly sampled point is accepted as a solution with a probability that depends

on the improvement in value function as well as a temperature parameter T .

When T is large, the previous and new solutions are almost independent,

and as T gets smaller, new solutions with improved value are preferred. The

algorithm starts from a large value of T , which may help escape from local

minima, and then continue to smaller values of T . SA can converge to global

minimizer almost surely [4], but often with an extremely low convergence

rate.

Among the deterministic techniques, gradient descent is perhaps the

simplest and by far the most well-known method. This is a first-order it-

erative algorithm. In each iteration, the method takes a small step in the

opposite direction of the gradient, hence the name descent. The algorithm is

supposed to stop at a local minimum, because there exists no descent direc-

tion in that vicinity. While effective for convex tasks or nonconvex problems

with equally good local minima, it often leads to unsatisfactory solution in

a typical nonconvex task.

In order to find reasonable solution in reasonable time for nonconvex opti-

mization tasks, it is often necessary to recognize and exploit some nice struc-

ture in the problem. There exists a vast literature in nonconvex optimization

for handling different kinds of structure. For example, if a polynomial opti-

mization can be closely approximated by sum of squares (SOS), then one

can use a hierarchy of SOS relaxations, each of which can be formulated as

a semidefinite program [5]. Another example is when the objective function

can be written as difference of convex (DC) functions f1(x) − f2(x).

The combination is no longer convex, but by alternating between fixing one

and optimizing the other, one switches between convex and concave pro-

grams. While the convex part f1(x) can be efficiently solved, the concave

part −f2(x) can be replaced by its convex envelope. When the domain of x

is a simplex , convex envelope of a concave function has the simple form of

an affine function [6], hence again easy to minimize.

Another method for nonconvex optimization, which is the central topic of

this dissertation, is continuation or homotopy continuation method.

The idea is to somehow simplify the original optimization task, e.g. by

some convex relaxation, and then continuously deform it back to the original

objective. While this deformation is happening, one follows the minimizer

of the simplified problem back to the original problem. Some related topics
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around this method will be reviewed in the rest of this chapter.

1.2 Homotopy Continuation

Continuation is a well established procedure in numerical analysis. The main

idea is to smoothly deform an easy problem into the actual problem, while

tracking the solution of the deformed problems. The function which describes

this deformation is called a homotopy map . Suppose we would like to

solve a problem that involves a function f : X → Y . Homotopy continuation

method embeds f(x) into a parameterized family of functions g(x, t), where

g : X × T → Y and T = { t | 0 ≤ t ≤ 1}. The embedding should have the

property that g(x, 0) is easy to solve and g(x, 1) = f(x).

For example, suppose the goal is to solve a system of nonlinear polynomial

equations f(x) = 0. Assume it is difficult to solve this system, but we know

the solution of another system f †(x) = 0, which has the same number of

variables and the same polynomial total degree as f(x) = 0. Consider a

smooth homotopy map g such that g(x, 0) = f †(x) and g(x, 1) = f(x).

Then, under certain regularity conditions [7, 8], the roots of this system can

be conceptually found by following the curve of solutions x(t) of the system

g(x, t) = 0 while t changes from 0 to 1.

A very simple homotopy is the convex combination map g(x, t) =

tf(x) + (1 − t)f †(x). This homotopy is very popular in the context of

solving polynomial systems. In this dissertation, however, we focus on a more

sophisticated homotopy that performs Gaussian smoothing, i.e. g(x, t) =

[f ?k](x), where ? is the convolution operator and k is an isotropic Gaussian

kernel,

k ,
1

(2πσ2)
n
2

e−
‖x‖2

2σ2 . (1.1)

Then, we can have the bandwidth σ of the Gaussian change with time t,

for example via t = 1
1+σ2 for σ > 0 and 0 < t < 1.
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1.3 Smoothing

The notion of smoothing is quite intuitive. Loosely speaking, a smoothing

process spreads some given mass across the domain. For example, if the

original form has a sharp peak at a certain position, smoothing should de-

crease the mass at that location and increase the mass in its surrounding.

Nevertheless, there is no unique rigorous definition for smoothing1. Here, we

provide two example definitions that are consistent with the aforementioned

intuition.

Smoothing can be formally described as a time evolution process. Starting

from an original form f(x), the smoothing gradually deforms f(x) by

spreading its mass over time. This viewpoint on smoothing provides an

immediate framework for its rigorous treatment using partial differential

equations (PDE).

∂

∂t
g(x, t) = Dg(x, t) (1.2)

g(x, 0) = f(x) (1.3)

g(x, t)|x∈∂X = h(x, t) , (1.4)

where D is a differential operator , f : X → R is the initial condition

and g : X × T represents the evolved smoothed form. In addition, if the

domain X is bounded, h : ∂X × T specifies the value of g at the boundary.

For example, setting the differential operator D to ∆ or i∆ results in the

heat equation and Schrodinger’s equation respectively. Here i is the

imaginary unit and ∆ denotes the Laplace operator w.r.t. spatial vari-

able, i.e. the first argument of g. Observe that, the heat and Schrodinger’s

equations are only different in the imaginary factor. Thus, they are expected

to behave somewhat similarly, except that the imaginary factor causes some

oscillation in the solution of Schrodinger’s equation. The smoothing effect

of these operators is illustrated in Figure 1.1.

The heat kernel is of particular interest in this dissertation, due to its useful

properties for nonconvex optimization. Specifically, it tends to damp high

frequency components of f . In order to see that, it is simpler to look at the

1The smoothing in our context should not be confused with the technical term of
smooth functions, which have the precise definition of being infinitely differentiable.

4



Figure 1.1: Time evolution of a Gaussian function under heat (top) and
Schrodinger (bottom) equations. Time progression is from left to right.

solution of the heat equation when the domain is unbounded, i.e. X = Rn.

It is known that, the following PDE,

∂

∂σ
g(x, σ) = σ∆g(x, σ) (1.5)

g(x, 0) = f(x) . (1.6)

has a solution of the following form,

g(x, σ) = [f ? kσ](x) , (1.7)

where ? is the convolution operator (w.r.t. variable x) and kσ is the

isotropic Gaussian kernel with variance σ2, as defined in (1.1). Therefore the

Fourier transform of g(x, σ) w.r.t. the spatial variable x, can be expressed

as,

ĝ(ω;σ) = f̂(ω)k̂(ω;σ) (1.8)

= 2πσf̂(ω)k(ω;
1

σ
) . (1.9)

It is now apparent that high frequency components always get attenuated

and more aggressively when σ is large.

This property of the heat kernel is of interest for nonconvex optimization,

because it may suppress small fluctuations and thus eliminate brittle local
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Algorithm 1 Minimization by Gaussian Smoothing Continuation.

1: Input: f : X → R, The set {σk} for k = 1, . . . , K s.t. 0 < σk+1 < σk.
2: for k = 1→ K do
3: xk = local minimizer of g(x;σk) initialized at xk−1

4: end for
5: Output: xK

minima on the surface of f . Thus, instead of optimizing f directly, we

optimize g as a surrogate. There is a trade-off here though; while the higher

σ is better at suppressing local minima, it also deforms f from its original

form more significantly. Hence, the global minimizer of g may not necessarily

coincide with even a local minimizer of f .

A heuristic for coping with this issue is applying continuation scheme.

That is, starting from a highly smoothed objective, i.e. g(x;σ) with a large

σ. Hopefully, for a large enough σ, the local minima of f(x) disappear and

g(x;σ) becomes convex. Therefore, it is easy to find its global minimizer.

Then, we gradually deform g back to f by shrinking σ toward zero. At the

same time, we follow the curve that this minimizer traces out through the

deformation. The hope is that, one finds the global or at least a good local

minimum of f using this heuristic. The algorithmic sketch of this idea is

explained in Algorithm 1.

The underlying idea in Algorithm 1 has been widely utilized for optimiza-

tion in different disciplines for a long history. Examples include graduated

optimization [9], optimization by homotopy continuation [10], deterministic

annealing [11], diffusion equation method [12], etc. In particular, in machine

learning community, there has been an increasing interest in such concepts

with applications to semi-supervised kernel machines [13], multiple instance

learning [14,15], semi-supervised structured output [16], and statistical state

estimation [17]. Interested reader is referred to the survey [18] (written from

physicists perspective). Similar concept for discrete spaces has also been

used [19–22].

While homotopy continuation for solving polynomial systems has a solid

theory, continuation for optimization has remained at a heuristic level. This

is mainly because the homotopy methods for solving polynomial systems

are exhaustive, i.e. they enumerate all the roots of the system. So, as an

optimization tool, they can be used to find all stationary points of the
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objective, by zero crossing the gradient of the objective [23, 24]. However,

this is very inefficient and often impractical, as the number of local minima

may be large and likely to grow exponentially in dimension.

1.4 Contributions

The contribution of this thesis is two-fold. From theoretical perspective, we

address some fundamental issues associated with optimization by Gaussian

smoothing continuation.

Surprisingly, despite its long history, tremendous popularity, and deep con-

nections to fundamental concepts in physics and mathematics, there has been

little theoretical understanding about the effect of smoothing in optimiza-

tion and the continuous path of the minimizers associated with the process

of gradual smoothing. For example, this approach is the most useful for a

function when smoothing can ultimately lead to a convex function. So a

natural question is what conditions on f are required to guarantee this.

Even if we know that a given function can become convex by smoothing,

there are still outstanding questions. For example, severe smoothing of the

objective function makes the resulting function almost flat. This causes trou-

bles for many numerical procedures in finding the minimizer of such (convex)

functions; the solution can be extremely unstable and inaccurate. Thus, it is

important to know if there is any closed-form solution for such a minimizer.

Answers to these questions can help us understand for what kind of func-

tions we should expect the smoothing technique to work the most effec-

tively. This dissertation presents a formal definition for the functions that

can eventually become convex by smoothing. We refer to such functions

as asymptotically convex functions . We show that, under mild con-

ditions, asymptotically convex functions are a nontrivial superset of convex

functions and inherit some of the nice properties of convex functions. For

example, they obey some form of gradient inequality and positive-definite

Hessian. We present an extremely simple and derivative-free condition

that to test whether a function is asymptotically convex; by checking the

sign of
∫
Rn f(x) dx. In addition, we prove that the minimizer for these

asymptotically convex functions has a very simple closed form; it is the cen-

ter of mass of the original function. Similar results about center of mass

7



and the sign of the integral are obtained by [25], but under the more restricted

setting of compactly supported functions.

The other side of our contribution is the application of Gaussian smooth-

ing and continuation to some vision problems. Specifically, we study the

problem of geometric alignment of 2D images as well as 3D point clouds.

The surface of the alignment objective for these problems typically has a

lot local minima. Therefore, smoothing the optimization landscape seems

a reasonable approach for these tasks. In order to smooth the alignment

objective function, one would need to convolve it with a Gaussian kernel in

the transformation space. Numerical computation of such integral can be

expensive.

We will show that, for smoothing the objective of common motion mod-

els, such as affine and homography, there exists a corresponding integral

operator on the image space . We refer to the kernels of such integral

operators as transformation kernels . Thus, instead of convolving the

objective function with a Gaussian kernel in transformation space, we can

equivalently compute an integral transform in the image space. The former

is very expensive to compute due to the effect of curse of dimension-

ality on numerical integration. For example, in case of 2D homography

alignment, the transformation space is 8-dimensional, but the image space

is 2-dimensional. As we show, all of these kernels are spatially varying as

long as the transformation is not a pure translation, and vary from those

heuristically suggested by [26] or [27].

Except for homography, the other kernels we derived can be expressed

generically for signals with any dimensionality. This allows us to perform,

for example affine alignment, using the same form of kernel on 2D images

as well as 3D point clouds. We will show in our experimental results that,

utilizing transformation kernels for aligning 2D and 3D data outperforms

the traditional methods of plain gradient descent without any smoothing or

Gaussian smoothing of the signals (instead of the objective function).
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CHAPTER 2

ASYMPTOTIC ANALYSIS

Despite the long standing popularity of smoothing methods for optimiza-

tion, there has been little theoretical work about it. This chapter rigorously

studies some of the fundamental properties of the smoothing technique. In

particular, we present a formal definition for the functions that can eventually

become convex by smoothing. We refer to such functions as asymptotically

convex functions . We show that, under mild conditions, asymptotically

convex functions are a nontrivial superset of convex functions and inherit

some of the nice properties of convex functions. For example, they obey

some form of gradient inequality and positive-definite Hessian. We present

an extremely simple and derivative-free condition to test whether a func-

tion is asymptotically convex; by checking the sign of
∫
Rn f(x) dx. In

addition, we prove that the minimizer for an asymptotically convex function

has a very simple closed form; it is the center of mass of the original

function. Similar results about center of mass and the sign of the integral

are obtained by [25], but under the more restricted setting of compactly

supported functions.

Admittedly, the asymptotic convexity, although a crucial necessary con-

dition, is not sufficient to guarantee finding the global optimum through

following the path of minimizers of the smoothed functions. The latter re-

quires additional conditions on the objective function to ensure no singularity

along the path being traced. In addition, it must guarantee that the path

originated from the asymptotic minimizer eventually lands at the optimal

(or ε-optimal) minimizer of the actual function.
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2.1 Assumptions and Notations

Throughout this chapter, by smoothing the function f we mean convolving

it with the isotropic Gaussian kernel k(x;σ2), with σ > 0, as defined below,

k(x;σ2) ,
1

(
√

2πσ)n
e−
‖x‖2

2σ2 .

We also assume that the domain of f is the entire Rn. The smoothed

version of f(x) is denoted by g(x;σ),

g(x;σ) , f(x) ? k(x;σ2) =

∫
Rn
f(t)k(x− t;σ2) dt.

Note that such g is the solution to the heat equation [28] in the domain

of Rn and with initial condition g(x; 0) = f(x).

Throughout the chapter, we always assume f(x) has sub-exponential

growth 1, i.e. it satisfies ∃ρ ≥ 0 , ∀x ∈ Rn \ B(0, ρ) ; |f(x)| < e‖x‖. This

is only to keep g(x;σ), which is obtained by the Gaussian convolution, well-

defined.

2.2 Definitions

Definition A real-valued continuous function f(x) is called asymptoti-

cally convex if the following statement holds:

∀M > 0 , ∃σ∗M , ∀x1 ∈ B(0,M) , ∀x2 ∈ B(0,M)

∀λ ∈ [0, 1] , ∀σ ≥ σ∗M :

g
(
λx1 + (1− λ)x2;σ

)
≤ λg(x1;σ) + (1− λ)g(x2;σ) . (2.1)

Definition An asymptotically strict convex function f is defined sim-

ilar to the asymptotic convex function but with strict inequality in (2.1).

Example Consider the objective function of form f(x) = e−
x2

2ε2 − e−x
2ε2

2 for

ε > 0. For small ε, this function looks like `0 norm, often seen in the literature

of feature selection and sparse representation . The function f

1Note that the exponent is nonnegative in our definition of sub-exponential growth.
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Figure 2.1: Left to Right: The function g(x;σ) = [f ? k( . ;σ2)](x), where

f(x) = e−
x2

2ε2 − e−x
2ε2

2 , with increasing values of σ. Nonconvex regions are
colored by pink.

provides a much better surrogate for `0 norm compared to the `1 norm.

Interestingly, while f(x), except at its tip, is concave everywhere , it is

asymptotically convex (Figure 2.1)!

2.3 Basic Properties

Asymptotically convex functions inherit the well-known gradient and Hessian

properties of standard convex function. This will be shown in the following

two propositions. The proofs are similar to their standard counterparts.

However, here we present the proofs for completeness.

Interestingly, unlike non-asymptotic counterparts of gradient and Hessian

inequalities, the asymptotic ones do “not” require once and twice differentia-

bility conditions. That is because any function (with sub-exponential growth)

convolved with a Gaussian kernel becomes C∞, thus infinitely differentiable.

Proposition 1 (Gradient Inequality) A function f(x) is asymptotically

convex “if and only if” it obeys the following gradient inequality:

∀M > 0 , ∃σ∗M , ∀x1 ∈ B(0,M) , ∀x2 ∈ B(0,M)

∀λ ∈ [0, 1] , ∀σ ≥ σ∗M :

g(x2;σ)− g(x1;σ) ≤ (x2 − x1)T∇g(x2;σ) . (2.2)

Proof Sketch .
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1. Supposing f is asymptotically convex, we prove the gradient inequality

by writing the definition of asymptotic convexity (2.1) and setting λ→
0.

2. Assuming the gradient inequality holds, we prove g(x;σ) is asymptot-

ically convex by applying gradient inequality to the pair of points x1

and x3, as well as x2 and x3, where x3 = λx1 + (1 − λ)x2. Taking

convex combination of the two inequalities finishes the proof.

�

Proposition 2 (Hessian Condition for Asymptotic Convexity) The func-

tion f(x) is asymptotically convex “if and only if” it obeys the following

condition:

∀M > 0 , ∃σ∗M , ∀x ∈ B(0,M) , ∀σ ≥ σ∗M :

∇2g(x;σ) � O . (2.3)

Also, the function f is asymptotically strict convex under similar

condition except that ∇2g(x;σ) � O instead of ∇2g(x;σ) � O.

Proof Sketch .

We present the proof sketch for asymptotic convex case, and asymptotic

strict convex case can be proved in a similar way.

1. Supposing f is asymptotically convex, we prove (2.3). We write g

as its second order Taylor expansion of g at x along some arbitrary

direction u plus Taylor’s remainder (higher order terms). Since f is

asymptotically convex, it obeys the gradient inequality (2.2). Applying

that to the Taylor’s expansion and observing that higher order terms

can be ignored when λ→ 0, the result follows.

2. Assuming that (2.3) holds, we prove that f is asymptotically convex.

Choose any pair of points x1 and x2 in B(0,M). The proof uses a

third point x3 = λx1 + (1 − λ)x2 for some λ ∈ [0, 1] and then applies

mean value theorem to derive the gradient inequality for asymptotically

convex functions. Thus f is asymptotically convex.

�
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Proposition 3 Any convex function f : Rn → R is asymptotically convex.

Proof Sketch . The proof simply starts with the definition of a convex func-

tion and then exploits the non-negativity of the Gaussian kernel. Integrating

both sides of the inequality proves the proposition.

�

2.4 Derivative-Free Results for Decaying Functions

2.4.1 Asymptotic Convexity for Functions with Rapid Decay

Main Result (Corollary 9) Consider a continuous f : Rn → R. Suppose

there exists an origin-centered ball, out of which f decays like ‖x‖−n−3 or

faster. If
∫ n
R f(x) dx < 0, then f is asymptotically strict convex.

Example Show that f(x) = −( cos(x)
1+x4 )3 is asymptotically convex.

We first show that f(x) decays fast enough. Choose M∗ = 0 and c = 1,

then it follows that ∀x ; |f(x)| ≤ x−4. This can be checked by observing that

|f(x)| ≤ | cos(x)|(1 + x4)−3 ≤ (1 + x4)−3 < x−4. Thus, it just remains to

show
∫
R f(x) dx < 0. Computing the closed form of

∫
R f(x) dx is difficult.

However, using the fact that − cos(x) ≤ x2

2
−1, we construct an upper bound

for f(x) as (
x2

2
−1

1+x4 )3. We have
∫
R(

x2

2
−1

1+x4 )3 dx = − 123π
256
√

2
< 0 . Hence f(x) is

asymptotically convex.

The proof for the main result is now presented in a modular fashion through

several pieces.

Proposition 4 For any two real vectors x and t, and any σ > 0, the fol-

lowing inequality holds:

0 ≤ 1 +
((xk − tk)2

σ2
− 1
)
e−
‖x−t‖2

2σ2 ≤ 3

2

(xk − tk)2

σ2
.

Proof Sketch .

The key is the inequality 3
2
z2 − 1 ≥

(
z2 − 1

)
e−

z2

2 ≥ −1 for any z ∈ R.

Choosing z = (xk − tk)/σ and some manipulation proves the result.
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�

Lemma 5 Consider f : Rn → R. Suppose there exists for f some M∗ ≥ 0,

c ≥ 0 and integer a ≥ n+ 3 with the following property:

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a .

Then, the following inequality holds for any x ∈ B(0,M):∣∣∣ ∫
Rn
f(t) dt + σ2(2πσ2)

n
2
∂

∂x2
k

g(x;σ)
∣∣∣

≤ 3

2σ2
(M +M∗)2‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

+
3cnπ

n
2M∗(n−a)

2σ2Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
.

Proof Sketch .

We split the domain of integration within
∫
Rn f(t) dt into interior and

exterior of the ball B(0,M∗) and upper bound each of them separately. The

integral over the interior can be bounded using Cauchy-Schwartz inequality

(to split f from k) and then applying Proposition 4 to the Gaussian kernel.

The exterior integral uses Proposition 4 and then applies lemma’s assump-

tion about the decay rate of f . This gives a radially symmetric integrand

that is easy to compute. The result follows by putting together bounds on

the interior and exterior integrals.

�

Proposition 6 For any two real vectors x and t, and any σ > 0, the fol-

lowing inequality holds:

0 ≤ |xj − tj| |xk − tk|
σ2

e−
‖x−t‖2

2σ2 ≤ |xj − tj| |xk − tk|
σ2

.

Proof Sketch .

We use the inequality |z| ≥ |z|e− z
2

2 ≥ 0 that holds for any z ∈ R. In

particular, choosing z = (xj − tj)/σ and then again z = (xk − tk)/σ, plus

some manipulation proves the result.

�
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Lemma 7 Consider f : Rn → R. Suppose there exists for f some M∗ ≥ 0,

c ≥ 0 and integer a ≥ n+ 3 with the following property:

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a.

Then, the following inequality holds for any x ∈ B(0,M):

∣∣∣σ2(2πσ2)
n
2

∂2

∂xjxk
g(x;σ)

∣∣∣
≤ (M +M∗)2

σ2
‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

+
cnπ

n
2M∗(n−a)

σ2Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
.

Proof Sketch .

The proof strategy is very similar to that of Lemma 5.

�

Theorem 8 Consider f : Rn → R such that ‖f‖ 6=∞. Suppose there exists

for f some M∗ ≥ 0, c ≥ 0 and integer a ≥ n+ 3 with the following property:

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a.

Then, for any ε > 0 and any M > 0, if σ (as a function of ε and M) is

chosen in the following sense,

σ2 ≥ n

ε
(n+

1

2
)
(
‖f‖(M2 +M∗2)

( π
n
2

Γ(n
2

+ 1)
M∗n ) 1

2

+
c n π

n
2M∗(n−a)

Γ(n
2

+ 1)
·

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

))
,
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then, it is guaranteed to have2,

∀x ∈ B(0,M),∥∥∥I ∫
Rn
f(t) dt + σ2(

√
2πσ)n∇2g(x;σ)

∥∥∥
∞
≤ ε .

Proof Sketch .

We first upper bound ‖I
∫
Rn f(t) dt + σ2(

√
2πσ)n∇2g(x;σ)‖∞ by applying

Lemma 5 to the diagonals and Lemma 7 to the off-diagonals of the expression

inside ‖ . ‖∞. In order to prove the theorem, it is sufficient to set the derived

upper bound less than ε.

�

Corollary 9 Consider a continuous function f : Rn → R. Suppose there

exists for f some M∗ ≥ 0, c ≥ 0 and integer a ≥ n + 3 with the following

property,

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a . (2.4)

If
∫
Rn f(x) dx < 0 then f is asymptotically strict convex.

More precisely, it will hold that,

∀M > 0 , ∃σ∗M , ∀x ∈ B(0,M) , ∀σ ≥ σ∗M :

∇2g(x;σ) � O , (2.5)

where σ∗M is defined as below,

σ∗M
2 ,

n2(n+ 1
2
)

−
∫
Rn f(t) dt

(
‖f‖(M2 +M∗2)

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.6)

+
c n π

n
2M∗(n−a)

Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

))
.(2.7)

Proof Sketch .

Considering Proposition 2, any function f is asymptotically strict convex

if and only if for any M > 0 there exists a σ∗M , such that for any σ ≥
2The notation ‖A‖∞ is for the max-norm of the matrix A and is defined as ‖A‖∞ =

maxi,j |aij | .
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σ∗M , ∇2g(x;σ) or equivalently σ2(
√

2πσ)n∇2g(x;σ) is positive definite within

B(0,M).

The tail decay assumption allows us to apply Theorem 8. Note that here

‖f‖ < ∞ due to its decay rate and continuity of f . Thus, ‖I
∫
Rn f(t) dt +

σ2(
√

2πσ)n∇2g(x;σ)‖∞ can be made arbitrarily small. Consequently, if∫
Rn f(t) dt < 0, then σ2(

√
2πσ)n∇2g(x;σ) can be made arbitrarily close to

a matrix with zero off-diagonals and strictly positive diagonals and thus f is

asymptotically convex.

�

2.4.2 Asymptotic Minimizer for Functions with Rapidly
Enough Decay Rate

Main Result (Corollary 13) Consider f : Rn → R. Suppose there is an

origin-centered ball out of which f decays like ‖x‖−n−4 or faster. Then for

any origin-centered ball, there always exists some σ that can make
∫
Rn t f(t) dt∫
Rn f(t) dt

arbitrary close to the stationary point of g(x;σ).

Example Show that f(x) = e−
(x−1)2

0.1 −e−x2
is asymptotically convex and find

its asymptotic minimizer.

It is easy to check that f(x) satisfies the decay condition because ∀x|f(x)| ≤
2|x|−5. On the other hand,

∫
R f(x) dx = −1.21195 (up to 6 decimal dig-

its). Therefore, f(x) is asymptotically convex. In addition x∗ =
∫
R xf(x)dx∫
R f(x) dx

=

−0.46247 (up to 6 decimal digits). Figure 2.2 shows how f looks more convex

and its minimizer approaches −0.46247 as σ increases.

In the following, we present a modular proof of the main result.

Lemma 10 (Zeroth Moment Convergence) Consider f : Rn → R. Sup-

pose there exists for f some M∗ ≥ 0, c ≥ 0 and integer a ≥ n + 3 with the

following property:

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a.

17



Figure 2.2: g(x;σ) = f(x) ? k(x;σ), f(x) = e−
(x−1)2

0.1 − e−x2
for different

choices of σ. Notice that the minimizer becomes unique for large σ and
approaches the yellow line x = −0.46247.

Then for any x ∈ B(0,M) the following inequality holds:∣∣∣ ∫
Rn
f(t)

(
1− e−

‖x−t‖2

2σ2

)
dt
∣∣∣

≤ (M +M∗)2

2σ2
‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n) 1

2

+
cnπ

n
2M∗n−a

2σ2Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
.

Proof Sketch .

The proof is similar to that of Lemma 5, except that here we use an

additional fact ∀y ∈ R ; 1− e−y2 ≤ y2 when bounding the interior integral.

�

Lemma 11 (First Moment Convergence) Consider f : Rn → R. Sup-

pose there exists for f some M∗ ≥ 0, c ≥ 0 and integer a ≥ n + 4 with the

following property:

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a.

Define hi(t) , tif(t). Then for any x ∈ B(0,M), and any i = 1, 2, . . . , n,
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the following inequality holds:∣∣∣ ∫
Rn
hi(t)

(
1− e−

‖x−t‖2

2σ2

)
dt
∣∣∣

≤ (M +M∗)2

2σ2
‖hi‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

· c nπ
n
2M∗n+1−a

2σ2 Γ(n
2

+ 1)

·
( M2

a− n− 1
+ 2

MM∗

a− n− 2
+

M∗2

a− n− 3

)
.

Proof Sketch .

The proof strategy is very similar to that of 5, except that here we use an

additional fact ∀y ∈ R ; 1− e−y2 ≤ y2 when bounding the interior integral.

�

Theorem 12 Consider a continuous function f : Rn → R. Suppose there

exists for f some M∗ ≥ 0, c ≥ 0 and integer a ≥ n + 4 with the following

property:

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a.

Then, for any ε > 0 and any i = 1, 2, . . . , n, there always exists some σ∗ > 0

such that for any σ ≥ σ∗, and for any x ∈ B(0,M) the following inequality

holds: ∣∣∣∫Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

∣∣∣ ≤ ε.

Proof Sketch .

The theorem seeks to bound
∣∣∫Rn f(t)ti dt∫

Rn f(t) dt
−

∫
Rn f(t)tik(x−t;σ2) dt∫
Rn f(t)k(x−t;σ2) dt

∣∣ or equivalently

bound
∣∣∣∫Rn f(t)ti dt∫

Rn f(t) dt
−

∫
Rn f(t)tie

−‖x−t‖
2

2σ2 dt∫
Rn f(t)e

−‖x−t‖
2

2σ2 dt

∣∣∣.
We first must ensure that the denominators are non-zero. We already

know from theorem’s assumptions that
∫
Rn f(t) dt 6= 0. Thus, we just need

to ensure
∫
Rn f(t)e−

‖x−t‖2

2σ2 dt 6= 0. We use the fact that ∀(a, b) ∈ R − {0} ×
R ; |a| ≥ UB(2|a − b|) ⇒ 2|b| ≥ |a| where UB(.) is any function satisfying

UB(x) ≥ x.

Therefore, in order to have |
∫
Rn f(t)e−

‖x−t‖2

2σ2 dt | ≥ 1
2
|
∫
Rn f(t) dt | 6= 0, it

is sufficient to satisfy 1
2
|
∫
Rn f(t) dt | ≥ UB(|

∫
Rn f(t) dt−

∫
Rn f(t)e−

‖x−t‖2

2σ2 dt|).
The UB( · ) here can be obtained using Lemma 10. It is easy to show that
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there always exists some σ that satisfies the above sufficient condition, sim-

ply by moving σ to one side of the inequality and showing the other side is

bounded (σ∗ is the value of σ when inequality is replaced by equality). The

boundedness holds because
∫
Rn f(t) dt 6= 0 by theorem’s assumptions, and

that ‖f‖ <∞ due to its decay rate property.

After making sure that
∣∣∣∫Rn f(t)ti dt∫

Rn f(t) dt
−

∫
Rn f(t)tie

−‖x−t‖
2

2σ2 dt∫
Rn f(t)e

−‖x−t‖
2

2σ2 dt

∣∣∣ is well-defined, we

proceed to establish an upper bound for it. We use the fact that a
b
− c

d
=

ad−b
bd

+ a−c
d

, which implies that |a
b
− c

d
| ≤ |a|

|b|
UB(|d−b|)

LB(|d|) + UB(|a−c|)
LB(|d|) . Applying

this fact to the expression we want to bound, and then moving σ to one

side, we observe that such σ always exists, because the other side is always

bounded (σ∗ is obtained at the equality). More precisely,
∫
Rn f(t) dt 6= 0 due

to theorem’s assumptions, and ‖f‖ < ∞ and ‖hi‖ < ∞ due to decay rate

property of f .

Remember, however, we earlier had an additional constraint on σ∗ to keep

the denominator non-zero. In order for σ∗ to jointly satisfy both conditions,

we take the maximum of the two, which is still a bounded number and thus

always exists.

�

Corollary 13 Consider f : Rn → R. Suppose there exists for f some M∗ ≥
0, c ≥ 0 and integer a ≥ n+ 4 with the following property:

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a.

Let x∗σ denote a stationary point of g(x;σ), that is ∇g(x∗σ;σ) = 0. Then,

for any ε > 0 and any M ≥ 0, there always exists some (large enough) σ > 0

(which depends on ε and M) that can make ‖
∫
Rn t f(t) dt∫
Rn f(t) dt

− x∗σ‖∞ arbitrarily

small.

Proof Sketch .

The assumption on f allows application of Theorem 12. Consequently,

the theorem holds for all i = 1, 2, · · ·n “simultaneously”, when stated as the

following. For i = 1, 2, . . . , n, and any εi > 0 there “always exists” some

σ∗ > 0 such that for any σ ≥ σ∗, and for any x ∈ B(0,M) the following
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inequality holds:

∀i ∈ {1, 2, . . . , n}∣∣∣∫Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

∣∣∣ ≤ ε ⇒

n∑
i=1

∣∣∣∫Rn f(t)tidt∫
Rn f(t)dt

−
∫
Rn f(t)tik(x− t;σ2)dt∫
Rn f(t)k(x− t;σ2)dt

∣∣∣ ≤ nεi .

(2.8)

On the other hand, we know that ‖x‖∞ ≤ ‖x‖1, which combined with

(2.8) gives the following:

∥∥∥∫Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

∥∥∥
∞
≤ nε . (2.9)

We stress that for any “arbitrarily small” ε > 0, there always exists some

corresponding σ∗ that satisfies the bound in (2.9) for any σ ≥ σ∗.

It just remains to show how (2.9) is related to a stationary point of g(x;σ).

We proceed by writing down the definition of a stationary point x∗σ as

∇g(x∗σ;σ) =
∫
Rn f(t) (x∗σ−t)

σ2 k(x∗σ − t;σ2) dt. Zero crossing this expression

leads to x∗σ =
∫
Rn t f(t)k(x∗σ−t;σ2) dt∫
Rn f(t)k(x∗σ−t;σ2) dt

. Plugging the latter into (2.9) proves the

corollary.

�

2.5 The Function Space over Rn

Consider the space of functions {f : Rn → R}. Based on the materials

presented in this chapter, it is easy to see how different subsets of such

function space are related to each other (Figure 2.3). Remember, we defined

a function to have sub-exponential growth if it satisfies ∃ρ ≥ 0 , ∀x ∈ Rn \
B(0, ρ) ; |f(x)| < e‖x‖ (note that the sign of the exponential is positive).

• From Proposition 3, we know that any convex function with sub-

exponential growth is also asymptotically convex. For example, the

convex function f(x) = x2, when convolved with the Gaussian gives

g(x;σ) = x2+σ2. The latter is convex in x for any σ, including σ →∞,

thus it is asymptotically convex. Hence, as long as we limit our focus
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Figure 2.3: The taxonomy of the space of functions {f : Rn → R}.

to functions with sub-exponential growth, asymptotically convex func-

tions form a superset of standard convex functions. Of course, the

reverse is not necessarily true; there exist convex functions that do not

satisfy the growth condition, e.g. f(x) = exp(exp(x)).

• The class of asymptotically convex functions is very rich. Specifically, a

lot of optimization problems can be equivalently expressed as one that

is asymptotically convex. To see that, consider any (possibly noncon-

vex) unconstrained optimization problem {x∗} = arg minx∈Rn f(x). If

for any such x∗, we have |x∗|9∞, then we argue that another prob-

lem can be constructed which has same set of minimizers, but is also

asymptotically convex.

The assumption |x∗| 9 ∞ means there exists a large enough ball

of radius ρ that will contain the (set of) {x∗}. Let γ be such that

∀x ∈ B(0, ρ) ; γ ≥ f(x). Then the function f̂(x) as defined in (2.10)

has the same minimizer as that of f(x), i.e. {x∗} = {x̂∗}, simply

because they are different up to a constant. However, by Corollary 9,

it is easy to check that f̂(x) is asymptotically convex.

f̂(x) =

f(x)− γ x ∈ B(0, ρ)

0 otherwise
. (2.10)
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2.6 Proofs

Proposition 1 (Gradient Inequality for Asymptotic Convexity) A func-

tion f : Rn → R is asymptotically convex “if and only if” it obeys the follow-

ing gradient inequality.

∀M > 0 , ∃σ∗M , ∀x1 ∈ B(0,M) , ∀x2 ∈ B(0,M) , ∀λ ∈ [0, 1] , ∀σ ≥ σ∗M :

g(x2;σ)− g(x1;σ) ≤ (x2 − x1)T∇g(x2;σ) . (2.11)

Proof 1. We suppose f is asymptotically convex and prove that the gra-

dient inequality holds. We start by writing the definition of asymptotic

convexity (2.1) as below:

∀M > 0 , ∃σ∗M , ∀x1 ∈ B(0,M) , ∀x2 ∈ B(0,M)

∀λ ∈ [0, 1] , ∀σ ≥ σ∗M :

g
(
λx1 + (1− λ)x2;σ

)
≤ λg(x1;σ) + (1− λ)g(x2;σ) . (2.12)

This implies that for λ ∈ (0, 1] we have,

g
(
λ(x1 − x2) + x2;σ

)
− g(x2;σ)

λ
≤ g(x1;σ) − g(x2;σ) . (2.13)

In particular, letting λ → 0, using the definition of directional deriva-

tive, we derive the following,

(x1 − x2)T∇g(x2;σ) ≤ g(x1;σ) − g(x2;σ) (2.14)

≡ g(x2;σ) − g(x1;σ) ≤ (x2 − x1)T∇g(x2;σ) . (2.15)

2. Now suppose that the gradient inequality holds. We prove that this

implies g(x;σ) is asymptotically convex. By the gradient inequality we

have the following for any pair of points x1 and x3:
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∀M > 0 , ∃σ∗M , ∀x1 ∈ B(0,M) , ∀x3 ∈ B(0,M) , ∀λ ∈ [0, 1] , ∀σ ≥ σ∗M :

g(x3;σ)− g(x1;σ) ≤ (x3 − x1)T∇g(x3;σ) . (2.16)

Also, we can have the following for any pair of points x2 and x3.

∀M > 0 , ∃σ∗M , ∀x2 ∈ B(0,M) , ∀x3 ∈ B(0,M) , ∀λ ∈ [0, 1] , ∀σ ≥ σ∗M :

g(x3;σ)− g(x2;σ) ≤ (x3 − x2)T∇g(x3;σ) . (2.17)

In particular, we can choose x3 ∈ B(0,M) such that it satisfies the

following relationship.

x3 = λx1 + (1− λ)x2 (2.18)

Note that there exists such x3 ∈ B(0,M) because B(0,M) is a convex

set and we know that any convex combination of two points within a

convex set lies inside that set,

∀M > 0 , ∃σ∗M , ∀x1 ∈ B(0,M) , ∀x2 ∈ B(0,M) , ∀λ ∈ [0, 1] , ∀σ ≥ σ∗M

∃x3 ∈ B(0,M) :

x3 = λx1 + (1− λ)x2

g(x3;σ)− g(x1;σ) ≤ (x3 − x1)T∇g(x3;σ)

g(x3;σ)− g(x2;σ) ≤ (x3 − x2)T∇g(x3;σ) . (2.19)

In particular, taking the convex combination of the above inequalities

implies below,
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∀M > 0 , ∃σ∗M , ∀x1 ∈ B(0,M) , ∀x2 ∈ B(0,M) , ∀λ ∈ [0, 1] , ∀σ ≥ σ∗M

∃x3 ∈ B(0,M) :

x3 = λx1 + (1− λ)x2

λg(x3;σ)− λg(x1;σ) + (1− λ)g(x3;σ)− (1− λ)g(x2;σ)

≤ λ(x3 − x1)T∇g(x3;σ) + (1− λ)(x3 − x2)T∇g(x3;σ) . (2.20)

We now plug in x3 = λx1 +(1−λ)x2 into RHS of the inequality (2.20)

and manipulate it as below.

λ(x3 − x1)T∇g(x3;σ) + (1− λ)(x3 − x2)T∇g(x3;σ)

=
(
λ(x3 − x1) + (1− λ)(x3 − x2)

)T
∇g(x3;σ)

=
(
λ(λx1 + (1− λ)x2 − x1) + (1− λ)(λx1 + (1− λ)x2 − x2)

)T
∇g(x3;σ)

= 0T∇g(x3;σ) . (2.21)

Therefore, (2.20) can be restated as below:

∀M > 0 , ∃σ∗M , ∀x1 ∈ B(0,M) , ∀x2 ∈ B(0,M) , ∀λ ∈ [0, 1] , ∀σ ≥ σ∗M

∃x3 ∈ B(0,M) :

x3 = λx1 + (1− λ)x2

g(x3;σ)− λg(x1;σ)− (1− λ)g(x2;σ) ≤ 0 . (2.22)

Finally, plugging the definition of x3 again into (2.22), we derive:

∀M > 0 , ∃σ∗M , ∀x1 ∈ B(0,M) , ∀x2 ∈ B(0,M) , ∀λ ∈ [0, 1] , ∀σ ≥ σ∗M

g
(
λx1 + (1− λ)x2;σ

)
− λg(x1;σ)− (1− λ)g(x2;σ) ≤ 0 . (2.23)

�
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Proposition 2 (Hessian Condition for Asymptotic Convexity) The func-

tion f(x) is asymptotically convex “if and only if” it obeys the following

condition.

∀M > 0 , ∃σ∗M , ∀x ∈ B(0,M) , ∀σ ≥ σ∗M :

∇2g(x;σ) � O . (2.24)

Also, the function f is asymptotically strict convex under similar

conditions except that ∇2g(x;σ) � O instead of ∇2g(x;σ) � O.

Proof We present the proof for asymptotic convex case, and the asymptotic

“strict” convex case can be proved in a similar way.

1. We suppose f is asymptotically convex and then prove it implies the

following condition of the Proposition,

∀M > 0 , ∃σ∗M , ∀x ∈ B(0,M) , ∀σ ≥ σ∗M :

∇2g(x;σ) � O . (2.25)

Let u ∈ Rn, such that ‖u‖ = 1, be any direction. Using second order

Taylor’s expansion of g around x, we have the following:

g
(
x+ λu;σ

)
= g

(
x;σ

)
+ λuT∇g

(
x;σ

)
+

1

2
λ2uT∇2g

(
x;σ

)
u + r(x, λu) ,

(2.26)

where r(x, λu) is the remainder of the Taylor’s expansion. Since f is

asymptotically convex, it obeys the gradient inequality (2.2) (with x1 being

x+ λu and x2 being x here). Therefore, (2.26) can be rewritten as below.

∀M > 0 , ∃σ∗M , ∀x ∈ B(0,M) , ∀σ ≥ σ∗M :
1

2
λ2uT∇2g

(
x;σ

)
u + r(x, λu) ≥ 0 . (2.27)

In particular, letting λ → 0, |r(x, λu)| � |1
2
λ2uT∇2g

(
x;σ

)
u|, we derive

uT∇2g
(
x;σ

)
u ≥ 0, which is equivalent to ∇2g

(
x;σ

)
� O.
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2. We assume that ∀M > 0 , ∃σ∗M , ∀x ∈ B(0,M) , ∀σ ≥ σ∗M ⇒ ∇2g(x;σ) �
O holds and prove that f is asymptotically convex.

Choose any pair of points x1 and x2 in B(0,M). Then there exists a point

x3 = λx1 + (1 − λ)x2 for some λ ∈ [0, 1] such that the following identity

holds (an extension of mean value theorem to the second derivative).

g(x1;σ) = g(x2;σ) + (x1−x2)T∇g(x2;σ) + (x1−x2)T∇2g(x3;σ)(x1−x2) .

(2.28)

However, since ∇2g(x;σ) � O for any x ∈ B(0,M), it holds at x = x3 as

well. Note that x3 has to lie inside the convex set B(0,M) because x1 and

x2 are in the latter ball, and x3 is merely a convex combination of these two

points. Thus, we derive the following inequality,

∀M > 0 , ∃σ∗M , ∀x1 ∈ B(0,M) , ∀x2 ∈ B(0,M) , ∀λ ∈ [0, 1] , ∀σ ≥ σ∗M :

g(x1;σ)− g(x2;σ)− (x1 − x2)T∇g(x2;σ) ≥ 0 (2.29)

≡ g(x2;σ)− g(x1;σ) ≤ (x2 − x1)T∇g(x2;σ) . (2.30)

The above is the gradient inequality (2.2) for asymptotically convex func-

tions and thus f is asymptotically convex.

�

Proposition 3 Any convex function with sub-exponential growth is asymp-

totically convex.

Proof The proof simply starts with the definition of a convex function and

then exploits the non-negativity of the Gaussian kernel. Sub-Exponential

growth condition is merely used to keep Gaussian convolution bounded and

hence well-defined.
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∀λ ∈ [0, 1] , ∀(x1,x2, t) ∈ Rn × Rn × Rn :

f
(
λ(x1 − t) + (1− λ)(x2 − t)

)
≤ λf(x1 − t) + (1− λ)f(x2 − t)

⇒
∫
Rn
k(t;σ)f

(
λ(x1 − t) + (1− λ)(x2 − t)

)
dt

≤
∫
Rn
k(t;σ)

(
λf(x1 − t) + (1− λ)f(x2 − t)

)
dt

≡ g
(
λx1 + (1− λ)x2;σ

)
≤ λg(x1;σ) + (1− λ)g(x2;σ) . (2.31)

This result is independent of M and thus holds for any arbitrary value of

M for satisfying the definition (2.1).

�

2.6.1 Derivative Free Results on Asymptotic Convexity

Main Result (Corollary 9) Consider a continuous f : Rn → R. Suppose

there exists an origin-centered ball, out of which f decays like ‖x‖−n−3 or

faster. If
∫ n
R f(x) dx < 0, then f is asymptotically strict convex.

In the sequel, we present the proof of the main result.

Proposition 4 (Bound on Hessian’s Diagonal of a Gaussian) For any

real vectors x and t and any σ2 > 0, the following inequality holds:

0 ≤ 1 +
((xk − tk)2

σ2
− 1
)
e−
‖x−t‖2

2σ2 ≤ 3

2

(xk − tk)2

σ2
. (2.32)

Proof Consider the function
(
z2 − 1

)
e−

z2

2 defined for any z ∈ R. We first

obtain an over-estimator for this function that has simpler form. In fact, it

turns out the Taylor expansion up to the second order term gives such an

over estimator:

∀z ∈ R ;
3

2
z2 − 1 ≥

(
z2 − 1

)
e−

z2

2 ≥ −1 . (2.33)

In particular, by choosing z = (xk − tk)/σ, we can proceed as below.
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3

2

(xk − tk)2

σ2
− 1 ≥

((xk − tk)2

σ2
− 1
)
e−

(xk−tk)2

2σ2 ≥ −1

⇒ 3

2

(xk − tk)2

σ2
− 1 ≥

((xk − tk)2

σ2
− 1
)
e−

(xk−tk)2

2σ2 e−
∑
i 6=k(xi−ti)

2

2σ2 ≥ −1

≡ 3

2

(xk − tk)2

σ2
− 1 ≥

((xk − tk)2

σ2
− 1
)
e−
‖x−t‖2

2σ2 ≥ −1

≡ 3

2

(xk − tk)2

σ2
≥
((xk − tk)2

σ2
− 1
)
e−
‖x−t‖2

2σ2 + 1 ≥ 0 . (2.34)

�

Lemma 5 (Convergence of Hessian’s Diagonal) Consider f : Rn →
R. Suppose there exists for f some M∗ ≥ 0, c ≥ 0 and integer a ≥ n + 3

with the following property:

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a . (2.35)

Then, the following inequality holds for any x ∈ B(0,M) and any i that

1 ≤ i ≤ n,

|
∫
Rn
f(t) dt + σ2(2πσ2)

n
2
∂2

∂x2
i

g(x;σ) | (2.36)

≤ 3

2σ2
(M +M∗)2‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.37)

+
3 c n π

n
2M∗(n−a)

2σ2Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
. (2.38)
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Proof

|
∫
Rn
f(t) dt + σ2(2πσ2)

n
2
∂2

∂x2
i

g(x;σ) | (2.39)

= |
∫
Rn
f(t) dt + σ2(2πσ2)

n
2
∂2

∂x2
i

∫
Rn
f(t)k(x− t;σ2) dt |

= |
∫
Rn
f(t) dt + σ2(2πσ2)

n
2

∫
Rn
f(t)

((xi − ti)2

σ4
− 1

σ2

)
k(x− t;σ) dt |

= |
∫
Rn
f(t)

(
1 +

((xi − ti)2

σ2
− 1
)
e−
‖x−t‖2

2σ2

)
dt |

= |
∫
B(0,M∗)

f(t)
(

1 +
((xi − ti)2

σ2
− 1
)
e−
‖x−t‖2

2σ2

)
dt |

+ |
∫
Rn\B(0,M∗)

f(t)
(

1 +
((xi − ti)2

σ2
− 1
)
e−
‖x−t‖2

2σ2

)
dt | .

We now bound each of these terms separately. For the first term we proceed

as follows.

|
∫
B(0,M∗)

f(t)
(

1 +
((xi − ti)2

σ2
− 1
)
e−
‖x−t‖2

2σ2

)
dt | (2.40)

≤
(∫
B(0,M∗)

f 2(t) dt
)1/2

(∫
B(0,M∗)

(
1 +

((xi − ti)2

σ2
− 1
)
e−
‖x−t‖2

2σ2

)2

dt

)1/2

(2.41)

≤ ‖f‖

(∫
B(0,M∗)

(
1 +

((xi − ti)2

σ2
− 1
)
e−
‖x−t‖2

2σ2

)2

dt

)1/2

(2.42)

≤ ‖f‖

(∫
B(0,M∗)

( 3

2

(xi − ti)2

σ2

)2

dt

)1/2

(2.43)

=
3

2σ2
‖f‖

(∫
B(0,M∗)

(
(xi − ti)2

)2

dt

)1/2

(2.44)

≤ 3

2σ2
‖f‖

(∫
B(0,M∗)

(
(M +M∗)2

)2

dt

)1/2

(2.45)

=
3

2σ2
(M +M∗)2‖f‖

(
Vol(B(0,M∗))

) 1
2

(2.46)

=
3

2σ2
(M +M∗)2‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2
, (2.47)

where (2.41) uses Cauchy-Schwartz inequality, and (2.43) uses Proposition
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4 (Bound on Hessian’s Diagonal of a Gaussian) and (2.45) uses the fact that

integration variable t ∈ B(0,M∗) and the assumption that x ∈ B(0,M),

We now proceed with the second term as the following:

|
∫
Rn\B(0,M∗)

f(t)
(

1 +
((xi − tk)2

σ2
− 1
)
e−
‖x−t‖2

2σ2

)
dt | (2.48)

≤
∫
Rn\B(0,M∗)

|f(t)| |1 +
((xi − tk)2

σ2
− 1
)
e−
‖x−t‖2

2σ2 | dt (2.49)

≤
∫
Rn\B(0,M∗)

|f(t)|3
2

(xi − tk)2

σ2
dt (2.50)

≤ 3

2σ2

∫
Rn\B(0,M∗)

c‖t‖−a(xi − tk)2 dt (2.51)

≤ 3

2σ2

∫
Rn\B(0,M∗)

c‖t‖−a(x2
i + 2|xi| |tk|+ t2k) dt (2.52)

≤ 3

2σ2

∫
Rn\B(0,M∗)

c‖t‖−a(M2 + 2M |tk|+ t2k) dt (2.53)

≤ 3

2σ2

∫
Rn\B(0,M∗)

c‖t‖−a(M2 + 2M ‖t‖+ ‖t‖2) dt (2.54)

=
3c

2σ2

∫ ∞
M∗

Surf(Sn−1(0, r))
(
M2r−a + 2Mr1−a + r2−a

)
dr (2.55)

=
3c

2σ2

∫ ∞
M∗

nπ
n
2 rn−1

Γ(n
2

+ 1)

(
M2r−a + 2Mr1−a + r2−a

)
dr (2.56)

=
3 c n π

n
2M∗(n−a)

2σ2Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
, (2.57)

where (2.50) uses Proposition 4 (Bound on Hessian’s Diagonal of a Gaus-

sian), and (2.51) applies lemma’s assumption ∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤
c‖x‖−a. In (2.53) we use lemma’s assumption that x ∈ B(0,M). Finally,

(2.56) uses the fact that the integral of a radially symmetric function is

equivalent to a 1-d integral along the radius of (n− 1)-dimensional sphere.

Applying the inequalities in (2.47) and (2.57) to (2.39), the it follows that:
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|
∫
Rn
f(x) dx + σ2(2πσ2)

n
2
∂

∂x2
k

g(x;σ) | (2.58)

≤ 3

2σ2
(M +M∗)2‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.59)

+
3 c n π

n
2M∗(n−a)

2σ2Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
. (2.60)

�

Proposition 6 (Bound on Hessian’s Off-Diagonal of a Gaussian) For

any real vectors x and t and any σ > 0, the following inequality holds.

0 ≤ |xi − ti| |xj − tj|
σ2

e−
‖x−t‖2

2σ2 ≤ |xi − ti| |xj − tj|
σ2

(2.61)

Proof Consider the function |z|e− z
2

2 defined for any z ∈ R. We first obtain

an over-estimator for this function that has simpler form. It is easy to check

that |z| provides such an over estimator:

∀z ∈ R ; |z| ≥ |z|e−
z2

2 ≥ 0 . (2.62)

In particular, by choosing z = (xi − ti)/σ and then again z = (xj − tj)/σ,

we can proceed as below:

|xi − ti|
σ

≥ |xi − ti|
σ

e−
(xi−ti)

2

2σ2 ≥ 0

⇒ |xi − ti| |xj − tj|
σ2

≥ |xi − ti| |xj − tj|
σ2

e−
(xi−ti)

2+(xj−tj)2

2σ2 ≥ 0

⇒ |xi − ti| |xj − tj|
σ2

≥ |xi − ti| |xj − tj|
σ2

e−
(xi−ti)

2+(xj−tj)2

2σ2 e−
∑
i 6=j,i 6=k(xi−ti)

2

2σ2 ≥ −1

≡ |xi − ti| |xj − tj|
σ2

≥ |xi − ti| |xj − tj|
σ2

e−
‖x−t‖2

2σ2 ≥ 0 . (2.63)

�

Lemma 7 (Convergence of Hessian’s Off-Diagonal) Consider f : Rn →
R. Suppose there exists for f some M∗ ≥ 0, c ≥ 0 and integer a ≥ n + 3

with the following property:
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∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a . (2.64)

Then, the following inequality holds for any x ∈ B(0,M).

|σ2(2πσ2)
n
2
∂2

∂xixj
g(x;σ) | (2.65)

≤ (M +M∗)2

σ2
‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.66)

+
c n π

n
2M∗(n−a)

σ2Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
. (2.67)

Proof We proceed as below:

|σ2(2πσ2)
n
2
∂2

∂xixj
g(x;σ) | (2.68)

= |σ2(2πσ2)
n
2
∂2

∂xixj

∫
Rn
f(t)k(x− t;σ) dt | (2.69)

= |σ2(2πσ2)
n
2

∫
Rn

(xi − ti)(xj − tj)
σ4

f(t)k(x− t;σ) dt | (2.70)

= |
∫
B(0,M∗)

(xi − ti)(xj − tj)
σ2

f(t)e−
‖x−t‖2

2σ2 dt | (2.71)

+ |
∫
Rn\B(0,M∗)

(xi − ti)(xj − tj)
σ2

f(t)e−
‖x−t‖2

2σ2 dt | . (2.72)

We now bound each of these terms separately. For the first term we proceed

as follows.
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|
∫
B(0,M∗)

(xi − ti)(xj − tj)
σ2

f(t)e−
‖x−t‖2

2σ2 dt | (2.73)

≤
(∫
B(0,M∗)

f 2(t) dt
)1/2

(2.74)

×

(∫
B(0,M∗)

( (xi − ti)(xj − tj)
σ2

e−
‖x−t‖2

2σ2

)2

dt

)1/2

(2.75)

≤ ‖f‖

(∫
B(0,M∗)

( (xi − ti)(xj − tj)
σ2

e−
‖x−t‖2

2σ2

)2

dt

)1/2

(2.76)

≤ ‖f‖

(∫
B(0,M∗)

( |xi − ti| |xj − tj|
σ2

)2

dt

)1/2

(2.77)

≤ 1

σ2
‖f‖

(∫
B(0,M∗)

(M +M∗)2 (M +M∗)2 dt

)1/2

(2.78)

=
(M +M∗)2

σ2
‖f‖

(
Vol
(
B(0,M∗)

) ) 1
2

(2.79)

=
(M +M∗)2

σ2
‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2
, (2.80)

where (2.74) uses Cauchy-Schwartz inequality, and (2.77) uses Proposition

6 (Bound on Hessian’s Off-Diagonal of a Gaussian).

We now proceed with the second term as the following.
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|
∫
Rn\B(0,M∗)

(xi − ti)(xj − tj)
σ2

f(t)e−
‖x−t‖2

2σ2 dt |

≤
∫
Rn\B(0,M∗)

|f(t)| |(xi − ti)(xj − tj)
σ2

e−
‖x−t‖2

2σ2 | dt

≤
∫
Rn\B(0,M∗)

|f(t)| |xi − ti| |xj − tj|
σ2

dt (2.81)

≤ 1

σ2

∫
Rn\B(0,M∗)

c‖t‖−a|xi − ti| |xj − tj| dt (2.82)

≤ 1

σ2

∫
Rn\B(0,M∗)

c‖t‖−a(|xi|+ |ti|)(|xj|+ |tj|) dt

=
1

σ2

∫
Rn\B(0,M∗)

c‖t‖−a( |xi| |xj| + |xi| |tj| + |ti| |xj| + |ti| |tj| ) dt

≤ 1

σ2

∫
Rn\B(0,M∗)

c‖t‖−a( |xi| |xj| + (|xi| + |xj|)‖t‖ + ‖t‖2 ) dt

=
c

σ2

∫ ∞
M∗

Surf(Sn−1(0, r))r−a(|xi| |xj|+ (|xi|+ |xj|)r + r2)dt (2.83)

=
c

σ2

∫ ∞
M∗

nπ
n
2

Γ(n
2

+ 1)
rn−1 r−a( |xi| |xj| + (|xi| + |xj|)r + r2 ) dr

≤ c n π
n
2

σ2Γ(n
2

+ 1)

∫ ∞
M∗

rn−1−a(M2 + 2rM + r2 ) dr (2.84)

=
c n π

n
2M∗(n−a)

σ2Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
, (2.85)

where (2.81) uses Proposition 6 (Bound on Hessian’s Off-Diagonal of a

Gaussian), and (2.82) applies lemma’s assumption, ∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤
c‖x‖−a. In (2.84) we use the fact that x ∈ B(0,M). Finally, (2.83) uses the

fact that the integral of a radially symmetric function is equivalent to a

1-d integral along the radius of n− 1-dimensional sphere.

Applying the inequalities in (2.80) and (2.85) to (2.68), the following fol-

lows.
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|σ2(2πσ2)
n
2
∂2

∂xixj
g(x;σ) | (2.86)

≤ (M +M∗)2

σ2
‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.87)

+
c n π

n
2M∗(n−a)

σ2Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
. (2.88)

�

Theorem 8 (Convergence of Hessian) Consider f : Rn → R such that

‖f‖ is bounded. Suppose there exists for f some M∗ ≥ 0, c ≥ 0 and integer

a ≥ n+ 3 with the following property.

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a . (2.89)

Suppose for any ε > 0 and any M > 0, σ (as a function of ε and M) is

chosen large enough in the following sense,

σ2 ≥ n

ε
(n+

1

2
)

(
‖f‖(M2 +M∗2)

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.90)

+
c n π

n
2M∗(n−a)

Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

))
.(2.91)

Then it is guaranteed to have3,

∀x ∈ B(0,M) ; ‖I
∫
Rn
f(t) dt + σ2(

√
2πσ)n∇2g(x;σ)‖∞ ≤ ε . (2.92)

Proof We first upper bound ‖I
∫
Rn f(t) dt + σ2(

√
2πσ)n∇2g(x;σ)‖∞ as fol-

lows,

3The notation ‖A‖∞ is for the max-norm of the matrix A and is defined as ‖A‖∞ ,
maxi,j |aij | .
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‖I
∫
Rn
f(t) dt + σ2(

√
2πσ)n∇2g(x;σ)‖∞

≤
n∑
i=1

|
∫
Rn
f(t) dt + σ2(

√
2πσ)n

∂2

∂x2
i

g(x;σ) |

+
n∑
i=1

n∑
j 6=i

|σ2(
√

2πσ)n
∂2

∂xixj
g(x;σ) |

≤
n∑
i=1

3

2σ2
(M +M∗)2‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

+
3 c n π

n
2M∗(n−a)

2σ2Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
+

n∑
i=1

n∑
j 6=k

(M +M∗)2

σ2
‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.93)

+
c n π

n
2M∗(n−a)

σ2Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
≤ n

σ2
(
3

2
+ n− 1)

(
‖f‖(M2 +M∗2)

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

+
c n π

n
2M∗(n−a)

Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

))
, (2.94)

where (2.93) uses Lemma 5 (Convergence of Hessian’s Diagonals) and

(2.93) uses Lemma 7 (Convergence of Hessian’s Diagonals). Also in the

above inequalities are well-defined due to the assumption that ‖f‖ 6=∞.

In order to guarantee ‖I
∫
Rn f(t) dt + σ2(

√
2πσ)n∇2g(x;σ)‖∞ is less than

ε, it is sufficient to have an upper bound of the former being less than ε.

That means, the following inequality must hold.
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n

σ2
(
3

2
+ n− 1)

(
‖f‖(M2 +M∗2)

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.95)

+
c n π

n
2M∗(n−a)

Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

))
(2.96)

≤ ε (2.97)

≡ n

ε
(n+

1

2
)

(
‖f‖(M2 +M∗2)

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.98)

+
c n π

n
2M∗(n−a)

Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

))
(2.99)

≤ σ2 . (2.100)

�

Corollary 9 (Asymptotic Convexity for Functions with Rapid Decay)

Consider a continuous function f : Rn → R. Suppose there exists for f some

M∗ ≥ 0, c ≥ 0 and integer a ≥ n+ 3 with the following property,

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a . (2.101)

If
∫
Rn f(x) dx < 0 then f is asymptotically strict convex.

More precisely, it will hold that,

∀M > 0 , ∃σ∗M , ∀x ∈ B(0,M) , ∀σ ≥ σ∗M :

∇2g(x;σ) � O , (2.102)

where σ∗M is defined as below,

σ∗M
2 ,

n2(n+ 1
2
)

−
∫
Rn f(t) dt

(
‖f‖(M2 +M∗2)

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.103)

+
cnπ

n
2M∗(n−a)

Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

))
.(2.104)

Proof Let λmin(A) denote the smallest (signed) eigenvalue of the matrix
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A. We use4 the inequality λmin(A+B) ≥ λmin(A) + λmin(B).

λmin(σ2(
√

2πσ)n∇2g(x;σ)) (2.109)

≥ λmin(I

∫
Rn
f(t) dt+ σ2(

√
2πσ)n∇2g(x;σ)) (2.110)

+λmin(−I
∫
Rn
f(t) dt) (2.111)

≡ λmin(σ2(
√

2πσ)n∇2g(x;σ)) (2.112)

≥ λmin(I

∫
Rn
f(t) dt + σ2(

√
2πσ)n∇2g(x;σ)) (2.113)

−
∫
Rn
f(t) dt (2.114)

≡ λmin(σ2(
√

2πσ)n∇2g(x;σ)) +

∫
Rn
f(t) dt (2.115)

≥ λmin(I

∫
Rn
f(t) dt + σ2(

√
2πσ)n∇2g(x;σ)) . (2.116)

On the other hand, it holds between smallest eigenvalue and (entry-wise)

max norm that λmin(A) ≥ −
√

tr(ATA) = −
√∑

i,j a
2
i,j ≥ −

√
n2‖A‖2

∞ =

−n‖A‖∞. Therefore, it follows that,

1

n
λmin

(
σ2(
√

2πσ)n∇2g(x;σ)
)

+
1

n

∫
Rn
f(t) dt (2.117)

≥ −‖I
∫
Rn
f(t) dt + σ2(

√
2πσ)n∇2g(x;σ)‖∞ . (2.118)

Now let’s define σ0 (as a function of ε and M) as below,

4To derive this, simply use the definition of λmax as follows,

λmin(A+B) = inf
‖v‖=1

vT (A+B)v (2.105)

= inf
‖v‖=1

vTAv + vTBv (2.106)

≥ inf
‖v‖=1

vTAv + inf
‖v‖=1

vTBv (2.107)

= λmin(A) + λmin(B) . (2.108)
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σ0
2 ,

n

ε
(n+

1

2
)

(
‖f‖(M2 +M∗2)

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.119)

+
cnπ

n
2M∗(n−a)

Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

))
,(2.120)

where a and c are determined by the tail decay assumption (2.101). Note

that such σ0 exists because the RHS is finite5 as ‖f‖ 6= ∞. By Theorem 8

(Convergence of Hessian), it follows that,

∀x ∈ B(0,M) ∀σ > σ0 ; ‖I
∫
Rn
f(t) dt + σ2(

√
2πσ)n∇2g(x;σ)‖∞ ≤ ε .

(2.121)

Combining (2.117) and (2.121) leads to the following,

∀x ∈ B(0,M) ∀σ > σ0 ;
1

n
λmin

(
σ2(
√

2πσ)n∇2g(x;σ)
)
+

1

n

∫
Rn
f(t) dt ≥ −ε .

(2.122)

Thus, in order to keep λmin
(
σ2(
√

2πσ)n∇2g(x;σ)
)

positive within the ball

B(0,M), it is sufficient to have − 1
n

∫
Rn f(t) dt−ε > 0, or equivalently to have

− 1
n

∫
Rn f(t) dt > ε. This can be expressed as follows,

∀x ∈ B(0,M) ∀σ > σ0 ; (2.123)

− 1

n

∫
Rn
f(t) dt > ε⇒ 1

n
σ2(
√

2πσ)n∇2g(x;σ) � O . (2.124)

Now ε can be eliminated in the above condition, using the equality in

(2.119). Using that, and the facts that σ > 0 and the assumption that

−
∫
Rn f(t) dt > 0, we obtain following,

5In one hand, f has bounded integral outside of the ball B(0,M∗) due to the decay
assumption in this region. On the other hand, f is continuous within the (finite-volume)
ball B(0,M∗). Hence, it has bounded integral within this ball. Consequently, the sum the
outside and inside integrals has to be bounded.
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∀x ∈ B(0,M) ∀σ > σ0 ; (2.125)

σ0
2 >

n2(n+ 1
2
)

−
∫
Rn f(t) dt

(
‖f‖(M2 +M∗2)

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.126)

+
c n π

n
2M∗(n−a)

Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

))
(2.127)

⇒ ∇2g(x;σ) � O . (2.128)

For clarity, let’s define σ∗M as following,

σ∗M
2 ,

n2(n+ 1
2
)

−
∫
Rn f(t) dt

(
‖f‖(M2 +M∗2)

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.129)

+
c n π

n
2M∗(n−a)

Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

))
.(2.130)

Then the expression (2.125), due to the fact that we did not make any

assumption on M except that M > 0, can be expressed more precisely as

follows,

∀M > 0 , ∃σ∗M , ∀x ∈ B(0,M) , ∀σ ≥ σ∗M :

∇2g(x;σ) � O . (2.131)

By Proposition 2, the above condition is equivalent to the definition of

asymptotic strict convexity of f .

�

2.6.2 Derivative Free Results on Asymptotic Minimizer

Main Result (Corollary 13) Consider f : Rn → R. Suppose there is an

origin-centered ball out of which f decays like ‖x‖−n−4 or faster. Then for

any origin-centered ball, there always exists some σ that can make
∫
Rn t f(t) dt∫
Rn f(t) dt

arbitrary close to the stationary point of g(x;σ).
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Lemma 10 (Zeroth Moment Convergence) Consider f : Rn → R. Sup-

pose there exists for f some M∗ ≥ 0, c ≥ 0 and integer a ≥ n + 3 with the

following property.

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a . (2.132)

Then for any x ∈ B(0,M) the following inequality holds.

|
∫
Rn
f(t)

(
1− e−

‖x−t‖2

2σ2

)
dt | (2.133)

≤ (M +M∗)2

2σ2
‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.134)

+
c nπ

n
2M∗n−a

2σ2 Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
. (2.135)

Proof

|
∫
Rn
f(t)

(
1− e−

‖x−t‖2

2σ2

)
dt | (2.136)

= |
∫
B(0,M∗)

f(t)
(

1− e−
‖x−t‖2

2σ2

)
dt | (2.137)

+|
∫
Rn\B(0,M∗)

f(t)
(

1− e−
‖x−t‖2

2σ2

)
dt | . (2.138)

We now bound each of these terms separately. Starting from the first term

in (2.137), we proceed as below,
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|
∫
B(0,M∗)

f(t)
(

1− e−
‖x−t‖2

2σ2

)
dt | (2.139)

≤ ‖f‖

(∫
B(0,M∗)

(
1− e−

‖x−t‖2

2σ2

)2

dt

) 1
2

(2.140)

≤ ‖f‖

(∫
B(0,M∗)

( ‖x− t‖2

2σ2

)2

dt

) 1
2

(2.141)

≤ ‖f‖

(∫
B(0,M∗)

( (M +M∗)2

2σ2

)2

dt

) 1
2

(2.142)

=
(M +M∗)2

2σ2
‖f‖

(
Vol
(
B(0,M∗)

)) 1
2

(2.143)

=
(M +M∗)2

2σ2
‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2
, (2.144)

where (2.140) uses Cauchy-Schwartz inequality and (2.141) uses the fact

that ∀y ∈ R ; 1 − e−y
2 ≤ y2. In (2.142) we use lemma’s assumption that

x ∈ B(0,M) and that the integration domain is t ∈ B(0,M∗).

Now we upper bound the second term in (2.137) as below,
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|
∫
Rn\B(0,M∗)

f(t)
(

1− e−
‖x−t‖2

2σ2

)
dt | (2.145)

≤
∫
Rn\B(0,M∗)

| f(t) | | 1− e−
‖x−t‖2

2σ2 | dt (2.146)

≤
∫
Rn\B(0,M∗)

| f(t) | ‖x− t‖
2

2σ2
dt (2.147)

≤
∫
Rn\B(0,M∗)

| f(t) | ‖x‖
2 + 2‖x‖ ‖t‖+ ‖t‖2

2σ2
dt (2.148)

≤
∫
Rn\B(0,M∗)

c ‖t‖−a ‖x‖
2 + 2‖x‖ ‖t‖+ ‖t‖2

2σ2
dt (2.149)

≤ c

2σ2

∫
Rn\B(0,M∗)

M2‖t‖−a + 2M‖t‖1−a + ‖t‖2−a dt (2.150)

=
c

2σ2

∫ ∞
M∗

Surf(Sn−1(0, r))
(
M2r−a + 2Mr1−a + r2−a

)
dr(2.151)

=
c

2σ2

∫ ∞
M∗

nπ
n
2 rn−1

Γ(n
2

+ 1)

(
M2r−a + 2Mr1−a + r2−a

)
dr (2.152)

=
c nπ

n
2M∗n−a

2σ2 Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
. (2.153)

Applying (2.144) and (2.153) to (2.137) implies the following inequality,

|
∫
Rn
f(t)

(
1− e−

‖x−t‖2

2σ2

)
dt | (2.154)

≤ (M +M∗)2

2σ2
‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.155)

+
c nπ

n
2M∗n−a

2σ2 Γ(n
2

+ 1)

( M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2

)
. (2.156)

�

Lemma 11 (First Moment Convergence) Consider f : Rn → R. Sup-

pose there exists for f some M∗ ≥ 0, c ≥ 0 and integer a ≥ n + 4 with the

following property.

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a . (2.157)

Define hi(t) , tif(t). Then for any x ∈ B(0,M), and any i = 1, 2, · · · , n,
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the following inequality holds.

|
∫
Rn
hi(t)

(
1− e−

‖x−t‖2

2σ2

)
dt | (2.158)

≤ (M +M∗)2

2σ2
‖hi‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.159)

c nπ
n
2M∗n+1−a

2σ2 Γ(n
2

+ 1)

( M2

a− n− 1
+ 2

MM∗

a− n− 2
+

M∗2

a− n− 3

)
.(2.160)

Proof

|
∫
Rn
hi(t)

(
1− e−

‖x−t‖2

2σ2

)
dt | (2.161)

= |
∫
B(0,M∗)

hi(t)
(

1− e−
‖x−t‖2

2σ2

)
dt | (2.162)

+|
∫
Rn\B(0,M∗)

hi(t)
(

1− e−
‖x−t‖2

2σ2

)
dt | . (2.163)

We now bound each of these terms separately. Starting from the first term

in (2.162), we proceed as below.

|
∫
B(0,M∗)

hi(t)
(

1− e−
‖x−t‖2

2σ2

)
dt | (2.164)

≤ ‖hi‖

(∫
B(0,M∗)

(
1− e−

‖x−t‖2

2σ2

)2

dt

) 1
2

(2.165)

≤ ‖hi‖

(∫
B(0,M∗)

( ‖x− t‖2

2σ2

)2

dt

) 1
2

(2.166)

≤ ‖hi‖

(∫
B(0,M∗)

( (M +M∗)2

2σ2

)2

dt

) 1
2

(2.167)

=
(M +M∗)2

2σ2
‖hi‖

(
Vol
(
B(0,M∗)

)) 1
2

(2.168)

=
(M +M∗)2

2σ2
‖hi‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2
, (2.169)

where (2.165) uses Cauchy-Schwartz inequality and (2.166) uses the fact

that ∀y ∈ R ; 1 − e−y
2 ≤ y2. In (2.167) we use lemma’s assumption that
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x ∈ B(0,M) and that the integration domain implies t ∈ B(0,M∗).

Now we upper bound the second term in (2.162) as below.

|
∫
Rn\B(0,M∗)

hi(t)
(

1− e−
‖x−t‖2

2σ2

)
dt | (2.170)

≤
∫
Rn\B(0,M∗)

|hi(t) | | 1− e−
‖x−t‖2

2σ2 | dt (2.171)

≤
∫
Rn\B(0,M∗)

|hi(t) |
‖x− t‖2

2σ2
dt (2.172)

≤
∫
Rn\B(0,M∗)

|hi(t) |
‖x‖2 + 2‖x‖ ‖t‖+ ‖t‖2

2σ2
dt (2.173)

≤
∫
Rn\B(0,M∗)

|hi(t) |
M2 + 2M ‖t‖+ ‖t‖2

2σ2
dt (2.174)

≤
∫
Rn\B(0,M∗)

‖ t ‖ | f(t) | M2 + 2M ‖t‖+ ‖t‖2

2σ2
dt (2.175)

≤
∫
Rn\B(0,M∗)

c ‖ t ‖ ‖t‖−a M
2 + 2M ‖t‖+ ‖t‖2

2σ2
dt (2.176)

=
c

2σ2

∫
Rn\B(0,M∗)

M2‖t‖1−a + 2M‖t‖2−a + ‖t‖3−a dt (2.177)

=
c

2σ2

∫ ∞
M∗

Surf(Sn−1(0, r))
(
M2r1−a + 2Mr2−a + r3−a

)
dr(2.178)

=
c

2σ2

∫ ∞
M∗

nπ
n
2 rn−1

Γ(n
2

+ 1)

(
M2r1−a + 2Mr2−a + r3−a

)
dr (2.179)

=
c nπ

n
2M∗n+1−a

2σ2 Γ(n
2

+ 1)

( M2

a− n− 1
+ 2

MM∗

a− n− 2
+

M∗2

a− n− 3

)
.(2.180)

Applying (2.169) and (2.180) to (2.162) implies the following inequality,

|
∫
Rn
hi(t)

(
1− e−

‖x−t‖2

2σ2

)
dt | (2.181)

≤ (M +M∗)2

2σ2
‖hi‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.182)

c nπ
n
2M∗n+1−a

2σ2 Γ(n
2

+ 1)

( M2

a− n− 1
+ 2

MM∗

a− n− 2
+

M∗2

a− n− 3

)
.(2.183)

�

Theorem 12 Consider a continuous function f : Rn → R. Suppose there
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exists for f some M∗ ≥ 0, c ≥ 0 and integer a ≥ n + 4 with the following

property,

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a . (2.184)

Define r and u for brevity as the following,

r ,
M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2
(2.185)

u ,
M2

a− n− 1
+ 2

MM∗

a− n− 2
+

M∗2

a− n− 3
. (2.186)

Then, for any ε > 0 and any i = 1, 2, · · · , n, there always exists some

σ∗ > 0 that satisfies the following inequality.

σ∗2

≥ max{
(M +M∗)2‖f‖

(
π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n−a

Γ(n
2

+1)
r

|
∫
Rn f(t) dt|

,
|
∫
Rn tif(t) dt|
|
∫
Rn f(t) dt|

(M +M∗)2‖f‖
(

π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n−a

Γ(n
2

+1)
r

ε|
∫
Rn f(t) dt|

+
(M +M∗)2‖tif‖

(
π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n+1−a

Γ(n
2

+1)
u

ε|
∫
Rn f(t) dt|

} . (2.187)

In addition, for any σ ≥ σ∗, and for any x ∈ B(0,M) the following

inequality holds.

|
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

| ≤ ε . (2.188)

Proof The theorem seeks to bound the following quantity.

|
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

| . (2.189)

Since σ > 0, we have the following identity.
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∫
Rn tik(x− t;σ2) dt∫

Rn f(t)k(x− t;σ2) dt
(2.190)

=

∫
Rn(
√

2πσ)nf(t)tik(x− t;σ2) dt∫
Rn(
√

2πσ)nf(t)k(x− t;σ2) dt
(2.191)

=

∫
Rn f(t)tie

− ‖x−t‖
2

2σ2 dt∫
Rn f(t)e−

‖x−t‖2
2σ2 dt

. (2.192)

Therefore, the task of bounding (2.189) can be equivalently expressed as

bounding the following,

|
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tie

− ‖x−t‖
2

2σ2 dt∫
Rn f(t)e−

‖x−t‖2
2σ2 dt

| . (2.193)

We first must ensure that this task is well-defined, i.e. the denominators are

non-zero. We already know from theorem’s assumptions that
∫
Rn f(t) dt 6= 0.

Therefore, we just need to ensure
∫
Rn f(t)e−

‖x−t‖2

2σ2 dt 6= 0. To do that, we use

the following fact6,

∀(a, b) ∈ R− {0} × R ; |a| ≥ 2|a− b| ⇒ 2|b| ≥ |a| . (2.197)

Therefore, in order to have |
∫
Rn f(t)e−

‖x−t‖2

2σ2 dt | ≥ 1
2
|
∫
Rn f(t) dt |, it is

sufficient to satisfy the following inequality,

6In order to see that, we start from |a| ≥ 2|a − b| and show that it implies 2|b| ≥ |a|.
Observe that 2|a − b| ≤ |a| can be equivalently expressed as 4(a − b)2 ≤ a2, and thus
as 3a2 + 4b2 − 8ab ≤ 0. Since a 6= 0 by definition, the LHS is a quadratic form in a.
Therefore, it is nonpositive if and only if a is between the roots of the quadratic. It is easy
to derive these roots, which are 1

3 (4b± 2|b|). Hence, we just proved that,

|a| ≥ 2|a− b| ≡ 1

3
(4b− 2|b|) ≤ a ≤ 1

3
(4b+ 2|b|) . (2.194)

In one hand, when b ≥ 0, 1
3 (4b − 2|b|) ≤ a ≤ 1

3 (4b + 2|b|) implies that a ≤ 2b. On the
other hand, when b ≤ 0, 1

3 (4b − 2|b|) ≤ a ≤ 1
3 (4b + 2|b|) implies that 2b ≤ a. Therefore,

for any choice of b, it follows that,

1

3
(4b− 2|b|) ≤ a ≤ 1

3
(4b+ 2|b|)⇒ |a| ≤ 2|b| , (2.195)

which due to the proved equivalence can be written as the following,

|a| ≥ 2|a− b| ⇒ |a| ≤ 2|b| . (2.196)
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1

2
|
∫
Rn
f(t) dt | ≥ |

∫
Rn
f(t) dt−

∫
Rn
f(t)e−

‖x−t‖2

2σ2 dt| (2.198)

⇒
∫
Rn
f(t)e−

‖x−t‖2

2σ2 dt| ≥ 1

2
|
∫
Rn
f(t) dt | . (2.199)

On the other hand, by lemma 10 we have,

|
∫
Rn
f(t)

(
1− e−

‖x−t‖2

2σ2

)
dt | (2.200)

≤ (M +M∗)2

2σ2
‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

(2.201)

+
c nπ

n
2M∗n−a

2σ2 Γ(n
2

+ 1)
r . (2.202)

Plugging this upper bound into (2.198) gives the following sufficient con-

dition for guaranteeing |
∫
Rn f(t)e−

‖x−t‖2

2σ2 dt | ≥ 1
2
|
∫
Rn f(t) dt |.

1

2
|
∫
Rn
f(t) dt | ≥ (M +M∗)2

2σ2
‖f‖

( π
n
2

Γ(n
2

+ 1)
M∗n

) 1
2

+
c nπ

n
2M∗n−a

2σ2 Γ(n
2

+ 1)
r

⇒ σ ≥ σ∗ (2.203)

σ∗2 =
(M +M∗)2‖f‖

(
π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n−a

Γ(n
2

+1)
r

|
∫
Rn f(t) dt|

.

It is easy to check that such σ∗ > 0 always exists, because (2.203) is always

bounded. Specifically, observe that the assumptions require
∫
Rn f(t) dt 6= 0.

Also ‖f‖ 6= ∞ due to the tail decay rate condition and continuity of f . Fi-

nally, M and M∗ cannot be∞ because they are real numbers. Consequently,∫
Rn f(t)e−

‖x−t‖2

2σ2 dt ≥ |
∫
Rn f(t) dt | due to (2.197) and since by theorem’s as-

sumption we know |
∫
Rn f(t) dt | 6= 0, it follows that

∫
Rn f(t)e−

‖x−t‖2

2σ2 dt 6= 0

as well.

Now that we know how to make (2.189) well-defined, we can proceed by

finding an upper bound for it. That is, upper bounding the following,
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|
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

| .

We start from the fact that a
b
− c

d
= ad−b

bd
+ a−c

d
and thus we have the

following,

|a
b
− c

d
| ≤ |a|

|b|
|d− b|
|d|

+
|a− c|
|d|

. (2.204)

In fact, the above inequality implies a more useful one as below.

|a
b
− c

d
| ≤ |a|

|b|
UB(|d− b|)

LB(|d|)
+

UB(|a− c|)
LB(|d|)

, (2.205)

where UB(.) and LB(.) mean any upper bound and lower bound. Using

this inequality, we can continue bounding (2.204) as the following,

|
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

|

≤
|
∫
Rn f(t)ti dt|
|
∫
Rn f(t) dt|

UB(|
∫
Rn f(t)k(x− t;σ2) dt−

∫
Rn f(t) dt|)

LB(|
∫
Rn f(t)k(x− t;σ2) dt|)

+
UB(|

∫
Rn f(t)ti dt−

∫
Rn f(t)tik(x− t;σ2) dt|)

LB(|
∫
Rn f(t)k(x− t;σ2) dt|)

=
|
∫
Rn f(t)ti dt|
|
∫
Rn f(t) dt|

(M+M∗)2

2σ2 ‖f |
(

π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n−a

2σ2 Γ(n
2

+1)
r

1
2
|
∫
Rn f(t) dt|

+

(M+M∗)2

2σ2 ‖hi‖
(

π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n+1−a

2σ2 Γ(n
2

+1)
u

1
2
|
∫
Rn f(t) dt|

. (2.206)

Thus, in order to have |
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x−t;σ2) dt∫
Rn f(t)k(x−t;σ2) dt

| ≤ ε, it is sufficient

to keep its upper bound in (2.206) less than ε as shown below:
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|
∫
Rn f(t)ti dt|
|
∫
Rn f(t) dt|

(M+M∗)2

2σ2 ‖f‖
(

π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n−a

2σ2 Γ(n
2

+1)
r

1
2
|
∫
Rn f(t) dt|

+

(M+M∗)2

2σ2 ‖hi‖
(

π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n+1−a

2σ2 Γ(n
2

+1)
u

1
2
|
∫
Rn f(t) dt|

≤ ε

⇒|
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

| ≤ ε ,

which can equivalently be written as below,

|
∫
Rn tif(t) dt|
|
∫
Rn f(t) dt|

(M+M∗)2

2ε
‖f‖

(
π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n−a

2εΓ(n
2

+1)
r

1
2
|
∫
Rn f(t) dt|

(2.207)

+

(M+M∗)2

2ε
‖hi‖

(
π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n+1−a

2εΓ(n
2

+1)
u

1
2
|
∫
Rn f(t) dt|

≤ σ2

⇒|
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

| ≤ ε ,

with σ∗ being the σ at the equality. It is easy to check that such σ∗ > 0

always exists, because the LHS of (2.207) is always bounded. Specifically,

observe that
∫
Rn f(t) dt 6= 0 due to theorem’s assumptions, and that ‖f‖ <

∞ and ‖hi‖ <∞ due to decay rate7 property of f .

Remember, however, we earlier had an additional constraint on σ∗ back in

(2.203). In order for σ∗ to jointly satisfy (2.203) and (2.203), we can choose

7If there exists for continuous f some M∗ ≥ 0, c ≥ 0 and integer a ≥ n + 2 with the
following property.

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a ,

then ‖f‖ <∞ and ‖hi‖ <∞.
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it as below,

σ∗

= max{
(M +M∗)2‖f‖

(
π
n
2

Γ(n
2

+1)

(
M∗n) 1

2 + c nπ
n
2 M∗n−a

Γ(n
2

+1)
r
)

|
∫
Rn f(t) dt|

,
|
∫
Rn tif(t) dt|
|
∫
Rn f(t) dt|

(M +M∗)2‖f‖
(

π
n
2

Γ(n
2

+1)
M∗n) 1

2 + c nπ
n
2 M∗n−a

Γ(n
2

+1)
r

ε|
∫
Rn f(t) dt|

+
(M +M∗)2‖hi‖

(
π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n+1−a

Γ(n
2

+1)
u

ε|
∫
Rn f(t) dt|

} .

�

Corollary 13 Consider f : Rn → R. Suppose there exists for f some M∗ ≥
0, c ≥ 0 and integer a ≥ n+ 4 with the following property.

∀x ∈ Rn \ B(0,M∗) ; |f(x)| ≤ c‖x‖−a . (2.208)

Let x∗σ denote a stationary point of g(x;σ), that is ∇g(x∗σ;σ) = 0. Then,

for any ε > 0 and any M ≥ 0, there always exists some (large enough) σ > 0

(which depends on ε and M) that can make ‖
∫
Rn t f(t) dt∫
Rn f(t) dt

− x∗σ‖∞ arbitrarily

small.

Proof Define r and u for brevity as the following,

r ,
M2

a− n
+ 2

MM∗

a− n− 1
+

M∗2

a− n− 2
(2.209)

u ,
M2

a− n− 1
+ 2

MM∗

a− n− 2
+

M∗2

a− n− 3
. (2.210)

The assumption on f allows application of Theorem 12. Therefore, from

that theorem it follows that, for any ε > 0, and any i = 1, 2, · · · , n, there

“always exists” some σ∗ > 0 that satisfies the following inequality.

52



σ∗2 ≥

max{
(M +M∗)2‖f‖

(
π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n−a

Γ(n
2

+1)
r

|
∫
Rn f(t) dt|

,
|
∫
Rn tif(t) dt|
|
∫
Rn f(t) dt|

(M +M∗)2‖f‖
(

π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n−a

Γ(n
2

+1)
r

ε|
∫
Rn f(t) dt|

+
(M +M∗)2‖hi‖

(
π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n+1−a

Γ(n
2

+1)
u

ε|
∫
Rn f(t) dt|

} .

In addition, for any σ ≥ σ∗, and for any x ∈ B(0,M), the following

inequality holds.

|
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

| ≤ ε . (2.211)

Consequently, this result holds for all i = 1, 2, · · ·n “simultaneously”, when

stated as the following. For i = 1, 2, · · · , n, and any εi > 0 there “always

exists” some σ∗ > 0 that satisfies the following inequality.

σ∗2 ≥

max{
(M +M∗)2‖f‖

(
π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n−a

Γ(n
2

+1)
r

|
∫
Rn f(t) dt|

, max
i=1,··· ,n

{
|
∫
Rn tif(t) dt|
|
∫
Rn f(t) dt|

(M +M∗)2‖f‖
(

π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n−a

Γ(n
2

+1)
r

ε|
∫
Rn f(t) dt|

+
(M +M∗)2‖hi‖

(
π
n
2

Γ(n
2

+1)
M∗n

) 1
2

+ c nπ
n
2 M∗n+1−a

Γ(n
2

+1)
u

ε|
∫
Rn f(t) dt|

} } .

where hi(t) , tif(t). In addition, for any σ ≥ σ∗, and for any x ∈ B(0,M)

the following inequality holds.
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∀i ∈ {1, 2, · · · , n} ; |
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

| ≤ ε

⇒
n∑
i=1

|
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

| ≤ nεi . (2.212)

On the other hand, we have the following fact,

‖
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

‖∞ (2.213)

≤
n∑
i=1

|
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

| . (2.214)

From (2.212) and (2.213), the it follows that,

‖
∫
Rn f(t)ti dt∫
Rn f(t) dt

−
∫
Rn f(t)tik(x− t;σ2) dt∫
Rn f(t)k(x− t;σ2) dt

‖∞ ≤ nε (2.215)

We stress that for any “arbitrarily small” ε > 0, there always exists some

corresponding σ∗ that satisfies the bound in (2.215) for any σ ≥ σ∗.

It just remains to show how (2.215) is related to a stationary point of

g(x;σ). We proceed by writing down the definition of a stationary point x∗σ

as below.

∇g(x∗σ;σ) = 0 (2.216)

≡ ∇[f( . ) ? k( . ;σ2)](x∗σ) = 0 (2.217)

≡ [f( . ) ?∇k( . ;σ2)](x∗σ) = 0 (2.218)

≡
∫
Rn
f(t)

(x∗σ − t)
σ2

k(x∗σ − t;σ2) dt = 0 (2.219)

≡ x∗σ

∫
Rn
f(t)k(x∗σ − t;σ2) dt =

∫
Rn
t f(t)k(x∗σ − t;σ2) dt (2.220)

≡ x∗σ =

∫
Rn t f(t)k(x∗σ − t;σ2) dt∫
Rn f(t)k(x∗σ − t;σ2) dt

. (2.221)

Plugging (2.221) into (2.215) proves the corollary.
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‖
∫
Rn f(t)ti dt∫
Rn f(t) dt

− x∗σ‖∞ ≤ nε (2.222)

�
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CHAPTER 3

TRANSFORMATION KERNELS

It is one of the most fundamental problems in computer vision to establish

alignment between images. This task is crucial for many important problems

such as structure from motion, recognizing an object from different view-

points, and tracking objects in videos. Roughly speaking, mainstream image

alignment techniques can be categorized into “intensity-based” and “feature-

based” methods. Intensity-based methods use dense pixel information (such

as brightness pattern or correlation) integrated from image regions to esti-

mate the geometric transformation [29]. In contrast, feature-based methods

first extract a sparse set of local features from individual images, and then

establish correspondence among them to infer the underlying transformation

(for larger regions) [30].

In many applications intensity-based methods are appealing due to their

direct access to richer information (i.e. to every single pixel) [29]. This can

be useful, for example, when working with semi-regular patterns that are

difficult to match by local features [31]. However, the practical performance

of direct intensity methods can be undermined by the associated optimization

challenge [32]. Specifically, it is well-known that optimizing a cost function

that directly compares intensities of an image pair is highly susceptible to

finding local minima [33]. Thus, unless very good initialization is provided,

plain direct alignment of image intensities may lead to poor results.

Coarse-to-fine smoothing has become widely adopted to remedy the local

minima issue in the alignment [34–39]. Despite its popularity, we will show

that there are serious theoretical and practical issues with the Lucas-Kanade

scheme when applied to non-translational motions.

In this work, we propose Gaussian smoothing the objective function of

the alignment task, instead of the images, where the former was in fact the

original goal of coarse-to-fine image smoothing techniques. In particular, we

derive the theoretically correct image blur kernels that arise from (Gaussian)
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smoothing an alignment objective function. We show that, for smoothing

the objective of common motion models, such as affine and homography,

there exists a corresponding integral operator in the image space .

Thus, instead of convolving the objective function with a Gaussian kernel in

transformation space, we can equivalently compute the integral transform in

the image space. The former may be computationally expensive due to the

curse of dimensionality for numerical integration. Our derived kernels

are spatially varying as long as the transformation is not a pure translation,

and vary from those heuristically suggested by [26] or [27].

We believe our rigorously derived results here could open up new inves-

tigations on the efficient and fast ways to approximate these kernels. Fur-

thermore, the deterministic nature of the optimization algorithm provides a

new opportunity for performance evaluation indices that are reproducible
1. Most of the materials in this chapter are published in the paper [41].

3.1 Motivation

Lucas and Kanade made a major improvement to optimization of the di-

rect intensity-based method by adopting a coarse-to-fine scheme [36]. The

approach was motivated from a displacement alignment task as follows.

Given a pair of images f1(x) and f2(x). The goal is to estimate the opti-

mal displacement θ∗ by solving θ∗ = arg minθ
∫
X (f1(x+ θ)− f2(x))2dx. As

mentioned earlier, this objective function may have a lot of local minima.

However, if f1(x + θ) is linearized in θ around the origin 0, the objective

function becomes a convex quadratic with a closed form for the global

minimum.

The quality of linearized approximate depends on the contribution of

higher order terms. By Taylor’s remainder theorem, higher order terms in

the Taylor series of f1(x+ θ) are negligible when either the “displacement”

‖θ‖, or the induced norm of the Hessian ‖∇2
θf1(x + θ)‖ at any θ, is “very

small”. These two can be respectively achieved by reducing image resolu-

tion and reducing maxx∈X ‖∇2
xf1(x)‖. The latter is typically achieved by

1In contrast, probabilistic schemes for robust fitting such as RANSAC [40] may produce
a different answer in each run. The problem may persist even if a large batch of RANSAC
solutions is aggregated and the best among them is selected.
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isotropic Gaussian filtering. Observe that both of these transformations di-

minish the fine details in the image while leaving coarser structures intact,

depending on the resolution or bandwidth parameter σ of the filter. The

optimal displacement obtained in such coarse level is then used to warp f1

accordingly. However, displacement correction obtained without seeing the

details only provides a rough estimate of the actual displacement in the orig-

inal images. Coarse-to-fine strategy iteratively alternates between correcting

displacement in the lower resolution and moving to a finer resolution.

It was later shown that such a coarse-to-fine scheme is indeed guaran-

teed to recover the optimal displacement under some mild conditions [42].

Although a guarantee of correctness is only established for translational mo-

tion, the notion of coarse-to-fine smoothing followed by local approximation

has been adopted in computer vision to matching with almost all paramet-

ric transformation models [34–39]. Despite its popularity, there are serious

theoretical and practical issues with the Lucas-Kanade scheme when applied

to non-translational motions. For example, if the transformation is scaling,

it is easy to show that the Hessian of the image function may grow propor-

tional to the distance from the origin. To compensate for this effect, stronger

smoothing is required for points farther from the origin.

For example, consider scaling an image by a factor of θ. The linearization

error is thus bounded by |∂2/∂θ2(f1(θx))| = |xT∇2
xf1(θx)x|, which can can

grow like ‖x‖2. Thus, to keep |∂2/∂θ2(f1(θx))| small, say by some filtering

process, the filter must shrink ∇2
xf1(θx) more aggressively as traveling away

from the origin. Obviously, this is not the case in Gaussian convolution where

the amount of blur is constant everywhere.

We believe, the popularity of “isotropic Gaussian convolution ” for

image blurring is, in part, a legacy of scale-space theory . 2. This influen-

tial theory emerged from a series of seminal articles in the 80’s [44–46]. This

theory shows that “isotropic Gaussian convolution” is the “unique” linear

operator obeying some least commitment axioms [47]. In particular, this op-

erator is unbiased to location and orientation, due to its convolutional and

isotropic nature. Later, Lindeberg extended scale-space theory to cover affine

blur by anisotropic spatially invariant kernels [48,49].

2The idea of Gaussian smoothing in vision is even older than scale-space theory. For
example, Marr and Hildreth [43] studied zero-crossings the Laplacian in images convolved
with Gaussian kernels at different scales.
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Nevertheless, it is known that the human eye has progressively less resolu-

tion from the center (fovea) toward the periphery [50]. In computer vision,

spatially varying blur is believed to benefit matching and alignment tasks.

In that direction, Berg and Malik [26] introduced the notion of “geometric

blur” and suggested some spatially varying kernels inspired by that. How-

ever, their kernels are derived heuristically, without a rigorous connection to

the underlying geometric transformations. Some limitations of traditional

image smoothing are discussed in [51] and coped using stacks of binary im-

ages. That work, however, still uses isotropic Gaussian kernel for smoothing

images of the stack.

In this chapter, we propose Gaussian smoothing the objective function

of the alignment task, instead of the images. In particular, we derive the

theoretically correct image blur kernels that arise from (Gaussian) smoothing

an alignment objective function. As we show, all of these kernels are spatially

varying as long as the transformation is not a pure translation, and vary from

those heuristically suggested by [26] or [27]. Besides theoretical benefits of

deriving these kernels for deeper understanding of how blur and alignment are

coupled, there is also a computational gain in using these kernels. Specifically,

to achieve the smoothed objective, instead of convolving it with a Gaussian

in transformation space, one can perform an integral transform in the image

space. The latter has smaller dimensionality and thus cheaper to compute

numerically.

3.2 Notation and Definitions

Let ? and ~ denote convolution operators in spaces Θ and X respectively.

Given a signal f : X → R, e.g. a 2D image, we define a signal warping or

domain transformation parameterized by θ as τ : X × Θ → X . Here

θ is concatenation of all the parameters of a transformation. For example,

in case of affine Ax+ b with x ∈ R2, θ is a 6 dimensional vector containing

the the elements of A and b.

The Fourier transform of a real valued function f : Rn → R is

f̂(ω) ,
∫
Rn f(x)e−iω

Txdx and the inverse Fourier transform is f̂(x) =

(2π)−n
∫
Rn f(ω)eiω

Txdω.

59



(a) (b)

(c) (d)

Figure 3.1: Basin of attraction for scale alignment. Egg shape input images
are shown in (a) and (b), where black and white pixels are respectively by
-1 and 1 intensity values. Obviously, the correct alignment is attained at
θ = −1, due to reflection symmetry. The objective function for zLK is
shown in (c) and for z in (d). Blue, green and red respectively indicate
local maxima, global maximum and basin of attraction originating from
local maxima of highest blur.

3.3 Smoothing the Objective

We use the inner product between the transformed f1 and the reference

signal f2 as the alignment objective function. Note that f1 and f2 are the

input to the alignment algorithm, and in many scenarios may be different

from the original signals. For example, they may be mean subtracted or

normalized by their `2 norm. The alignment objective function is denoted

by h(θ) and defined as follows,

h(θ) ,
∫
X
f1(τ (x,θ)) f2(x) dx , (3.1)

where f1(τ (x,θ)) is signal f1 warped by τ (x,θ). Our goal is to find

the parameters θ∗ that optimize the objective function (3.1). In practice,

h may have multiple local optima. Thus, instead of directly optimizing h,

we iteratively optimize a smoothed version of h in a coarse-to-fine approach.
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Algorithm 2 Alignment by Gaussian Smoothing.

1: Input: f1 : X → R, f2 : X → R, θ0 ∈ Θ, . . .
The set {σk} for k = 1, . . . , K s.t. 0 < σk+1 < σk

2: for k = 1→ K do
3: θk = local maximizer of z(θ;σk) initialized at θk−1

4: end for
5: Output: θK

We denote the objective function h(θ) obtained after smoothing as z(θ, σ),

where σ determines the amount of smoothing. Given z(θ, σ), we adopt the

standard optimization approach described by Algorithm 2. That is, we use

the parameters θk−1 found at a coarser scale to initialize the solution θk

found at each progressively finer scale.

In the Lucas-Kanade algorithm [36], instead of smoothing the objective

function, they directly blur the images. This results in the following form for

the objective function,

zLK(θ, σ) ,
∫
X

[f1(τ ( . ,θ))~ k( . ;σ2)] [f2 ~ k( . ;σ2)](x) dx .

Image smoothing is done in hope of eliminating the brittle local optima

in the objective function. However, if the latter is our goal, we propose the

correct approach is to blur the objective function directly3,

z(θ, σ) , [h ? k( · , σ2)](θ) .

The optimization landscape of these two cases may differ significantly. To

illustrate, consider the egg shape images in Figures 3.1(a) and 3.1(b). If we

assume the only parameter subject to optimization is the scale factor, i.e.

τ (x, θ) = θx, the associated optimization landscape is visualized in figure

3.1(c) for zLK and 3.1(d) for z. Clearly, z has a single basin of attraction

that leads to the global optimum, unlike zLK whose basins do not necessarily

land at the global optimum.

3[h?k( · , σ2)](θ) is bounded when either signals decay rapidly enough or have bounded
support. In image scenario, the latter always holds.
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Name θ τ (x,θ) uτ ,σ(θ,x,y)

Translation dn×1 x+ d k(τ (x,θ)− y;σ2)

Translation+Scale [an×1 , dn×1 ] aTx+ d K(τ (x,θ)− y;σ2 diag([1 + x2i ]))

Affine [ vec(An×n) , bn×1 ] Ax+ b k(τ (x,θ)− y;σ2(1 + ‖x‖2))

Homography [ vec(An×n) , bn×1 , cn×1 ] 1
1+cTx

(Ax+ b) q(θ,x,y, σ) e−p(θ,x,y,σ)

Table 3.1: Kernels for some of the common transformations arising in
vision (for all kernels n ≥ 1 except homography where n = 2).

(a) (b) (c) (d)

Figure 3.2: Visualization of affine and homography kernels specified by
A0 = [2 0.2 ; −0.3 4], b0 = [0.15 − 0.25] (also c0 = [1 − 5] for
homography). Here x ∈ [−1, 1]× [−1, 1], σ = 0.5 and y = (1, 1) or
y = (0, 0). More precisely, affine kernels in (a) u(θ = θ0,x,y = (0, 0)) (b)
u(θ = θ0,x,y = (1, 1)) and homography kernels in (c)
u(θ = θ0,x,y = (0, 0)) (d) u(θ = θ0,x,y = (1, 1)) .

3.4 Transformation Kernels

Our goal is to perform optimization on the smoothed objective function.

Smoothing the objective function refers to a convolution in the space of trans-

formation parameters with a Gaussian kernel. Unfortunately, performing this

convolution may be computationally expensive when the dimensionality of

the transformation space is large, e.g. eight for homography of 2D im-

ages. This section introduces the notion of transformation kernels, which

enables us to equivalently write the smoothed objective function using some

integral transform of the signal. This integration is performed in the

image space (e.g. 2D for images), reducing the computational complexity.

Definition Given a domain transformation τ : X ×Θ→ X , where X = Rn

and Θ = Rm. We define the transformation kernel associated with τ as

uτ ,σ : Θ × X × X → R to be the function satisfying the following integral
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equation for all Schwartz4 functions f ,

[f(τ (x, ·)) ? k(·;σ2)] (θ) =

∫
X
f(y)uτ ,σ(θ,x,y)dy . (3.2)

Using this definition, the smoothed alignment objective z can be equiva-

lently written as the following,

z(θ, σ) (3.3)

, [h ? k( · , σ2)](θ) (3.4)

=

∫
X

(
f2(x)[f1(τ (x, .)) ? k( · , σ2)](θ)

)
dx (3.5)

=

∫
X

(
f2(x)

(∫
X
f1(y)uτ ,σ(θ,x,y) dy

))
dx , (3.6)

where the integral transform in (3.6) uses the definition of kernel provided

in (3.2). A procedure for computing the integral transform (3.6) will be

provided in section 3.5.

3.4.1 Derivation of Kernels

Proposition 14 The following choice of u is a solution to the definition of

a kernel provided in (3.2). Here X = Ω = Rn.

uτ ,σ(θ,x,y)

=
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,t)−y)k(t− θ;σ2) dt

)
dω (3.7)

The proof uses the Fourier representation f(x) = (2π)−n
∫

Ω
f̂(ω)eiω

Tx dω,

and then application of Parseval’s theorem . See the appendix for details.

Now by applying the result of proposition 14 to the desired transformation

τ , we can compute the integrals5 and derive the corresponding kernel func-

tion as shown in Table 3.1 (see also figure 3.2 for some visualization). The

4A Schwartz function is one whose derivatives are rapidly decreasing.
5Although the integral in (3.7) does not necessarily have a “closed-form” for any ar-

bitrary transformation τ , it does so for most of the transformations we care about in
practice, as listed in Table 3.1.
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functions q and p, associated with the homography kernel, are each a ratio

of polynomials6.

The complete derivation of these kernels is provided in the appendix. Nev-

ertheless, below we present a relatively easy way to check the correctness of

the kernels. Specifically, we check two necessary conditions of the heat equa-

tion and the limit behavior, which must hold for the kernels.

Heat Equation

Consider the convolution [f(τ (x, · ))?k( · ;σ)](θ). Such Gaussian convolution

obeys the heat equation [28]:

σ∆θ[f(τ (x, · )) ? k( · ;σ)](θ)

= (∂/∂σ)[f(τ (x, · )) ? k( · ;σ)](θ) . (3.8)

Since we argue that [f(τ (x, · ))?k( · ;σ)](θ) =
∫
X f(y)uτ ,σ(θ,x,y) dy, the

following must hold:

σ∆θ

∫
X
f(y)uτ ,σ(θ,x,y) dy

=
∂

∂σ

∫
X
f(y)uτ ,σ(θ,x,y) dy (3.9)

≡
∫
X
f(y)σ∆θuτ ,σ(θ,x,y) dy

=

∫
X
f(y)

∂

∂σ
uτ ,σ(θ,x,y) dy (3.10)

⇐ σ∆θuτ ,σ(θ,x,y) =
∂

∂σ
uτ ,σ(θ,x,y) , (3.11)

6Complete expression for the homography kernel qe−p is as below:

γ0 ,
1

1 + ‖x‖2

γ1 , 1 + cTx

v , Ax+ b

q , γ0
(γ0‖x‖2yTv + γ1)2 + σ2‖x‖2(1 + γ0‖x‖2‖y‖2)

2πσ2(1 + γ0‖x‖2‖y‖2)
5
2

p ,
‖γ1y − v‖2 + γ0‖x‖2(v2y1 − v1y2)2

2σ2(1 + ‖x‖2(1 + ‖y‖2))
.
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where⇐ in (3.11) means sufficient condition. Now it is much easier to check

the identity (3.11) for the provided kernels. For example, in the case of an

affine kernel k(τ (x,θ)−y;σ2(1+‖x‖2)), both sides of the identity are equal

to (‖τ (x,θ)−y‖2
σ3(1+‖x‖2)

− n
σ
) k(τ (x,θ)− y;σ2(1 + ‖x‖2)).

Limit Behavior

When the amount of smoothing approaches zero, the integral transform must

recover the original function. Formally, we want the following identity to

hold,

lim
σ→0+

∫
X
f(y)uτ ,σ(θ,x,y) dy = f(τ (x,θ)) . (3.12)

The sufficient condition for the above identity is that limσ→0+ uτ ,σ(θ,x,y) =

δ(τ (x,θ)−y), where δ is Dirac’s delta function. This is trivial for the kernels

of affine and its special cases; since the kernel itself is a Gaussian, limσ→0+ is

equivalent to kernel’s variance approaching to zero (for any bounded choice

of ‖x‖). It is known that when the variance of the normal density function

tends to zero it approaches Dirac’s delta function.

3.4.2 Remarks

Two interesting observations can be made about Table 3.1. First, from a

purely objective standpoint, the derived kernels exhibit “foveation”, sim-

ilar to that in the eye. Except for translation, all the kernels are spatially

varying with density decreasing in ‖x‖. This is very easy to check for trans-

lation+scale and affine kernels, where they are spatially varying Gaussian

kernels whose variance depends and increases in ‖x‖.
Second observation is about the geometric blur kernel proposed by Berg

and Malik [26], which has the form uσ(x,y) = k(y − x;σ2‖x‖2). The Berg

and Malik’s kernel is only a restricted case of our kernels; when the transfor-

mation is restricted to the identity transform τ (x) = x. Another deficiency

of Berg and Malik’s kernel is that it becomes singular as ‖x‖ → 0, while

the proposed kernel remain stable. Finally, it is not clear how Berg and Ma-

lik’s kernel affects the optimization landscape of the matching or alignment

task. However, it is transparent that our proposed kernels listed in Table 3.1

smooth the optimization landscape in Gaussian sense. In fact, to the best of
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our knowledge, this work is the first that rigorously derives kernels for such

transformations.

3.4.3 Image Blurring vs. Objective Blurring

It is now easy to check that for the “translation transformation”, Gaussian

convolution of the alignment objective with respect to the optimization vari-

ables is equivalent to applying a “Gaussian convolution” to the image f1.

This is easy to check by plugging the translation kernel from Table 3.1 into

the smoothed objective function (3.6) as below:

z(θ, σ) (3.13)

=

∫
X

(
f2(x)

∫
X
f1(y)uτ ,σ(θ,x,y) dy

)
dx (3.14)

=

∫
X

(
f2(x)

∫
X
f1(y)k(θ + x− y;σ2) dy

)
dx (3.15)

=

∫
X

(
f2(x) [f1( · )~ k( · ;σ2)] (θ + x)

)
dx . (3.16)

However, such equivalence does not hold for other transformations, e.g.

affine. There, Gaussian convolution of the alignment objective with respect

to the optimization variables is equivalent to an “integral transform” of f1,

which cannot be expressed by the convolution of f1 with some spatially in-

variant convolution kernel in image space as shown below for affine case:

z(θ, σ) (3.17)

=

∫
X

(
f2(x)

∫
X
f1(y)uτ ,σ(θ,x,y) dy

)
dx (3.18)

=

∫
X

∫
X

f2(x)f1(y)e
− ‖Ax+b−y‖2

2σ2(1+‖x‖2)

(σ22π(1 + ‖x‖2))
n
2

dydx. (3.19)

3.5 Computation of the Integral Transform

Kernels can offer computational efficiency when computing the smoothed

objective (3.3).
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If the kernel u is affine or one of its special cases, then it is a Gaussian form7

in variable y according to Table 3.1. In such cases, expressing f1 by Gaussian

Basis Functions8, piecewise constant or piecewise polynomial forms leads to

a closed form of the integral transform. Details are provided in sections 3.5.1

and 3.5.2.

If the kernel u is not Gaussian in y (such as in homography), the derivation

of a closed form for the integral transform may not be possible. However,

numerical integration is done much more efficiently using the kernelized form

(3.6) compared to the original form (3.3). For example, when n = 2, integra-

tion in the original form is over θ and for homography dim(θ) = 8. However,

the equivalent integral transform is over y, where dim(y) = 2.

3.5.1 Gaussian RBF Representation of f1

The following result addresses the representation of f1 by Gaussian Radial

Basis Functions (GRBFs) φ(x;x0, δ0) = e
− ‖x−x0‖

2

2δ20 ; the more general case of

GBFs can be obtained in a similar fashion.

Proposition 15 Suppose f1 =
∑p

k=1 akφ(y;xk, δk), where φ(x;xk, δk) =

e
− ‖x−xk‖

2

2δ2
k . Assume that uτ ,σ(θ,x,y) is Gaussian in variable y. Then the

following identity holds.

∫
X
f1(y)uτ ,σ(θ,x,y) dy =

p∑
i=1

ai(
δi√
δ2
i + s2

)ne
− ‖xi−τ‖

2

2(δ2
i

+s2) .

See the appendix for a proof.

3.5.2 Piecewise Constant Representation of f1

The following result addresses the representation of f1 as piecewise constant;

the extension to piecewise polynomial is straightforward.

7We say a kernel is Gaussian in y when it can be written as uτ ,σ(θ,x,y) = k(τ (θ,x)−
y ; s2(θ,x)), where s : Θ × X → R+ is an arbitrary map and the maps τ and s are
independent of y.

8A GBF is a function of form Φ(x;x0,∆0) = exp(− (x−x0)
T∆0

−1(x−x0)
2 ), where the ma-

trix ∆ is positive definite. It is known that Gaussian RBFs φ(x;x0, δ0) = exp(−‖x−x0‖2
2δ20

),

which are a special case of GBFs, are general function approximators .
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Proposition 16 Suppose f1(x) = c on a rectangular piece x ∈ X † ,
Πn
k=1[xk, xk]. Assume that uτ ,σ(θ,x,y) has the form K(qτ (θ)−y;S), where

S , diag(s2
1, · · · , s2

n) and qτ : Θ → Rn is some map. Then the following

identity holds:

∫
X †
f1(y)uτ ,σ(θ,x,y) dy

=
n∏
k=1

1

2

(
erf
(qτ k − xk√

2sk

)
− erf

(qτ k − xk√
2sk

))
.

The proof uses separability of integrals for diagonal K.

3.6 Regularization

Regularization may compensate for the numerical instability caused by exces-

sive smoothing of the objective function and improve the well-posedness

of the task. The latter means if there are multiple transformations that

lead to equally good alignments (e.g. when image content has symmetries

), the regularization prefers the closest transformation to some given θ0.

This makes existence of a unique global optimum more presumable. We

achieve these goals by replacing f1 with the following regularized version:

f̃1(τ ( · , · ),x,θ,θ0, r) , k(θ − θ0; r2)f1(τ (x;θ)). (3.20)

Regularization shrinks the signal f1 for peculiar transformations with very

large ‖θ− θ0‖. Typically θ0 is set to the identity transformation τ (x;θ0) =

x. Using (3.20), the regularized objective function can be written as below:

h̃(θ;θ0, r) ,
∫
X

(
f̃1(τ ,x,θ,θ0, r)f2(x)

)
dx

=

∫
X
k(θ − θ0; r2)f1(τ (x;θ))f2(x) dx .

Consequently, the smoothed regularized objective is as follows,

z̃(θ,θ0, r, σ) , [h̃( · ,θ0, r) ? k( · ;σ2)](θ). (3.21)
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This form is still amenable to kernel computation using the following

proposition.

Proposition 17 The regularized objective function z̃(θ,θ0, r, σ) can be writ-

ten using transformation kernels as follows.

z̃(θ,θ0, r, σ) (3.22)

= [h̃( · ,θ0, r) ? k( · ;σ2)](θ) (3.23)

=

∫
X

(
k(θ − θ0; r2 + σ2)f2(x)... (3.24)

·
∫
X

(
f1(y)uτ , rσ√

r2+σ2
(
r2θ + σ2θ0

r2 + σ2
,x,y)

)
dy
)
dx .

See the appendix for the proof.

3.7 Proofs
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3.7.1 Notation

The symbol , is used for equality by definition. Also, we use x for scalars, x

for vectors, X for matrices, and X for sets. In addition, f(.) denotes a scalar

valued function and f(.) a vector valued function. Unless stated otherwise,

‖x‖ means ‖x‖2 and ∇ means ∇x. Finally, ? and ~ denote convolution

operators in spaces Θ and X respectively.

3.7.2 Definitions

Definition [Domain Transformation] Given a function f : X → R and

a vector field τ : X × Θ → X , where X = Rn and Θ = Rm. We refer to

τ (x,θ) as the domain transformation parameterized by θ. Note that

the parameter vector θ is constructed by concatenation of all the parameters

of a transformation. For example, in case of affine Ax+ b with x ∈ R2, θ is

a 6 dimensional vectors containing the elements of A and b.

Definition [Isotropic Gaussian]

k(x;σ2) ,
1

(
√

2πσ)dim(x)
e−
‖x‖2

2σ2 . (3.25)

Definition [Anisotropic Gaussian]

K(x; Σ) ,
1

(
√

2π)dim(x)
√

det(Σ)
e−

xTΣ−1x
2 .

Definition [Fourier Transform]

We use the following convention for Fourier transform. The Fourier trans-

form of a real valued function f : Rn → R is f̂(ω) =
∫
Rn f(x)e−iω

Txdx and

the inverse Fourier transform is f̂(x) = (2π)−n
∫
Rn f(ω)eiω

Txdω.

Definition [Transformation Kernel]

Given a domain transformation τ : Θ × X × Θ → X , where X = Rn

and Θ = Rm. We define a transformation kernel associated with τ as

uτ ,σ : X × X → R such that it satisfies the following integral equation ,

∀f :

[f(τ (x, ·)) ? k(·;σ2)] (θ) =

∫
X
f(y)uτ ,σ(θ,x,y)dy , (3.26)
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where f is assumed to be a Schwartz function. Therefore, any transfor-

mation kernel that satisfies this equation allows the convolution of the trans-

formed signal with the Gaussian kernel be equivalently written by the inte-

gral transform of the non-transformed signal with the kernel uτ ,σ(θ,x,y).

Definition [Smoothed Regularized Objective]

We define the smoothed regularized objective as the following.

z̃(θ,θ0, r, σ) , [h̃( · ,θ0, r) ? k( · ;σ2)](θ). (3.27)

3.7.3 Proofs

Proposition 0 The following identity holds for the product of two Gaus-

sians.

k(τ−µ1;σ2
1) k(τ−µ2;σ2

2) =
e
− ‖µ1−µ2‖

2

2(σ2
1+σ2

2)

(
√

2π(σ2
1 + σ2

2))m
k(τ−σ

2
2µ1 + σ2

1µ2

σ2
1 + σ2

2

;
σ2

1σ
2
2

σ2
1 + σ2

2

) .

Proof Sketch

k(τ − µ1;σ2
1) k(τ − µ2;σ2

2)

=
1

(σ1

√
2π)m

e
− ‖τ−µ1‖

2

2σ2
1

1

(σ2

√
2π)m

e
− ‖τ−µ2‖

2

2σ2
2

=
1

(2πσ1σ2)m
e
− ‖τ−µ1‖

2

2σ2
1
− ‖τ−µ2‖

2

2σ2
2

=
1

(2πσ1σ2)m
e

−
‖τ−

σ2
1σ

2
2

σ2
1+σ2

2

(
µ1
σ2

1

+
µ2
σ2

2

)‖2

2
σ2

1σ
2
2

σ2
1+σ2

2

− ‖µ1−µ2‖
2

2(σ2
1+σ2

2)

(3.28)

=
e
− ‖µ1−µ2‖

2

2(σ2
1+σ2

2)

(
√

2π(σ2
1 + σ2

2))m
k(τ − σ2

2µ1 + σ2
1µ2

σ2
1 + σ2

2

;
σ2

1σ
2
2

σ2
1 + σ2

2

) .

Note that (3.28) is derived by completing the square.

�
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Proposition 18 The following choice of u,

uτ ,σ(θ,x,y)

=
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,t)−y)k(t− θ;σ2) dt

)
dω (3.29)

is a solution to the definition of kernel provided in (3.26). Here X = Ω = Rn,

and k(t;σ2) is some function k( . ;σ) : X → R with some parameter σ, which

in our case is simply an isotropic Gaussian with bandwidth σ.

Proof Sketch The key to the proof is writing f(x) by its Fourier form

f(x) = (2π)−n
∫

Ω
f̂(ω)eiω

Tx dω, where Ω = Rn (similar to X = Rn).

[f(τ (x, .))
Θ

~ k( . ;σ2)](θ)

= [

(
1

(2π)n

∫
Ω

f̂(ω)eiω
T τ (x,.) dω

)
Θ

~ k( . ;σ2)](θ)

=
1

(2π)n

∫
Θ

(∫
Ω

f̂(ω)eiω
T τ (x,t) dω

)
k(t− θ;σ2) dt

=
1

(2π)n

∫
Ω

f̂(ω)

(∫
Θ

eiω
T τ (x,t)k(t− θ;σ2) dt

)
dω

=
1

(2π)n

∫
X
f(y)

(∫
Ω

e−iω
Ty

(∫
Θ

eiω
T τ (x,t)k(t− θ;σ2) dt

)
dω

)
dy(3.30)

=
1

(2π)n

∫
X
f(y)

(∫
Ω

∫
Θ

eiω
T (τ (x,t)−y)k(t− θ;σ2) dt dω

)
dy

=

∫
X
f(y)uτ ,σ(θ,x,y) dy , (3.31)

where (3.30) uses the Parseval theorem, and (3.31) uses proposition’s

assumption (3.29).

�

Proposition 19 Suppose f1 =
∑p

k=1 akφ(y;xk, δk), where φ(x;xk, δk) =

e
− ‖x−xk‖

2

2δ2
k . Assume that uτ ,σ(θ,x,y) is Gaussian in variable y. Then the

following identity holds.
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∫
X
f1(y)uτ ,σ(θ,x,y) dy

=

p∑
i=1

ai(
δi√
δ2
i + s2

)ne
− ‖xi−τ‖

2

2(δ2
i

+s2) .

Proof Sketch∫
X
f1(y)uτ ,σ(θ,x,y) dy

=

∫
X
f1(y)k(τ − y; s2) dy

=

∫
Rn

(
p∑

k=1

akφ(y;xk, δk)

)
k(τ − y; s2) dy

=

p∑
k=1

ak

(∫
Rn
φ(y;xk, δk)k(τ − y; s2) dy

)

=

p∑
k=1

ak(δk
√

2π)n
(∫

Rn
k(y − xk; δ2

k)k(τ − y; s2) dy

)

=

p∑
k=1

ak(δk
√

2π)n

∫
Rn

e
− ‖xk−τ‖

2

2(δ2
k

+s2)

(
√

2π(δ2
k + s2))n

k(y − s2xk + δ2
kτ

δ2
k + s2

;
δ2
ks

2

δ2
k + s2

) dy

(3.32)

=

p∑
k=1

ak(
δk√
δ2
k + s2

)ne
− ‖xk−τ‖

2

2(δ2
k

+s2)

(∫
Rn
k(y − s2xk + δ2

kτ

δ2
k + s2

;
δ2
ks

2

δ2
k + s2

) dy

)

=

p∑
k=1

ak(
δk√
δ2
k + s2

)ne
− ‖xk−τ‖

2

2(δ2
k

+s2) ,

where in (3.32) we use the Gaussian product result from proposition 0. �

Proposition 20 The regularized objective function z̃(θ,θ0, r, σ) can be writ-

ten using transformation kernels as follows.

z̃(θ,θ0, r, σ)

= [h̃( . ,θ0, r)
Θ

~ k( . ;σ2)](θ)

=

∫
X

(
k(θ − θ0; r2 + σ2)f2(x)

∫
X

(
f1(y)uτ , rσ√

r2+σ2
(
r2θ + σ2θ0

r2 + σ2
,x,y)

)
dy

)
dx .
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Proof Sketch For computing z̃, we proceed as below.

z̃(θ,θ0, r, σ)

= [h̃( . ,θ0, r) ? k( . ;σ2)](θ)

= [

(∫
X

(
k(θ − θ0; r2)f1(τ (x;θ))f2(x)

)
dx

)
? k( . ;σ2)](θ)

=

∫
X

(
f2(x)[

(
k(θ − θ0; r2)f1(τ (x;θ))

)
? k( . ;σ2)](θ)

)
dx

=

∫
X

(
f2(x)

∫
Θ

(
k(θ0 − t; r2)f1(τ (x; t))k(θ − t;σ2)

)
dt

)
dx

=

∫
X

(
f2(x)

∫
Θ

(
f1(τ (x; t))

e
− ‖θ−θ0‖

2

2(r2+σ2)(√
2π(r2 + σ2)

)mk(t− σ2θ0 + r2θ

r2 + σ2
;
r2σ2

r2 + σ2
)
)
dt

)
dx

=

∫
X

(
e
− ‖θ−θ0‖

2

2(r2+σ2)(√
2π(r2 + σ2)

)mf2(x)

∫
X

(
f1(y)uτ , rσ√

r2+σ2
(
r2θ + σ2θ0

r2 + σ2
,x,y)

)
dy

)
dx .

Thus, regularized objective function from (3.27) leads to the following

result.

z̃(θ,θ0, r, σ)

= [h̃( . ,θ0, r)
Θ

~ k( . ;σ2)](θ)

=

∫
X

(
k(θ − θ0; r2 + σ2)f2(x)

∫
X

(
f1(y)uτ , rσ√

r2+σ2
(
r2θ + σ2θ0

r2 + σ2
,x,y)

)
dy

)
dx .

�

3.7.4 Derivation of Affine and Homography Kernels

Proposition 21 Suppose n ≥ 1 is some integer and let t : Rn → (R−{0}).

Then for any real n× n matrix A† and any real n× 1 vectors b†, x, and y,

the following identity holds:
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(2π)−n
∫

Ω

∫
A

∫
B
e
iωTAx+iωT b

t(x)
−iωTykσ(A−A†)kσ(b− b†) dA db dω

= k(
A†x+ b†

t(x)
− y;

σ2(1 + ‖x‖2)

t2(x)
) ,

where Ω = B = Rn and A = Rn × Rn.

Proof Sketch We proceed as below,

∫
A

∫
B
e
iωTAx+iωT b

t(x)
−iωTykσ(A−A†)kσ(b− b†) dA db

=

∫
A

∫
B
e
i
∑n
j=1

∑
k=1nwjajkxk+i

∑n
k=1 ωkbk

t(x)
−i

∑n
k=1 ωkykkσ(A−A†)kσ(b− b†) dA db

= e−i
∑n
j=1 ωjyjΠn

j=1

(∫
Bj
e
iωj
t(x)

bjkσ(bj − b†j) dbj
)

Πn
j=1Πn

k=1

(∫
Ajk

e
iwjxk
t(x)

ajkkσ(ajk − a†jk) dajk
)

= e−i
∑n
j=1 ωjyjΠn

j=1

(
e
iωj
t(x)

b†j+
1
2
σ2(

iωj
t(x)

)2
)

(3.33)

Πn
j=1Πn

k=1

(
e
iwjxk
t(x)

a†jk+ 1
2
σ2(

iwjxk
t(x)

)2
)
,

where (3.33) uses the identity
∫
R e

axkσ(x†−x) dx = eax
†+ 1

2
σ2a2

. We proceed

by factorizing ωj and ω2
j in the exponent as the following.

=

∫
A

∫
B
e
iωTAx+iωT b

t(x)
−iωTykσ(A−A†)kσ(b− b†) dA db

= e−i
∑n
j=1 ωjyjΠn

j=1

(
e
iωj
t(x)

b†j+
1
2
σ2(

iωj
t(x)

)2
)

Πn
j=1Πn

k=1

(
e
iwjxk
t(x)

a†jk+ 1
2
σ2(

iwjxk
t(x)

)2
)

= Πn
j=1e

−iωjyj+
iωj
t(x)

b†j+
1
2
σ2(

iωj
t(x)

)2+
i(
∑n
k=1 a

†
jk
xk)

t(x)
wj+

1
2
σ2

∑n
k=1 x

2
k

t2(x)
(iwj)

2

= Πn
j=1e

iωj
b
†
j
−yj+

∑n
k=1 a

†
jk
xk

t(x)
− 1

2
w2
j

σ2(1+
∑n
k=1 x

2
k)

t2(x)

(3.34)

Now dividing both sides by (2π)−n and integrating w.r.t. ω, we obtain the

following.
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= (2π)−n
∫

Ω

∫
A

∫
B
e
iωTAx+iωT b

t(x)
−iωTykσ(A−A†)kσ(b− b†) dA db dω(3.35)

= (2π)−n
∫

Ω

Πn
j=1e

iωj
b
†
j
−yjt(x)+

∑n
k=1 a

†
jk
xk

t(x)
− 1

2
w2
j

σ2(1+
∑n
k=1 x

2
k)

t2(x) dω

= Πn
j=1

(∫
Ωj

(2π)−1e
iωj

b
†
j
−yjt(x)+

∑n
k=1 a

†
jk
xk

t(x)
− 1

2
w2
j

σ2(1+
∑n
k=1 x

2
k)

t2(x) dωj

)
= Πn

j=1

(
k(
b†j − yjt(x) +

∑n
k=1 a

†
jkxk

t(x)
;
σ2(1 +

∑n
k=1 x

2
k)

t2(x)
)
)

(3.36)

= k(
A†x+ b†

t(x)
− y;

σ2(1 + ‖x‖2)

t2(x)
) ,

where (3.36) uses the identity (2π)−1
∫
R e

iωx−ω
2

2y dω = k(x; y) for y > 0.

�

Lemma 22 (Derivation of Affine Kernel) Suppose x ∈ Rn, where n ≥
1 is some integer. The kernel uτ ,σ(θ†,x,y) for the affine transformation

τ (x) = A†x+ b† is equal to the following expression:

k
(
A†x+ b† − y;σ2(1 + ‖x‖2)

)
,

where A† is any n×n real matrix and b† and y are any n× 1 real vectors.

Proof Sketch By (3.29) from Proposition 14, any u that satisfies the fol-

lowing equation is a kernel for τ .

uτ ,σ(θ†,x,y) ,
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,θ)−y)kσ(θ − θ†) dθ

)
dω .

We proceed with computing u as the following,

uτ ,σ(θ†,x,y)

,
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,θ)−y)kσ(θ − θ†) dθ

)
dω

=
1

(2π)n

∫
Ω

∫
A

∫
B
eiω

T (Ax+b−y)kσ(A−A†)kσ(b− b†) dA db dω(3.37)

= k
(
A†x+ b† − y;σ2(1 + ‖x‖2)

)
,
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where (3.37) applies Lemma 21 with the particular choice of t(x) = 1.

�

Proposition 23 The following indefinite integral identities hold.

∀t ∈ R , c ∈ R , p1 ∈ R p2 ∈ R++ :∫
e−p2t2+p1t dt =

1

2

√
π

p2

e
p21
4p2 erf(

2p2t− p1

2
√
p2

) + c∫
te−p2t2+p1t dt =

p1

4p2
√
p2

e
p21
4p2

√
π erf(

2p2t− p1

2
√
p2

)− 1

2p2

e−p2t2+tp1 + c∫
t2ep1t−p2t2dt =

√
π

8p2
2

√
p2

(2p2 + p2
1)e

p21
4p2 erf(

2p2t− p1

2
√
p2

)− p1 + 2p2t

4p2
2

etp1−p2t2 + c.

Proof Sketch The correctness of these identities can be easily checked by

differentiating RHS w.r.t. t and observing that it becomes equal to the

integrand of LHS. Remember d
dt

erf(t) = 2√
π
e−t

2
.

�

Corollary 24 The following definite integral identities hold.

∀ t ∈ R , p1 ∈ R p2 ∈ R++ :∫
R
e−p2t2+p1t dt =

√
π

p2

e
p21
4p2∫

R
te−p2t2+p1t dt =

p1

2p2
√
p2

e
p21
4p2

√
π∫

R
t2e−p2t2+p1t dt =

√
π

4p2
2

√
p2

(2p2 + p2
1)e

p21
4p2 .

Proof Sketch Using the identities for their indefinite counterparts provided

in Proposition 23, these definite integrals are easily computed by subtracting

their value at the limit t → ±∞. Note that limt→±∞ erf(t) = ±1 and that

limt→±∞ f(t) exp(−p2t
2 + p1t) = 0, where p2 > 0 and f : R→ R is such that

f(t) is a polynomial in t. �

Lemma 25 (Derivation of Homography Kernel) Suppose x ∈ R2. The

kernel uτ ,σ(θ†,x,y) for the homography transformation τ (x) = (A†x +

b†)(1 + c†
T
x)−1 is equal to the following expression:
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uτ ,σ(θ†,x,y) = qe−p ,

where the auxiliary variables are as below:

z0 ,
1

1 + ‖x‖2

z1 , 1 + xTc†

v , A†x+ b†

q , z0
(z0‖x‖2yTv + z1)2 + σ2‖x‖2(1 + z0‖x‖2‖y‖2)

2πσ2(1 + z0‖x‖2‖y‖2)
5
2

p ,
‖z1y − v‖2 + z0‖x‖2(v2y1 − v1y2)2

2σ2(1 + ‖x‖2(1 + ‖y‖2))
.

Here A† is any 2 × 2 real matrix and b†, c†, and y are any 2 × 1 real

vectors.

Proof Sketch By (3.29) from Proposition 14, any u that satisfies the fol-

lowing equation is a kernel for τ .

uτ ,σ(θ†,x,y) ,
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,θ)−y)kσ(θ − θ†) dθ

)
dω .

We proceed with computing u as follows:

uτ ,σ(θ†,x,y)

,
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,θ)−y)kσ(θ − θ†) dθ

)
dω

=

∫
C

( 1

(2π)n

∫
Ω

∫
A

∫
B
e
iωT ( Ax+b

1+cT x
−y)

kσ(A−A†)kσ(b− b†) dA db dω
)

kσ(c− c†) dc

=

∫
C

(
k
(A†x+ b†

1 + cTx
− y;

σ2(1 + ‖x‖2)

(1 + cTx)2

)
kσ(c− c†)

)
dc (3.38)

=

∫
C2

∫
C1

(
k
(A†x+ b†

1 + cTx
− y;

σ2(1 + ‖x‖2)

(1 + cTx)2

)
kσ(c1 − c†1)dc1

)
kσ(c2 − c†2)dc2,

where (3.38) applies Lemma 21 with the particular choice of t(x) = 1+cTx,
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and C = C1 × C2 with C1 = C2 = R.

We continue by first computing the inner integral, aka w.r.t. c1. To reduce

clutter, we introduce the following auxiliary variables which are indepen-

dent of c1.

v , A†x+ b†

s , 1 + c2x2

z0 ,
1

σ2(1 + ‖x‖2)

z1 ,
1

2πσ
√

2π
.

Now we proceed with integration w.r.t. c1 as below.

∫
C1
kσ(c1 − c†1) k(

A†x+ b†

1 + cTx
− y;

σ2(1 + ‖x‖2)

(1 + cTx)2
) dc1

=

∫
C1

1√
2πσ

(1 + cTx)2

2πσ2(1 + ‖x‖2)
e
−(c1−c

†
1)2

2σ2 − (1+cT x)2

2σ2(1+‖x‖2)
‖A
†x+b†

1+cT x
−y‖2

dc1

= z0z1

∫
C1

(q0 + c1q1 + c2
1q2)e−p2c21+p1c1+p0 dc1

= z0z1

√
π

p2

e
p0+

p21
4p2

(
q0 + q1

p1

2p2

+ q2
1

4p2
2

(2p2 + p2
1)
)
, (3.39)

where (3.39) uses Corollary 24 with the particular choice of pi and qi for

i = 0, 1, 2 as the following. Obviously the following p2 satisfies p2 > 0. Also

not that pi and qi are independent of integration variable c1.

q0 , s2

q1 , 2x1s

q2 , x2
1

p0 , − c
†
1

2

2σ2
− z0

2
‖v − sy‖2

p1 ,
c†1
σ2

+ z0

(
x1y

T (v − sy)
)

p2 ,
1

2σ2
+ z0

x2
1‖y‖2

2
.
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Combining (3.39) and (3.39) gives the following.

uτ ,σ(θ†,x,y)

=

∫
C2
z0z1

√
π

p2

e
p0+

p21
4p2

(
q0 + q1

p1

2p2

+ q2
1

4p2
2

(2p2 + p2
1)
)
dc2 .

We can compute the above integral in a similar fashion as shown below.

uτ ,σ(θ†,x,y)

= z0z1

√
π

p2

∫
C2
kσ(c2 − c†2)e

p0+
p21
4p2

(
q0 + q1

p1

2p2

+ q2
1

4p2
2

(2p2 + p2
1)
)
dc2

= z0z1

√
π

p2

1√
2πσ

∫
C2
e
p0+

p21
4p2
−

(c2−c
†
2)2

2

(
q0 + q1

p1

2p2

+ q2
1

4p2
2

(2p2 + p2
1)
)
dc2

=
z0z1z

2
2

|x2|

√
π

p2

∫
C2

1√
2πσ

(Q0 + sQ1 + s2Q2)e−P2s2+P1s+P0 ds (3.40)

=
z0z1z

2
2

σ|x2|

√
π

2p2P2

e
P0+

P2
1

4P2

(
Q0 +Q1

P1

2P2

+Q2
1

4P 2
2

(2P2 + P 2
1 )
)
, (3.41)

where (3.40) applies change of variable s = 1 + x2c2 to the integral. Note

that,
∫
R f(c2)dc2 = sign(x2)

∫
R f((s−1)/x2)ds/x2 = 1/|x2|

∫
R f((s−1)/x2)ds.

Also, (3.41) uses Corollary 24 with the particular choice of z2, Pi and Qi for

i = 0, 1, 2 as the following. Obviously the following P2 satisfies P2 > 0. Also

not that Pi and Qi are independent of integration variable s.

z2 ,
1

1 + σ2x2
1z0‖y‖2

Q0 ,
1

z2

σ2x2
1 + x2

1(c†1 + σ2z0x1y
Tv)2

Q1 , 2x1(c†1 + σ2z0x1y
Tv)

Q2 , 1

P0 , − 1

2σ2x2
2

(1 + c†2x2)2 − z0z2

2
(‖v − c†1x1y‖2 + σ2z0x

2
1(v2y1 − v1y2)2)

P1 , z0z2y
T (v − c†1x1y) +

1

σ2x2
2

(1 + c†2x2)

P2 ,
1

2σ2x2
2

+
z0z2

2
‖y‖2 .
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In fact, by plugging in the definitions for zi, Pi, and Qi and performing

elementary algebraic manipulations, one can write (3.41) more compactly as

the following,

uτ ,σ(θ†,x,y) = qe−p ,

where the auxiliary variables are as below:

z0 ,
1

1 + ‖x‖2

z1 , 1 + xTc†

v , A†x+ b†

q , z0
(z0‖x‖2yTv + z1)2 + σ2‖x‖2(1 + z0‖x‖2‖y‖2)

2πσ2(1 + z0‖x‖2‖y‖2)
5
2

p ,
‖z1y − v‖2 + z0‖x‖2(v2y1 − v1y2)2

2σ2(1 + ‖x‖2(1 + ‖y‖2))
.

�
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CHAPTER 4

2D APPLICATIONS

This chapter demonstrates the application of the transformation kernels for

2D alignment tasks. We focus on homography estimation. We explain how

the integral transform associated with the homography kernel can be ef-

ficiently approximated using the Laplace approximation scheme. We

then show that the proposed method outperforms traditional multi-resolution

alignment. We also demonstrate the application of our alignment scheme for

3D reconstruction of an exotic octagonal building.

4.1 Computation with Homography Kernel

As a measure of match between a pair of images, we use the following

smoothed correlation function, denoted by z(θ, σ).

h(θ) ,
∫
X
f1(τ (x,θ)) f2(x) dx (4.1)

z(θ, σ) , [h ? k( · , σ2)](θ) , (4.2)

where θ , [ vec(An×n) , bn×1 , cn×1 ] and τ (x,θ) , 1
1+cTx

(Ax + b). In

Chapter 3, it was shown that z can be equivalently computed using the

following blur operator.

z(θ, σ) (4.3)

, [h ? k( · , σ2)](θ) (4.4)

=

∫
X

(
f2(x)[f1(τ (x, .)) ? k( · , σ2)](θ)

)
dx (4.5)

=

∫
X

(
f2(x)

(∫
X
f1(y)uτ ,σ(θ,x,y) dy

))
dx , (4.6)
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where uτ ,σ is the associated blur kernel. In our 2D experiments, we specif-

ically focus on homography alignment. Chapter 3 derived the following ex-

pression for the homography kernel .

uτ ,σ , q(θ,x,y, σ) e−p(θ,x,y,σ)

p ,
‖γ1y − v‖2 + γ0‖x‖2(v2y1 − v1y2)2

2σ2(1 + ‖x‖2(1 + ‖y‖2))

q , γ0
(γ0‖x‖2yTv + γ1)2 + σ2‖x‖2(1 + γ0‖x‖2‖y‖2)

2πσ2(1 + γ0‖x‖2‖y‖2)
5
2

γ0 ,
1

1 + ‖x‖2

γ1 , 1 + cTx

v , Ax+ b

We use piecewise constant forms to represent images (i.e. each pixel is

modeled by a continuous intensity whose value remains constant across that

pixel). Thus, the integral transform (4.6) can be computed as follows,

∫
X
f1(y)uτ ,σ(θ,x,y) dy (4.7)

=
W∑
i=1

H∑
j=1

F1(i, j)

∫ yi

yi

∫ yj

yj

uτ ,σ(θ,x,y) dy , (4.8)

where F1 is defined on {1, 2, . . . ,M} × {1, 2, . . . , N}; M and N are num-

ber of pixels (width and height of the image). Here we define yi , i−1
M−1

,

yi , i
M−1

, yj ,
j−1
N−1

, yj ,
j

N−1
. Using such piecewise constant image

model, the only integration required for computing the integral transform is∫
Xij uτ ,σ(θ,x,y) dy.

We use the Laplace approximation scheme for computing an approx-

imate value of the integral transform (4.6). Consider the function q(y) e−p(y).

When p and q grow in similar order in y, e.g. both are polynomial or ratio-

nal functions in y, then the behavior of q(y) e−p(y) is dominated at the local

maxima of −p(y) (see [52] for details). The idea of the Laplace method is

to approximate q(y)e−p(y) around each of these local maxima by a Gaussian

function, which is easy to integrate. In particular, when −p(y) has only one
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bounded maximizer y∗, then the approximate becomes as below,

u , q(y) e−p(y) ≈ q(y∗)e−
1
2

(y−y∗)T∇2p(y∗)(y−y∗) . (4.9)

In the following proposition, we show that when 1 +cTx 6= 0, then −p has

a unique maximizer w.r.t variable y attained at y∗ = Ax+x
1+cTx

.

Proposition 26 Suppose 1 + cTx 6= 0. The −p in the homography kernel

has a unique maximizer w.r.t variable y, which is attained at the following

point y∗,

y∗ =
Ax+ x

1 + cTx
. (4.10)

Proof Sketch The exponent −p is as below,

−p =
‖γ1y − v‖2 + γ0‖x‖2(v2y1 − v1y2)2

2σ2(1 + ‖x‖2(1 + ‖y‖2))
(4.11)

The stationary points of −p can be found by zero crossing its gradient with

respect to y. Doing so leads to the following pair of points.

y∗1 =
v

γ1

(4.12)

y∗2 = −v γ1

γ0‖v‖2‖x‖2
(4.13)

We now show that only y∗1 is a maximizer of −p. This can be done by

examining the eigenvalues of the Hessian of −p, evaluated at the stationary

points. Denote the eigenvalues of the Hessian by λ and Λ. Then, at each of

the y∗1 and y∗2, the eigenvalues are as the following,

λ1 = − γ4
1

σ2(‖v‖2‖x‖2 + γ2
1(1 + ‖x‖2))

(4.14)

Λ1 = − γ2
1(γ2

1 + γ0‖v‖2‖x‖2)

σ2(‖v‖2‖x‖2 + γ2
1(1 + ‖x‖2))

(4.15)

λ2 = 0 (4.16)

Λ2 =
‖v‖4‖x‖4

σ2(1 + ‖x‖2)2(‖v‖2‖x‖2 + γ2
1(1 + ‖x‖2))

. (4.17)

Since both eigenvalues at y∗1 are negative, the exponent −p is strictly
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concave at that point and thus attains its maximizer there. However, both

eigenvalues at y∗2 are non-negative, and thus −p is convex at that point and

thus attains its minimizer there.

�

On the other hand, let’s refer to ∇2p(y∗) as H , which is a 2 × 2 matrix.

It is easy to check that the elements of H have the following form,

h11 =
γ2

1(γ2
1 + v2

2γ0‖x‖2)

σ2(
γ2

1

γ0
+ ‖x‖2‖v‖2)

(4.18)

h22 =
γ2

1(γ2
1 + v2

1γ0‖x‖2)

σ2(
γ2

1

γ0
+ ‖x‖2‖v‖2)

(4.19)

h12 = h21 = − γ0v1v2

σ2(1 + 1
‖x‖2 + ‖v‖2

γ2
1

)
, (4.20)

Plugging (4.18) into (4.9) leads to the following approximation for the

kernel u.

u , q(y)e−p(y) (4.21)

≈ q(y∗)e−
1
2

(y−y∗)TH(y−y∗) (4.22)

= q(y∗)
2π√

det(H)

√
det(H)

2π
e−

1
2

(y−y∗)TH(y−y∗) (4.23)

= q(y∗)
2π√

det(H)
K(y − y∗;H−1) (4.24)

=
(

1 +
σ2‖x‖2

γ2
1 + γ0 ‖x‖2 ‖v‖2

)
K(y − y∗;H−1) , (4.25)

where K denotes a Gaussian kernel. Note that this approximation pre-

serves the limit behavior, i.e. it approaches Dirac’s δ function as σ → 0.

Now (4.25) is a Gaussian form with covariance matrix C ,H−1.

C =
σ2‖x‖2

γ4
1

[
v2

1 +
γ2

1

γ0‖x‖2 v1v2

v1v2 v2
2 +

γ2
1

γ0‖x‖2

]
. (4.26)

However, it is still difficult to integrate (4.25) unless the covariance matrix

is diagonal. Thus, we further approximate (4.26) by a diagonal matrix. We
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do this in the simplest possible way, i.e. setting off-diagonals to zeros1,

Ĉ =
σ2‖x‖2

γ4
1

[
v2

1 +
γ2

1

γ0‖x‖2 0

0 v2
2 +

γ2
1

γ0‖x‖2

]
. (4.27)

This approximation allows to decouple integrals with respect to y1 and y2

and thus to obtain the following closed form:

∫ y1

y1

∫ y2

y2

K(y − y∗; Ĉ) dy (4.28)

=
(∫ y1

y1

k(y1 − y∗1; ĉ11) dy1

)(∫ y2

y2

k(y2 − y∗2; ĉ22) dy2

)
(4.29)

=
1

4

(
erf(

y1 − y∗1√
2ĉ11

)− erf(
y1 − y∗1√

2ĉ11

)
)(

erf(
y2 − y∗2√

2ĉ22

)− erf(
y2 − y∗2√

2ĉ22

)
)
.(4.30)

Thus, the integral of the kernel u can approximated as follows,

∫ y1

y1

∫ y2

y2

u dy (4.31)

≈
(

1 +
σ2‖x‖2

γ2
1 + γ0 ‖x‖2 ‖v‖2

)
(4.32)

1

4

(
erf(

y1 − y∗1√
2ĉ11

)− erf(
y1 − y∗1√

2ĉ11

)
)(

erf(
y2 − y∗2√

2ĉ22

)− erf(
y2 − y∗2√

2ĉ22

)
)
.(4.33)

Thus (4.33) provides a closed form approximation for integration in (4.8).

Although (4.33) is indeed closed form, it involves the erf function, which is

usually very slow. We therefore approximate erf function by the following

form [53],

erf(x) ≈ sign(x)

√
1− exp(−x2

4
π

+ αx2

1 + αx2
) (4.34)

α , 8
π − 3

3π(4− π)
(4.35)

1Admittedly, this is not the best way for approximating the covariance with a diagonal
matrix. Better alternatives could be investigated in the future.
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Colors Grace Posters There Underground

Figure 4.1: Dataset provided by [1] consisting of five planar scenes, each
having six different views of increasingly dramatic perspective effect.

4.2 Quantitative Results on Planar Scenes

Dataset. We evaluate the performance of the proposed alignment scheme

against traditional Gaussian blurring and no blurring at all. We use the

images provided by [1] (see figure 4.1). This dataset consists of five planar

scenes , each having six different views of increasingly dramatic perspective

effect. The planar nature of the scenes makes it very suitable for homography

alignment purpose.

Alignment. For the proposed method, we use the homography kernel. The

goal is to maximize the correlation between a pair of views by transforming

one to the other. The local maximization in our alignment algorithm (see

Chapter 3), as well as that of other methods used here for comparison, is

achieved by a block coordinate ascent method with a naive line search. The
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block coordinate ascent is performed by partitioning the 8 parameters of

homography to three classes, those that comprise A, b and c. This improves

numerical stability because the sensitivity of parameters within each partition

are similar.

Parameters Setup. Pixel coordinates were normalized to range in [−1, 1].

Images f1 and f2 were converted to grayscale and were subtracted by their

joint mean (i.e. (f̄1 + f̄2)/2, where f̄1 is the average intensity of f1) as a

preprocessing step. The sequence of σ (for both the proposed kernel and

Gaussian kernel) starts from σ = 0.1, and is multiplied by 2/3 in each iter-

ation of algorithm until it falls below 0.0001. The initial transformation θ0

was set to the identity, i.e. A0 = I and b0 = c0 = 0. Since the initial σ is

not large and the images lack significant areas of symmetry, no regularization

was used.

Performance. The performance of these methods is summarized in figure

4.2-bottom. Each plot corresponds to one of the scenes in the dataset. For

each scene, there is one rectified view that is used as f1. The rest of five

views, indexed from 1 to 5, in increasing order of complexity2 are used as f2.

The vertical axis in the plots indicates the normalized correlation coefficient

(NCC) between f2 and transformed f̃1. It can clearly be observed that while

Gaussian blur sometimes does a little bit better than no blur, the proposed

smoothing scheme leads to a much higher NCC value3.

4.3 Qualitative Results on 3D Reconstruction

Here, we present the application of the proposed alignment method within a

bigger task of 3D reconstruction. The previous experiments used scenes with

planar structure so that the perspective distorted images could be aligned

by a single homography . However, in a realistic scenario, barely the

entire scene consists of a single planar surface. Here, we work with a real

application of 3D reconstruction of an exotic octagonal building.

2Here the complexity of the view is referred to how drastic the homography transfor-
mation is, in order to bring it to the rectified view.

3The code for reproducing our results is available at http://perception.csl.

illinois.edu/smoothing.
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Colors Grace Posters

There Underground

Figure 4.2: Top: Representative rectified views from the dataset provided
in [1]. Bottom: NCC value after alignment. Horizontal axis is the view
index (increasing in complexity) of the scene. Four views are used for each
scene, each one being as f2 and compared against f1, which is a rectified
view in the dataset.

The 3D Reconstruction Pipeline. Detailed description of our 3D recon-

struction system is beyond the scope of this dissertation and can be found

in our paper [31]. However, we provide a brief overview of the pipeline here.

We use only eight uncalibrated and widely separated images for the full

reconstruction of the building. Each of the images covers a pair of adjacent

facades as shown in Figure 4.3. We arrange the sequence of images so that

matching of common facades is only performed between consecutive images.

We first segment each image into piecewise planar regions. Once segmented,

each region can be rectified using a single homography due to its planar

structure. Both segmentation and rectification are guided by the low-rank

texture assumption of the facades. Using such rectified textural regions, solv-
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Figure 4.3: A pair of matched regions from the same facade with different
partial occlusion.

ing wide-baseline correspondence between pair of successive images becomes

better conditioned (say by a similarity match). Thus, now we can obtain

dense pixel-wise match across pairs of facades using the proposed alignment

technique. Finally, for global consistency, we use a scheme similar to the

bundle adjustment in conventional structure from motion (SFM). Figure 4.4

shows the reconstructed full 3D model as well as the recovered camera poses.

As one can see, despite unknown calibration, partial occlusion, large base-

lines, our method is able to recover a very precise and complete 3D model of

the building.

Dense Correspondence by Alignment. The above segmentation pro-

cedure provides a good estimate for the relative location of the facades and

their rectified texture (see Figure 4.5 (a) and (b)). However, each segmented

region may not share the same location and scale in different images.

Therefore, we need to refine their location and scale in order to obtain pre-

cise point-wise matching between images. Similar to previous section,

we use cross correlation to measure the similarity between the two regions.

We smooth this objective along translation and scaling dimensions of the

transformation space. We then solve the derived optimization problem using

the continuation procedure.

Comparison with Feature Matching. An example of final matching re-

sults between two images are given in Figure 4.5. As a comparison, in Figure

4.5 (e), we illustrate the difficulty of applying the classical SIFT match-

ing technique [2] to the urban scenes with repetitive or symmetric patterns.

Point-wise matching of low-rank regions outperforms SIFT in this scenario
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because the texture segmentation enables us to perform accurate region-

based matching rather than using local points or edges. See Figure 4.3 for

additional example of the matched facades.

Comparison with other SFM Systems. It is difficult to make a fair

comparison between the proposed approach and other structure from motion

(SFM) methods, since the large baselines and rich symmetry makes other

methods fail. In fact, we tested our sequences on almost all publicly available

SFM packages such as Bundler [54], SFM-SIFT 4 (which combines Torr’s

SFM toolbox [55] with SIFT feature detector [2]), FIT3D [56], and Voodoo

Camera Tracker 5. All these packages report errors related to their inability

of establishing meaningful correspondence across the views.

4http://homepages.inf.ed.ac.uk/s0346435/projects/sfm/sfm_sift.html
5http://www.digilab.uni-hannover.de/docs/manual.html
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Figure 4.4: Frontal and top views of the recovered building. Each pyramid
shows the estimated location of a camera.
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(a) (b) (c)

(d) (e)

Figure 4.5: (a) Segmented and rectified facade. (b),(c) Same task from a
different view. (c) Segmentation result refined to the orange box by
matching. (d) Point-wise match between two regions of the facades using
our method. (e) Feature-point matching result of the two rectified regions
by SIFT [2], with red lines indicating mismatches.
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CHAPTER 5

3D APPLICATIONS

This chapter demonstrates the application of the transformation kernels for

3D alignment tasks. Here the goal is to perform affine alignment of 3D

point cloud data. The standard algorithm for point cloud alignment is iter-

ative closest point (ICP) algorithm [57]. The idea is to simply alternate

between creating a correspondence between pair of points (of the two clouds)

and local optimization of geometric transformation between the correspond-

ing points. This algorithm is known to work only when good initialization is

provided. However, it is susceptible to get stuck in local minima if the trans-

formation is drastic and no prior knowledge is available for initialization. We

show that, using the proposed smoothing and continuation scheme, we can

outperform ICP. The construction of the smoothed objective in this chapter

will use the affine kernel1 developed in Chapter 2.

5.1 Problem Formulation

Given two sets of points P = {pi}mi=1 and Q = {qi}ni=1, where each point

belongs to Rd, and d is the dimension of the ambient space, e.g. d = 3 for

3D point clouds. We assume that the mean points in each set is zero 2, i.e.∑m
i=1 pi =

∑n
j=1 qj = 0. We refer to P as the model, and Q as the data. The

data can possibly cover the model partially, e.g. it may have holes. Consider

a family of geometric transformations parameterized by θ ∈ Rt and denote

it by the map τ : Rd × Rt → Rd. We define the optimal transformation as

the one which minimizes the following cost function,

1Nice thing about affine transformation is that, unlike homography that we derived its
kernel only for 2D, the former’s kernel is derived for any arbitrary dimension.

2If that is not the case, we can always subtract 1
m

∑m
i=1 pi from points in P and

1
n

∑n
j=1 qj from Q to make the mean point in these points equal to zero.
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Figure 5.1: Each point in Q is put into correspondence with one of the
points in P .

(θ∗, c∗) = arg min
θ,c

m∑
i=1

n∑
j=1

ci,j‖τ (pi,θ)− qj‖2 (5.1)

s.t. ∀ j ∈ {1, . . . , n}
m∑
i=1

ci,j = 1 (5.2)

∀ i ∈ {1, . . . ,m} ∀ j ∈ {1, . . . , n} ci,j ∈ {0, 1} . (5.3)

The auxiliary variables {ci,j} determine the correspondence among the

point pairs in P and Q. Specifically, this formulation requires each point in

the data Q, indexed by j, to have a corresponding point3, indexed by i, in

the model P (see figure 5.1). By concatenating all ci,j into a long vector, we

obtain a vector of length mn, which we denote by c.

We approximate this optimization task by an unconstrained one using

quadratic penalty method. The idea is that each equality constraint of

form f(θ, c) = 0 can be treated as a penalty by adding f 2(θ, c) to the

objective function points. Note that the discrete constraint ci,j ∈ {0, 1}
can be equivalently expressed by a continuous equality constraint of form

ci,j(1 − ci,j) = 0. Thus, the approximate objective function becomes as the

following,

3Since we assume P is the complete model, regardless of Q being complete or partial,
each point in Q, there should be a corresponding point in P.
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(θ̂, ĉ) = arg min
θ,c

h(θ, c) (5.4)

h(θ, c) , ε
( m∑
i=1

n∑
j=1

ci,j‖τ (pi,θ)− qj‖2
)

(5.5)

+
n∑
j=1

(1−
m∑
i=1

ci,j)
2 +

m∑
i=1

n∑
j=1

c2
i,j(1− ci,j)2 , (5.6)

where ε > 0 is a small number.

5.2 Smoothing

Instead of directly minimizing h in (5.4), we propose to minimize a smoothed

version of h. We construct the smoothed h by Gaussian convolution in the

following way, and refer to it as z. We assume that τ is an affine trans-

formation , i.e. τ
(
p; (A, b)

)
, Ap + b. Since adding constants (w.r.t.

optimization variables) does not affect the minimizer, by doing that and

some abuse of notation, we can express the smoothed z as below (see section

5.7 for derivation with help of affine transformation kernel ).

z(θ, c;σ) ,

[(
[h( . , . ) ? k( . ;σ2)] (c)

)
? k( . ;σ2)

]
(θ) (5.7)

= ε
m∑
i=1

n∑
j=1

ci,j
(
‖τ (pi,θ)− qj‖2 + 3σ2(1 + ‖pi‖2)

)
(5.8)

+
n∑
j=1

(1−
m∑
i=1

ci,j)
2 (5.9)

+
m∑
i=1

n∑
j=1

(ci,j − 1)2c2
i,j + 6σ2(ci,j −

1

2
)2 . (5.10)

Here the inner k is a multivariate Gaussian with mn variables and covari-

ance of σ2I. The outer k is also a multivariate Gaussian, but with t variables

and again covariance of σ2I.
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5.3 Gradients

Gradients of z w.r.t. optimization variables (A, b, c) are needed by the min-

mization algorithm. They are provided in the following.

∂z

∂A
= 2ε

m∑
i=1

n∑
j=1

ci,j

( (
Api + b− qj )pTi

)
(5.11)

∂z

∂b
= 2ε

m∑
i=1

n∑
j=1

ci,j

(
Api + b− qj

)
(5.12)

∂z

∂ci,j
= ε

(
‖Api + b− qj‖2 + 3σ2(1 + ‖pi‖2)

)
− 2 + 2

m∑
k=1

ck,j (5.13)

+2
(
ci,j(ci,j − 1)(2ci,j − 1) + 6σ2(ci,j −

1

2
)
)
. (5.14)

5.4 Asymptotic Properties

Consider the following definitions.

P ,
1

m

m∑
i=1

pip
T
i (5.15)

U ,
1

mn

m∑
i=1

n∑
j=1

qip
T
i . (5.16)

It can be shown that the asymptotic minimizer of z, i.e. when σ → ∞,

has the following form when ε→ 0. See the Section 5.7 for the derivation.

A∗ = U P−1 (5.17)

b∗ = 0 c∗ =
1

2
. (5.18)

5.5 Illustrative Example

We present an illustrative example to show how smoothing and path-following

may help escaping local minima for the point cloud alignment problem. Due
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Figure 5.2: Optimization landscape for minimizing the function (5.19). The
spectrum from blue to red indicates small to large values.
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to 2D visualization constraints for the optimization landscape, we restrict

the task to only having two optimization variables. This is explained in the

following.

Suppose d = 1, i.e. the points are on the real axis R. Consider the sets

P = {p1, p2} and Q = {q1, q2}, where p1 = q1 = −1 and p2 = q2 = 1. Since

the points are already aligned, we know the optimal transformation is just

the identity map. Thus we only look at the alignment objective when the

transformation is set to the identity and seek for the optimal correspondence.

In addition, we know that at the optimum, c∗1,2 = 1− c1,1 and c∗2,2 = 1− c2,1.

Plugging that into the objective function as well, we obtain the following

objective in only two variables c1,1 and c2,1. Obviously, since the points are

already aligned, the correspondence correspondence must associate p1 to q1,

and p2 to q2, which implies c∗1,1 = c∗2,2 = 1 and c∗1,2 = c∗2,1 = 0. However, we

try to find the optimal c1,1 and c2,1 via optimization and see if the smoothing

can help finding the optimal solution.

h(c)

= ε
( m∑
i=1

n∑
j=1

ci,j(pi − qj)2
)

+
n∑
j=1

(1−
m∑
i=1

ci,j)
2 +

m∑
i=1

n∑
j=1

c2
i,j(1− ci,j)2

= ε
(
c1,1(p1 − q1)2 + c2,1(p2 − q1)2 + (1− c1,1)(p1 − q2)2 + (1− c2,1)(p2 − q2)2

)
+(1− c1,1)2c2

1,1 + (1− c2,1)2c2
2,1

= 4ε(1− c1,1 + c2,1) + (1− c1,1)2c2
1,1 + (1− c2,1)2c2

2,1 .

Let’s choose ε = 0.01. The Gaussian convolution of the objective h w.r.t.

variables c1,1 and c2,1 leads to the following function.

z(c1,1, c2,1;σ) (5.19)

=
1

25

(
1 + c1,1(25(−1 + c1,1)2c1,1 − 1) + c2,1(1 + 25(c2,1 − 1)2c2,1)

+50σ2 + 150((c1,1 − 1)c1,1 + (c2,1 − 1)c2,1)σ2 + 150σ4
)
.

The optimization landscape is shown in figure (5.2). Observe that, at the
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Algorithm 3 Point Cloud Affine Alignment by Gaussian Smoothing

1: Input: Zero mean model cloud P and data cloud Q, sequence σ1 > σ2 >
· · · > σN > 0, small ε > 0, ci,j = 1

2
for i = 1, . . . ,m and j = 1, . . . , n.

2: A0 = U P−1

3: b0 = 0
4: c0 = {1

2
}m×n

5: k = 1
6: repeat
7: (Ak, bk, ck) = arg min(A,b,c) ε

∑m
i=1

∑n
j=1 ci,j

(
‖τ (pi,θ)−qj‖2 +3σ2

k(1+

‖pi‖2)
)

+
∑n

j=1(1−
∑m

i=1 ci,j)
2 +
∑m

i=1

∑n
j=1(ci,j−1)2c2

i,j +6σ2
k(ci,j− 1

2
)2

// Local minimization initialized at (Ak−1, bk−1, ck−1).
8: k = k + 1
9: until k > N

10: Output: (Ak, bk, ck)

non-smoothed function (i.e. when σ = 0), besides the global minimum near

(c1,1, c2,1) = (1, 0), there are three local minima near (0, 1), (0, 0) and (1, 1).

However by starting from a large enough σ, we obtain a convex landscape

whose minimizer is near (c1,1, c2,1) = (1
2
, 1

2
), as anticipated by the asymp-

totic minimizer result. Following the path of minimizer, originated form the

asymptotic minimizer, as σ is shrunk down to 0, the method leads to the

global minimizer of the actual function near (c1,1, c2,1) = (1
2
, 1

2
).

5.6 Algorithm & Results

The Algorithm 3 shows the procedure for affine alignment by Gaussian

smoothing and path following. Note that the minimization inside the loop is

done locally using an initial point.

We apply this algorithm to some of the 3D objects in Stanford’s dataset

[58,59]. For each object, we rotate the model by n degrees along all three x,

y and z axes, where n varies between 30 degrees to 90 degrees, in steps of 15

degrees. The alignment results shown in Figures 5.3, 5.4, and 5.5 are quite

encouraging. Specially for bunny and Buddha objects, the smoothing method

works much better than ICP. For Dragon object, ICP and the proposed

method both do bad, although the proposed method seems slightly better.
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5.7 Proofs

5.7.1 Derivation of Gaussian Smoothed Objective

We compute the inner convolution as follows.

[h(θ , . ) ? k( . ;σ2)] (c) (5.20)

= ε
( m∑
i=1

n∑
j=1

ci,j‖τ (pi,θ)− qj‖2
)

(5.21)

+mnσ2 +
n∑
j=1

(1−
m∑
i=1

ci,j)
2 (5.22)

+3mnσ4 +
m∑
i=1

n∑
j=1

(ci,j − 1)2c2
i,j + σ2(1 + 6ci,j(ci,j − 1)) (5.23)

Since adding constant terms, i.e. those that do not depend on ci,j and

θ, does not affect the minimizer of the optimization, with some abuse of

notation, we do that and express the result of (5.20) as follows.

[h(θ , . ) ? k( . ;σ2)] (c) (5.24)

= ε
( m∑
i=1

n∑
j=1

ci,j‖τ (pi,θ)− qj‖2
)

(5.25)

+
n∑
j=1

(1−
m∑
i=1

ci,j)
2 (5.26)

+
m∑
i=1

n∑
j=1

(ci,j − 1)2c2
i,j + 6σ2(ci,j −

1

2
)2 (5.27)

Observe that Gaussian smoothing of h w.r.t. c leads to the same h plus a

regularization term 6σ2(ci,j − 1
2
)2, which enhances convexity of the objective

with larger choices of σ. We now apply the convolution w.r.t. θ. We assume

that τ is an affine transformation , i.e. τ
(
p; (A, b)

)
, Ap+ b.
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z(θ, c;σ) ,

[(
[h( . , . ) ? k( . ;σ2)] (c)

)
? k( . ;σ2)

]
(θ)

=

[(
ε
( m∑
i=1

n∑
j=1

ci,j‖τ (pi,θ)− qj‖2
)

+
n∑
j=1

(1−
m∑
i=1

ci,j)
2 (5.28)

+
m∑
i=1

n∑
j=1

(ci,j − 1)2c2
i,j + 6σ2(ci,j −

1

2
)2
)
? k( . ;σ2)

]
(θ)

= ε
( m∑
i=1

n∑
j=1

ci,j

∫
R3

‖r − qj‖2k(τ (pi,θ)− r;σ2(1 + ‖pi‖2)) dr
)

(5.29)

+
n∑
j=1

(1−
m∑
i=1

ci,j)
2

+
m∑
i=1

n∑
j=1

(ci,j − 1)2c2
i,j + 6σ2(ci,j −

1

2
)2

= ε
m∑
i=1

n∑
j=1

ci,j
(
‖τ (pi,θ)− qj‖2 + 3σ2(1 + ‖pi‖2)

)
(5.30)

+
n∑
j=1

(1−
m∑
i=1

ci,j)
2

+
m∑
i=1

n∑
j=1

(ci,j − 1)2c2
i,j + 6σ2(ci,j −

1

2
)2 ,

where (5.29) uses the transformation kernel for the affine map in-

troduced in Chapter 3. This kernel allows writing the high dimensional

convolution w.r.t. θ equivalently by a d-dimensional integral transform.

5.7.2 Derivation of the Asymptotic Minimizer

This objective look asymptotically (when σ →∞) looks as the following,

lim
σ→∞

z(θ, c;σ) = 3σ2

m∑
i=1

n∑
j=1

(
εci,j(1 + ‖pi‖2) + 2(ci,j −

1

2
)2
)
. (5.31)
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It can be seen that the choice of θ has no effect on the minimizing c. The

objective (5.31) is convex in variable c, thus it has a unique minimizer.

The minimizer is obtained by zero crossing the gradient of (5.31) w.r.t. c, as

shown below.

c∗i,j =
1

2
− 1

4
ε(1 + ‖pi‖2) . (5.32)

By plugging in this value into the actual objective (5.30), we obtain a

minimization task which only depends on θ. By collecting all the remaining

terms that are constant terms w.r.t. θ into a term called t, this objective

looks as the following,

lim
σ→∞

z(θ, c∗;σ) = ε
m∑
i=1

n∑
j=1

c∗i,j‖τ (pi,θ)− qj‖2 + t . (5.33)

This function is convex in θ when τ is an affine transformation. There-

fore, it has a unique minimizer w.r.t. θ. If we multiply this function by any

positive constant, and in particularly by (mnε)−1, the minimizer θ∗, does

not change. Thus, we proceed as below. First we provide some definitions.

P ,
1

m

m∑
i=1

pip
T
i (5.34)

U ,
1

mn

m∑
i=1

n∑
j=1

qip
T
i . (5.35)

We can now continue as the following,

lim
σ→∞

(mnε)−1 z(A, b, c∗;σ) (5.36)

=
1

mn

m∑
i=1

n∑
j=1

c∗i,j‖Api + b− qj‖2 +
t

mn ε
(5.37)

=
1

mn

m∑
i=1

n∑
j=1

c∗i,j(Api + b− qj)T (Api + b− qj) +
t

mn ε
. (5.38)

Due to its convexity, the unique minimizer of this function can be obtained
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by zero crossing its derivative4 w.r.t. A and b as shown below. We also use

the fact that when ε→ 0, then ci,j → 1
2
.

⇒ ∂

∂A
lim
ε→0

lim
σ→∞

(mnε)−1 z(A, b, c∗;σ) = AP −U (5.42)

∂

∂b
lim
ε→0

lim
σ→∞

(mnε)−1 z(A, b, c∗;σ) = b . (5.43)

By zero crossing these equations and solving them in A and b, it follows

that,

A∗ = U P−1 (5.44)

b∗ = 0 . (5.45)

4Suppose u and v are n × 1 matrices and A is a n × n matrix. Then we have the
following identities for derivative of a scalar w.r.t. the matrix A.

∂uTAv

∂A
= uvT (5.39)

∂uTATv

∂A
= vuT (5.40)

∂uTATAu

∂A
= 2AuuT . (5.41)
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Figure 5.3: Top Row : Input P , which is a rotated version of Q. Middle
Row : Transformed P to match Q using ICP. Bottom Row: Transformed P
to match Q using proposed method.
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Q
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Figure 5.4: Top Row : Input P , which is a rotated version of Q. Middle
Row : Transformed P to match Q using ICP. Bottom Row: Transformed P
to match Q using proposed method.
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Q
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Figure 5.5: Top Row : Input P , which is a rotated version of Q. Middle
Row : Transformed P to match Q using ICP. Bottom Row: Transformed P
to match Q using proposed method.
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CHAPTER 6

CONCLUSION & FUTURE DIRECTIONS

6.1 Continuation

This dissertation rigorously investigated some of the fundamental properties

of the smoothing technique. We presented a formal definition for asymptotic

convexity. We gave closed form and derivative free expressions for checking

asymptotic convexity as well as deriving the asymptotic minimizer itself.

Considering the increasing interest in optimization by smoothing in recent

years, these results may initiate a substrate for further theoretical studies of

this method.

There are at least two important directions that can be pursued for further

research. While our analysis was focused on smoothing by the Gaussian

kernel, such kernel is not the only choice for smoothing. In fact, there is a

rich literature about other smoothing kernels and their theoretical properties,

such as Poisson kernels [60], Bessel kernels [61], etc. It would be interesting

to explore the asymptotic behavior of smoothing by these other kernels.

Another direction for future research is seeking additional properties of a

function which guarantees a traceable path from the asymptotic minimizer

to some minimizer in the original (non-smoothed) function. More precisely,

the Hessian of g(x;σ) should not become singular along the followed path in

order to ensure traceability of the minimizer. We believe, some constraints on

the smoothness of f may provide control over the evolution of the eigenvalues

of ∇2g(x;σ) over time.
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6.2 Kernels

This dissertation studied the problem of signal blurring for the purpose of

alignment by direct intensity-based methods. We argued that the use of

traditional Gaussian image blurring, mainly inspired by the work of Lucas

and Kanade [36], may not be suitable for non-displacement motions. Instead,

we suggested directly smoothing the alignment objective function. This led

to a rigorous derivation of spatially varying kernels required for smoothing

the objective function of common model-based alignment tasks including

affine and homography models.

The derivation process of the kernels in this dissertation may provide some

insights for blur kernels in other tasks such as image deblurring, motion from

blur, matching, optical flow, etc. For example, in image deblurring, the blur

caused by the motion of the camera or by scene motion typically leads to

spatially varying blur. The estimation of such kernels is very challenging [62–

64]. Yet if the motion is close to the models discussed in this dissertation, our

results may provide some insights for estimation of the blur kernel. Similarly,

our kernels could be relevant to tasks involving motion blur [65], due to the

physical relationship between motion estimation and blur estimation [66].

The coarse-to-fine scheme is a classic and very effective way to escape from

poor local minima in optical flow estimation [67, 68]. Using the proposed

kernels may boost the quality of the computed solution.

Another possible application which may benefit from our proposed kernels

is visual detection and recognition. Heuristic spatially-varying kernels [26,27]

have been successfully utilized in face detection [69] and object recognition

[70,71]. Thus, our results may provide new perspective on using blur kernels

for such tasks in a more principled way. Another related machinery for

visual recognition tasks is convolutional deep architectures [72–76]. These

methods apply learnable convolution filters to the scale-space representation

of the images, hence gain translation and scale invariance. Utilizing the

proposed kernels instead of traditional convolutional filters and scale-space

representation between layers might extend the invariance of these methods

to a broader range of transformations.

Finally there is a lot of room to improve the computational efficiency of

using the proposed kernels. In this work, the integral transforms are evalu-

ated on a dense grid. However, since the kernels are smooth and localized in
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space, one might be able to get a good approximate of the integral transform

by merely evaluating it at a small subset of image points.
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