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Contributions

A Formal Framework for Asymptotic Analysis
Easy to Check Condition for Asymptotic Convexity
Simple Form for Asymptotic Minimizer
Closed Form Kernels for Efficiently Smoothing Alignment
Objective
Formulation & Evaluation of 2D Alignment by Smoothing Method
Formulation & Evaluation of 3D Point Cloud Alignment by
Smoothing Method
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Convex vs Nonconvex

Convex Nonconvex

Nonconvex optimization difficult in general
Pressure to approximate by convex models
Real world problems have regularity... may lead to tractable
solutions
Exploiting such structures: SOS, DC, smoothness, etc.
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Homotopy Continuation

Smooth deformation of an easy problem into the actual problem,
while tracing the solution

Consider solving f : X → Y
Embed f(x) into a parameterized family g(x, t), where
g : X × T → Y and T = { t | 0 ≤ t ≤ 1}

g(x, 0) should be easy to solve
g(x, 1) = f(x)
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Homotopy Continuation

f(x) , , kσ(x) , 1
(
√
2πσ)dim(x) e

− ‖x‖
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2σ2

g(x, t) , tf(x) + (1− t)(x2 + y2) g(x, t) , [f ? k 1
t
−1](x)
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Where Does Smoothing Come From?

Describing Smoothing by PDEs
Evolution of a function in a region X over time.
Initial condition g(x, σ → 0) = f(x).
Boundary condition on X if any

Heat Equation Schrodinger’s Equation
∂
∂σg = σ∆g ∂

∂σg = iσ∆g

Hossein Mobahi (UIUC) Optimization by Smoothing for Alignment November 5th, 2012 7 / 45


heat.swf
Media File (application/x-shockwave-flash)


schrodlong.swf
Media File (application/x-shockwave-flash)



Where Does Smoothing Come From?

Why Heat Kernel for Optimization?
If X = Rn and k(x;σ2) is isotropic Gaussian, solution of heat equation
is:

g(x;σ) = [f ? k( . ;σ2)](x) .

Kills high frequencies, hence suppresses brittle local minima.
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Surprising Phenomena

Consider f(x) = e−
t2

2ε2 − e− t
2ε2

2 for ε > 0

This functions resembles the `0 norm much better than `1. Except at its
tip, it is concave everywhere. However, it is asymptotically convex!
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Popularity Across Disciplines

Known As
Graduated Optimization (Computer Vision) [Blake & Zisserman
87]
Optimization by Diffusion Equation (Chemistry) [Piela 89]
Optimization by Homotopy Continuation (Numerical Computing)
[Watson 88]
Deterministic Annealing (Machine Learning) [Rose 98]

Despite its long age and mathematical roots, there is little
understanding about its fundamental aspects.
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Definition of Asymptotic Convexity

Definition
A real-valued continuous function f(x) is called asymptotically convex
if following statement holds:

∀M > 0 , ∃σ∗(M) , ∀x1 ∈ B(0,M) , x2 ∈ B(0,M) , a ∈ [0, 1]

σ ≥ σ∗(M)⇒ g(ax1 + (1− a)x2;σ) ≤ ag(x1;σ) + (1− a)g(x2;σ)
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Asymptotic Convexity Example

For f(x) = we have M = 1, σ∗ ≈ 0.9
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Theoretical Contributions

Asymptotic Convexity
Under mild conditions, any function f(x) satisfying
−∞ <

∫
Rn f(x) dx < 0 is asymptotically convex.

Asymptotic Minimizer
Under mild conditions, any function f(x) that is asymptotically convex
with

∫
Rn f(x) 6= 0 has the asymptotic minimizer at the center of mass:

x∗ =

∫
Rn xf(x) dx∫
Rn f(x) dx

Nice Property
Both conditions are “derivative-free”.
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Example

Show that f(x) = e−
(x−1)2

0.1 − e−x2 is asymptotically convex and
find its asymptotic minimizer.∫
R f(x) dx ≈ −1.21195, thus f(x) is asymptotically convex. Also

x∗ =
∫
R xf(x)dx∫
R f(x) dx

≈ −0.46247.
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Taxonomy for Functions {f : Rn → R}
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Applications to Image Alignment

Alignment as optimization

θ∗ = arg min
θ

∫
X

(
f1(τ (x;θ))− f2(x)

)2
dx

This is non-convex in variable θ.
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Lucas-Kanade Type Methods

Linearization
Linearize f1(x+ d) around d = 0 to get a convex quadratic.

d̂ = arg min
d

∫
X

(
f1(x) + dT∇f1(x)− f2(x)

)2
dx

| f̂1(x)− f1(x) | ≤ Λ

2
‖d‖2
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Motion Models other than Translation

Problem of Lucas-Kanade for Other Models
Consider scaling transformation x→ sx. Linearization of f1(sx)
around s = 1:

f̂1(sx) = f1(x) + (s− 1)(xT∇f1(x))

ŝ = arg min
s

∫
X

(
f1(x) + (s− 1)(xT∇f1(x))− f2(x)

)2
dx

| f̂1(sx)− f1(sx) | ≤ Λ(s− 1)2

2
‖x‖2

Error grows in ‖x‖2 as well!
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Spatially Varying Blurring

Smoothing the Objective

Smoothing the objective automatically produces spatially varying
blurs without any hack.
People in computer vision have realized the advantage of spatially
varying kernels for matching on heuristic basis, e.g. (Berg & Malik
2001)
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Smoothing the Objective for Alignment

Toy Example: 1-d Scale Alignment
Actual Task

∫
R(f1(ax)− f2(x))2I‖x‖≤1dx

Signal Smoothing
∫
X

(
I‖x‖≤1

(
[f1

X
~ kσ](ax) − [f2

X
~ kσ](x)

))2
dx

Objective Smoothing

[kσ
Θ

~
∫
X

(
I‖x‖≤1

(
f1( . × x) − f2(x)

))2
dx](a)

Signals Signal Smoothing Objective Smoothing
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Efficient Computation of Smoothed Objective

Question
Assume X = Rn and Θ = Rm

Given a domain transformation τ : X ×Θ→ X .

Is there any uτ ,σ : X × X → R satisfying the following integral
equation?

∀f :

[f(τ (x, ·)) ? k(·;σ2)] (θ) =

∫
X
f(y)uτ ,σ(θ,x,y)dy

Applied Contributions
We do find such u and call it a transformation kernel.
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Kernels for Common Transformations

Name τ (x,θ) uτ ,σ(θ,x,y)
Translation x+ d k(τ (x,θ)− y;σ2)

Translation+Scale aTx+ d K(τ (x,θ)− y;σ2 diag([1 + x2i ]))

Affine Ax+ b k(τ (x,θ)− y;σ2(1 + ‖x‖2))
Homography 1

1+cTx
(Ax+ b) n = 2 : p(θ,x,y, σ) e(θ,x,y, σ)
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Correctness

Name τ (x,θ) uτ ,σ(θ,x,y)
Translation x+ d k(τ (x,θ)− y;σ2)

Translation+Scale aTx+ d K(τ (x,θ)− y;σ2 diag([1 + x2i ]))

Affine Ax+ b k(τ (x,θ)− y;σ2(1 + ‖x‖2))
Homography 1

1+cTx
(Ax+ b) n = 2 : p(θ,x,y, σ) e(θ,x,y, σ)

Heat Equation

σ∆θ[f(τ (x, · )) ? k( · ;σ)](θ) = (∂/∂σ)[f(τ (x, · )) ? k( · ;σ)](θ)

Initial Condition

lim
σ→0+

∫
X
f(y)uτ ,σ(θ,x,y) dy = f(τ (x,θ))
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Comparison against Geometric Blur

Name τ (x,θ) uτ ,σ(θ,x,y)
Translation x+ d k(τ (x,θ)− y;σ2)

Translation+Scale aTx+ d K(τ (x,θ)− y;σ2 diag([1 + x2i ]))

Affine Ax+ b k(τ (x,θ)− y;σ2(1 + ‖x‖2))
Homography 1

1+cTx
(Ax+ b) n = 2 : p(θ,x,y, σ) e(θ,x,y, σ)

Geometric Blur Kernel (Berg & Malik 2001)

uσ(x,y) = k(y − x;σ2‖x‖2)

Heuristic
Identity Transformation
Singular at Origin
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Alignment By Smoothing Algorithm

Original Objective

h(θ) ,
∫
X
f1(τ (x,θ)) f2(x) dx

Smoothed Objective

z(θ, σ) =

∫
X

(
f2(x)[f1(τ (x, .)) ? k( · , σ2)](θ)

)
dx

=

∫
X

(
f2(x)

(∫
X
f1(y)uτ ,σ(θ,x,y) dy

)
︸ ︷︷ ︸

Blurred f1

)
dx

︸ ︷︷ ︸
Inner Product
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Computation with Homography Kernel

Approximation
Model image as piecewise constant so that,∫
X
f1(y)uτ ,σ(θ,x,y) dy =

W∑
i=1

H∑
j=1

F1(i, j)

∫ yi

yi

∫ yj

yj

uτ ,σ(θ,x,y) dy .

Now computing the integral transform amounts to computing∫
Xij uτ ,σ(θ,x,y) dy.

We use Laplace approximation to compute integral above.
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Quantitative 2D Alignment Results
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Qualitative 2D Alignment Results

A 3D Reconstruction Scenario
In reality, a scene barely consists of a single planar surface
A real example: 3D reconstruction of an octagonal building

Given eight uncalibrated and widely separated images
Each image covers a pair of adjacent facades
Segment an image into piecewise planar regions
Rectify a segment by a single homography
Dense pixel-wise match across pairs of facades
Bundle adjustment
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Qualitative 2D Alignment Results

A 3D Reconstruction Scenario
Each segmented region may not share the same location and
scale across images
Refine their location and scale by alignment in
scale+displacement space
Use smoothed objective of normalized cross correlation (NCC)
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Qualitative 2D Alignment Results

A 3D Reconstruction Scenario
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3D Point Cloud Alignment
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3D Point Cloud Alignment

Formulation

(θ∗, c∗) = arg min
θ,c

m∑
i=1

n∑
j=1

ci,j‖τ (pi,θ)− qj‖2

s.t. ∀ j ∈ {1, . . . , n}
m∑
i=1

ci,j = 1

∀ i ∈ {1, . . . ,m} ∀ j ∈ {1, . . . , n} ci,j ∈ {0, 1}
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3D Point Cloud Alignment

Formulation

(θ∗, c∗) = arg min
θ,c

m∑
i=1

n∑
j=1

ci,j‖τ (pi,θ)− qj‖2

s.t. ∀ j ∈ {1, . . . , n}
m∑
i=1

ci,j = 1

∀ i ∈ {1, . . . ,m} ∀ j ∈ {1, . . . , n} ci,j(1− ci,j) = 0

Hossein Mobahi (UIUC) Optimization by Smoothing for Alignment November 5th, 2012 33 / 45



3D Point Cloud Alignment

Approximate by Quadratic Penalty

(θ̂, ĉ) = arg min
θ,c

h(θ, {ci,j})

h(θ, c) , ε
( m∑
i=1

n∑
j=1

ci,j‖τ (pi,θ)− qj‖2
)

+

n∑
j=1

(1−
m∑
i=1

ci,j)
2 +

m∑
i=1

n∑
j=1

c2i,j(1− ci,j)2

ε is a small positive number.
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3D Point Cloud Alignment

Smoothed Objective

z(θ, c;σ) ,

[(
[h( . , . ) ? k( . ;σ2)] (c)

)
? k( . ;σ2)

]
(θ)

= ε

m∑
i=1

n∑
j=1

ci,j
(
‖τ (pi,θ)− qj‖2 + 3σ2(1 + ‖pi‖2)

)
+

n∑
j=1

(1−
m∑
i=1

ci,j)
2

+

m∑
i=1

n∑
j=1

(ci,j − 1)2c2i,j + 6σ2(ci,j −
1

2
)2

We assume τ is an affine transformation, i.e. τ
(
p; (A, b)

)
, Ap+ b
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3D Point Cloud Alignment

Asymptotic Minimizer
The objective is asymptotically convex.
Its asymptotic minimizer is the simple form A∗ = O, b∗ = 0, and
c∗ = 1

2 .
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3D Point Cloud Alignment

Illustrative Example
Set d = 1, ε = 0.01, P = {p1, p2}, and Q = {q1, q2}, where
p1 = q1 = −1 and p2 = q2 = 1.
The points are already aligned, thus fix A and b to their optimal
values A = I and b = 0.
Fix c1,2 and c1,2 to their optimal value c∗1,2 = 1− c1,1 and
c∗2,2 = 1− c2,1.
This leaves us with only two variables c1,1 and c2,1, whose optimal
solution must be c∗1,1 = 1 and c∗2,1 = 0.
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3D Point Cloud Alignment

Optimization Landscape of Smoothed Objective
At the non-smoothed function (σ = 0), global minimum is near (c1,1, c2,1) = (1, 0)
and three local minima near (0, 1), (0, 0) and (1, 1).

For large enough σ, the landscape becomes convex, with minimizer around
(c1,1, c2,1) = ( 1

2
, 1

2
), as anticipated by the asymptotic minimizer result.

The path of minimizer form large to small σ converges to the global minimum

σ = 0 σ = 3
88

σ = 6
88

σ = 9
88

σ = 12
88

σ = 15
88

σ = 27
88

σ = 30
88

σ = 33
88

σ = 18
88

σ = 21
88

σ = 24
88
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3D Point Cloud Alignment

Qualitative Results
Using point cloud data of some objects in Stanford 3D.
Comparison against Iterative Closest Point (ICP) algorithm; that is
alternation between:

Given transformation, establish correspondence between pair of
points (of the two clouds)
Given correspondence, optimization the alignment transformation
between the point clouds.
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3D Point Cloud Alignment

Qualitative Results
Top: Input P, which is a rotated version of Q.
Middle: Transformed P to match Q using ICP.
Bottom Row: Transformed P to match Q using proposed method.

Q

30 45 60 75 90
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3D Point Cloud Alignment

Qualitative Results
Top: Input P, which is a rotated version of Q.
Middle: Transformed P to match Q using ICP.
Bottom Row: Transformed P to match Q using proposed method.

Q

30 45 60 75 90
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3D Point Cloud Alignment

Qualitative Results
Top: Input P, which is a rotated version of Q.
Middle: Transformed P to match Q using ICP.
Bottom Row: Transformed P to match Q using proposed method.

Q

30 45 60 75 90
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Conclusion & Future Directions

Optimization by Smoothing
Contributions

Rigorous definitions for asymptotic convexity.
Derivative free test for asymptotic convexity.
Derivative free form for asymptotic minimizer.

Future Directions
Asymptotic analysis of non-Gaussian smoothing.
Conditions that guarantee a traceable path.
Conditions that guarantee reaching the global minimum.
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Conclusion & Future Directions

Alignment
Contributions

Showing that traditional Gaussian image blurring (e.g.
Lucas-Kanade) is not suitable for non-displacement motions.
Derivation of spatially varying kernels required for objective
smoothing.
Formulation of 2D and 3D alignment via objective smoothing.

Future Directions
Exploring potential connections between our kernels and blur
kernels for deblurring or motion from blur.
Heuristic spatially-varying kernels showed success in object
detection & recognition. Our kernels may provide a principled
framework for developing such kernels.
Exploiting smoothness and localized form of our kernels to compute
integral transforms faster.
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