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Contributions

@ A Formal Framework for Asymptotic Analysis

@ Easy to Check Condition for Asymptotic Convexity

@ Simple Form for Asymptotic Minimizer

@ Closed Form Kernels for Efficiently Smoothing Alignment

Objective
@ Formulation & Evaluation of 2D Alignment by Smoothing Method

@ Formulation & Evaluation of 3D Point Cloud Alignment by
Smoothing Method
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Convex vs Nonconvex

Convex Nonconvex

@ Nonconvex optimization difficult in general
@ Pressure to approximate by convex models
@ Real world problems have regularity... may lead to tractable

solutions
@ Exploiting such structures: SOS, DC, smoothness, etc.
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Homotopy Continuation

Smooth deformation of an easy problem into the actual problem,
while tracing the solution

@ Consider solving f : X — Y

@ Embed f(x) into a parameterized family g(x,t), where
g: AT —=>YandT ={t|0<t<1}

@ g(x,0) should be easy to solve
° g(z,1) = f(=x)
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Where Does Smoothing Come From?
Describing Smoothing by PDEs

@ Evolution of a function in a region X over time.
@ Initial condition g(x,0 — 0) = f(x)
@ Boundary condition on &' if any

Heat Equation
559 = 0g

Schrodinger’s Equation

%g =i0Ag
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Where Does Smoothing Come From?

Why Heat Kernel for Optimization?
IS:

If X = R™ and k(x;0?) is isotropic Gaussian, solution of heat equation

g(@;a) = [f xk(.;0%)](z)

Kills high frequencies, hence suppresses brittle local minima.
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Surprising Phenomena

Consider f(z) = e 22 —e™

262
=2 fore> 0

This functions resembles the ¢, norm much better than ¢;. Except at its

tip, it is concave everywhere. However, it is asymptotically convex!
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Popularity Across Disciplines
Known As

87]

@ Graduated Optimization (Computer Vision) [Blake & Zisserman

@ Optimization by Diffusion Equation (Chemistry) [Piela 89]
@ Optimization by Homotopy Continuation (Numerical Computing)
[Watson 88]

@ Deterministic Annealing (Machine Learning) [Rose 98]

Despite its long age and mathematical roots, there is little
understanding about its fundamental aspects.
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Definition of Asymptotic Convexity

Definition

A real-valued continuous function f(z) is called asymptotically convex
if following statement holds:

VM >0, 305(M) , Yoy € B(0, M), @3 € B(O, M), a € [0,1]

o>c" (M) = glaxys + (1 —a)xe;0) < ag(x1;0) + (1 —a)g(xe;0)
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Asymptotic Convexity Example

we have M =1,0* =~ 0.9
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Theoretical Contributions

Asymptotic Convexity
Under mild conditions, any function f(x) satisfying

—00 < [pn f(x) dee < 0 is asymptotically convex.

Asymptotic Minimizer

Under miId conditions any function f(x) that is asymptotically convex
with [ f(x) # 0 has the asymptotic minimizer at the center of mass:

fRn f(z) dz

Nice Property
Both conditions are “derivative-free”.
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Example

2

Show that f(x) = e~ — e is asymptotically convex and
find its asymptotic minimizer.

Jz f(z) dz ~ —1.21195, thus f(z) is asymptotically convex. Also

« _ Jprf(@)de -
zr = BB o _0.46247.
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Taxonomy for Functions {f : R" — R}

Sub-Exponential
Asymptotically Convex

Rapidly Decaying

Bounded
Support
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Applications to Image Alignment

Alignment as optimization

0" = arg ngn / ( fi(r(x;0)) — fa(x) )2 dx

X

This is non-convex in variable 6.
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Lucas-Kanade Type Methods

Linearization

Linearize fi(x + d) around d = 0 to get a convex quadratic

d= arg n'bin /\ ( fi(x) +d*V f, (z) — fa(z) )3 dx
A A
[ fi@) = fi(@)] < SId]?

Lo<al
Opctimmixzation
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Motion Models other than Translation

Problem of Lucas-Kanade for Other Models
Consider scaling transformation  — sx. Linearization of f(sx)
around s = 1:

fi(sz) = fi(e) + (s = 1)(=" Vfi(2))

§ = argmin /X (£i@)+ (s~ V@' VN@) - i) ) de
| filsm) — hi(smy| < 22D

e
=l
Error grows in ||z||? as well!
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Spatially Varying Blurring

Smoothing the Objective

GCaunssiamn
Eluarred
Objective

@ Smoothing the objective automatically produces spatially varying
blurs without any hack.
@ People in computer vision have realized the advantage of spatially

varying kernels for matching on heuristic basis, e.g. (Berg & Malik
2001)
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Smoothing the Objective for Alignment

Toy Example: 1-d Scale Alignment
@ Actual Task fR(fl(a:E) = f2($))2H||m||§1d$
X X 2
o Signal Smoothing [y, (Ijz|<i ([f1 & ko](az) — [f2 & ky)(x))) da
@ Objective Smoothing

ko & fy (Tapa (A( x 2) — @) dal(a)

-

Signals Signal Smoothing Objective Smoothing
«O>» «F>» «E» «E>» =] A
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Efficient Computation of Smoothed Objective
Question

@ Assume X = R™ and © = R™

@ Given a domain transformation 7 : X x © — X

Is there any u,, : X x X — R satisfying the following integral
equation?

vf

/f Jur (0, z,y)dy

Applied Contributions
We do find such v and call it a transformation kernel
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Kernels for Common Transformations

Translation+Scale 0)

y;0° dlarg([l—l— )
— e | SGEE

y;o°(1+ [[=[))

Homography n=2:p0,x,y,0) e(0,x,y, U)
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Name ‘ T(x,0) ‘ ur (0, ,y)
Translation x+d k(t(x,0) — y;0?)
Translation+Scale aTx+d K(7(x,0) — y;0” diag([1 + z3]))
Affine Az +b k(r(z,0) — y; 02 (1 + [[=[%))
Homography 1+ﬁ(A:c +b) | n=2:p(0,x,y,0) e(0,x,y,0)
e O O

al[f(T(x, -)) xk(-;0)1(0) = (8/00)[f((, -)) x k(-;0)](6)

lim / fW)uro(0,2,y)dy = f(T(x,0))
X

o—0T




omparison aga eome =
Name ‘ T(IB,B) ‘ UT,0(07w7y)
Translation x+d k(T(x,0) — y;0?)
Translation+Scale aTz+d K(7(x,0) — y; 0° diag([1 + 27]))
Affine Az +b k(t(z,0) — y;02(1 + ||]?))
Homography 1+ﬁ(Aw +b) | n=2:p0,x,y,0) e(0,x,y,0)
eome B e Berqg & 2 010
us(x,y) = k(y — z; 0% ||z|?)
@ Heuristic

@ I|dentity Transformation

@ Singular at Origin




Alignment By Smoothing Algorithm

Original Objective

Smoothed Objective

2(0,0) = /X (Fa@)[fr(r (. ) * (- 0?)](6) ) dax

-/ <f2<:c>( /. f1<y>uf,a<e,w,y>dy))dw

Blurred f1

Inner Product

> AT CEr (= Qe
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Computation with Homography Kernel

Approximation

@ Model image as piecewise constant so that,

W H
A, fl(y)uT,(r(av Z, y) dy = Z ZFl(I])

/ / ur (0, z,y)dy.
i=1 j=1 JYyi Jy;
S, ur.o(0, @, y) dy.

@ Now computing the integral transform amounts to computing

@ We use Laplace approximation to compute integral above.
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Quantitative 2D Alignment Results
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Qualitative 2D Alignment Results

A 3D Reconstruction Scenario

@ In reality, a scene barely consists of a single planar surface
@ A real example: 3D reconstruction of an octagonal building
Given eight uncalibrated and widely separated images
Each image covers a pair of adjacent facades
Segment an image into piecewise planar regions
Rectify a segment by a single homography

Dense pixel-wise match across pairs of facades
Bundle adjustment

fEE A0
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Qualitative 2D Alignment Results

A 3D Reconstruction Scenario

@ Each segmented region may not share the same location and
scale across images

@ Refine their location and scale by alignment in
scale+displacement space

@ Use smoothed objective of normalized cross correlation (NCC)
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3D Point Cloud Alignment
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3D Point Cloud Alignment

Formulation

(0*,c") = argmmZch,J T(p;, 0

=1 j=1

m
s.t. Vie{l,...,n} D cij=1
=1

Vie{l,.... m}Vjed{l,...

’n}

Cij € {O, 1}
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3D Point Cloud Alignment

Formulation

(0*,c") = argmmZZcm T(p;, 0

=1 j=1

m
s.t. Vie{l,...,n} D cij=1
=1

ViE{l,...,m}VjE{l,...,n} CZ"j(l—CZ"j):O
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3D Point Cloud Alignment

Approximate by Quadratic Penalty

arg Igin h(0,{ci;})

)

e(ii%;‘”"‘(pi» ) — quQ)

e is a small positive number.
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3D Point Cloud Alignment

Smoothed Objective

[([h« , .>*k<.;02>]<c>)*k<.;a2>] ()

33 e (Ir (i 0) - ;l1” + 3021 + Ilpi][2)

=1 j=1
n m

+) (1= ciy)
j=1 o—il

m n
+> D (e —1)%c; +60%(ci; — =

i=1 j=1

We assume T is an affine transformation, i.e. T(p; (A,b)) =

«40>» «4F>» «E» « >

Hossein Mobahi (UIUC) Optimization by Smoothing for Alignment November 5th, 2012

35/45




3D Point Cloud Alignment

Asymptotic Minimizer

@ The objective is asymptotically convex.

@ Its asymptotic minimizer is the simple form A* = O, b* = 0, and
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3D Point Cloud Alignment

lllustrative Example

@ Setd=1,¢=0.01, P = {p1,p2}, and Q = {q1, ¢2}, where
pr=q =—landp; =g = 1.

@ The points are already aligned, thus fix A and b to their optimal
values A =TI and b= 0.

@ Fix c12 and c; » to their optimal value cj , = 1 — ¢1; and
03.2 =1l= C2.1.-

@ This leaves us with only two variables ¢;; and cz 1, whose optimal
solution mustbe ¢j ; =1and ¢;; = 0.
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3D Point Cloud Alignment

Optimization Landscape of Smoothed Objective

@ At the non-smoothed function (¢ = 0), global minimum is near (ci1,1, c2,1)

= (1,0)
and three local minima near (0, 1), (0,0) and (1, 1).

@ For large enough o, the landscape becomes convex, with minimizer around
(c11,c2,1) = (3, %), as anticipated by the asymptotic minimizer result.

@ The path of minimizer form large to small o converges to the global minimum
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3D Point Cloud Alignment

Qualitative Results

@ Using point cloud data of some objects in Stanford 3D.
alternation between:

@ Comparison against Iterative Closest Point (ICP) algorithm; that is

o Given transformation, establish correspondence between pair of
points (of the two clouds)

o Given correspondence, optimization the alignment transformation
between the point clouds.
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3D Point Cloud Alignment

Qualitative Results
@ Top: Input P, which is a rotated version of Q.
@ Middle: Transformed P to match Q using ICP.

@ Bottom Row: Transformed P to match Q using proposed method.
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3D Point Cloud Alignment

Qualitative Results
@ Top: Input P, which is a rotated version of Q.
@ Middle: Transformed P to match Q using ICP.
@ Bottom Row: Transformed P to match Q using proposed method.

o o = =
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3D Point Cloud Alignment

Qualitative Results
@ Top: Input P, which is a rotated version of Q.
@ Middle: Transformed P to match Q using ICP.
@ Bottom Row: Transformed P to match Q using proposed method.
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Conclusion & Future Directions

Optimization by Smoothing
@ Contributions

@ Rigorous definitions for asymptotic convexity.
e Derivative free test for asymptotic convexity.

o Derivative free form for asymptotic minimizer.
@ Future Directions

o Asymptotic analysis of non-Gaussian smoothing.
o Conditions that guarantee a traceable path.

o Conditions that guarantee reaching the global minimum.
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Conclusion & Future Directions

Alignment

@ Contributions

o Showing that traditional Gaussian image blurring (e.g.
Lucas-Kanade) is not suitable for non-displacement motions.

o Derivation of spatially varying kernels required for objective
smoothing.

o Formulation of 2D and 3D alignment via objective smoothing.

@ Future Directions

o Exploring potential connections between our kernels and blur
kernels for deblurring or motion from blur.

e Heuristic spatially-varying kernels showed success in object
detection & recognition. Our kernels may provide a principled
framework for developing such kernels.

o Exploiting smoothness and localized form of our kernels to compute
integral transforms faster.
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