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Abstract - In many practical problems of online system 

identification, the distribution of observed samples is uneven. 
For instance, at points where system is idle or changes slowly, 
the sample density increases and where system moves quickly, 
it is reduced. This generally results in performance 
degradation of learning. We will propose a new algorithm for 
training RBF networks that is particularly developed for 
online learning with uneven sample distribution. The basic 
idea is to find peaks and stick to them. Experiments show a 
notable improvement in convergence rate, settling of weights 
and error minimization. 

 
 

1. INTRODUCTION 
 
One of the problems for the control of complex non-

linear systems is often the difficulty in the identification of 
an accurate mathematical model of the system. To address 
this issue, in recent years, adaptive and online 
approximation methods are receiving considerable attention 
[6, 8, 9]. In this context, Artificial Neural Networks are 
excellent candidate to deal with approximation problems, 
thanks to their functional approximation capabilities and to 
the availability of effective learning algorithms. 

 
However, real-time, on-line learning of non-linear 

mappings requires additional developments in neural 
learning algorithms. In particular, the approximation 
algorithm is very important since it can dramatically 
influence the performance of the controlled system. 
Therefore, aspects such as mapping accuracy and 
convergence rate of the learning algorithm should be clearly 
addressed. 

 

In this paper, we will propose a new learning algorithm 
named Peak Stick (PS), which is particularly developed for 
online system identification using RBF networks. The 
algorithm can robustly deal with a serious problem in on-
line learning, the uneven sample distribution problem. 
Unfortunately this problem is often overlooked and there 
are only a few works addressing it [1,2]. 

 
Among various types of neural networks, we selected 

RBF network for system identification due to it suitable 
properties in local specialization, global generalization and 
smooth map generation capacities [4]. Peak Stick algorithm 
attempts to localize function’s peaks and lock an RBF 
center there. Therefore, future samples near to that unit will 
no longer attract it. 

 
This paper is organized as follows. In section 2, we will 

introduce the uneven distribution problem. Then we will 
give an overview of RBF networks and their learning. 
Sections 4 and 5 explain the concepts behind "Peak Stick" 
algorithm and provide its formal algorithm respectively. 
Section 6 compares the proposed algorithm with the 
common RBF learning rule and discusses the 
improvements. Finally in section 7, we will have conclusion 
and future works. 

 
 

2. UNEVEN SAMPLE DISTRIBUTION 
 
In a passive* system identification task, generally the 

input and output variables of the reference system are 

                                                           
* The learning system is not allowed to choose its examples 



measured and used unselectively and by the learning system 
as its training samples. In many practical problems, the 
density of the observed samples is uneven. For instance, 
when the system becomes idle or it changes very slowly, 
the density of samples increases and when it changes 
quickly, the density is reduced. 

 
Uneven sample distribution usually degrades the 

learning quality of adaptive systems like neural networks. 
This is due to the fact that the adjustable parameters of a 
typical network continually change and therefore, high-
density regions of the state space are over-learned by 
drifting parameters while low-density regions are learned 
poorly and forgotten quickly.  

 
In case of offline learning, one can store all samples and 

then make any desired distribution out of it, e.g. uniform 
distribution. For instance, Bohn [2] has proposed a method 
for controlling signal distribution by resampling and has 
applied it to RBF networks. However, in our literature 
review, we could find a few works that have addressed this 
problem for the online case. 

 
Ahrns et.al [1] proposed error modulated Kohonen rule 

to cope with this problem in on-line learning. Instead of 
reflecting the input probability density, they try to achieve a 
uniform distribution of local approximation errors. Local 
error is approximated from instantaneous errors, using an 
exponential recency-weighted average. To achieve a 
reasonable approximation of error, the forgetting factor of 
the average must be inversely proportional to the sampling 
density.  However, sampling density is generally not known 
a priori and it may also change during system’s operation. 

 
In this article we will develop a new learning algorithm 

to cope with uneven distribution of samples in online 
learning tasks. Since our learning algorithm is based on 
RBF networks, we will first have a short review on this type 
of network. 

  
 

3. RBF NETWORKS 
 
An RBF is a function whose output is symmetric around 

an associated center. For example, a Gaussian function can 
be viewed as an RBF by selecting the Euclidian norm. A 
Radial Basis Function Network (RBFN) is a 3-layer feed-
forward network (Figure 1) in which each hidden unit 
computes the RBF activation and the output units compute 
a weighted sum of the hidden-unit activations. 

 
Figure 1. RBF Network 

The mapping of the input vector to each output unit 
using Gaussian RBFs is mathematically shown in equation 
(1). Here, a nonlinear function f(x) is approximated by a 
weighted sum of Gaussians where µi, σi and wi denote the 
center coordinate, width and weight of i-th RBF unit 
respectively and x is the input vector.  A detailed overview 
of RBF networks is available in [5]. 

 
RBFNs have been used in different applications in order 

to model unknown functions [3, 4, 6, 8]. They have suitable 
properties to be used for function approximation [4] 
because of their local specialization and global 
generalization capabilities. In addition, they produce 
smooth maps, appropriate for control applications, 
compared with other local methods such as Locally Linear 
Maps (LLM) [4]. Therefore, we adopt RBFN in our system 
identification problem. 
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Since one would like at least one RBF unit to be active 
in regions of the input space where data is presented, RBF 
centers should be placed in regions of data concentration. In 
online simple training, the winning center is updated using 
standard competitive learning rule. For simple RBFNs, 
widths of RBFs are generally considered constant. 
However, output weights are updated using Least Mean 
Square (LMS) method. Equation (2) shows updates for 
online training of a simple RBFN, where s is the winning 
unit and η with ζ are learning rates. 
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It is obvious that these update rules are influenced by 
sample distribution, i.e., in the long run low-density 
samples have less impact on parameter adjustment. 
Therefore the learning performance degrades when sample 
distribution is uneven. Even more advanced RBFNs that are 
particularly developed for online learning tasks such as 
Resource Allocating Networks (RAN) [7] and Dynamic 
Cell Structures (DCS) [1] suffer from this problem, because 
their adaptable parameters change continually as well. 

 
 

4. PEAK STICK LEARNING RULE 
 
A Peak Stick network is an RBFN whose learning 

algorithm is particularly developed for on-line training of 
samples with uneven distribution. Peak Stick algorithm 
attempts to localize function’s peaks. Since RBF centers are 
sensible choices for representing smooth peaks, they are 
placed at the discovered hills or valleys. Once the largest 
peak about an RBF unit is found, the unit is frozen there. 
Therefore future samples near to that unit will no longer 
attract it. 

 
In order for this algorithm to work, a few assumptions 

must be made: 
1. The mapping to be learned must be smooth enough 

such that it can be approximated by a reasonable number of 
RBF functions. 

2. We assume that placing an RBF center at a peak 
location is a fine choice. This is true again if the peaks are 
RBF-like. 

3. Once a peak is found in a region, the RBF in that 
region is locked there and it will never shorten its height 
(weight) again. Therefore, if the system to be learned in not 
time invariant, Peak Stick learning will fail to learn. 

 
The incremental process of peak finding is achieved by 

restricting parameter adaptation to when the absolute value 
of the observed sample is larger than RBF’s weight. This 
coagulation prevents drift of the parameters when the actual 
location of the peak is found. Peak Stick acts in a 
competitive manner. Therefore each RBF unit is 
responsible to find the largest peak only within its Vornoi 
region. 

 
At the beginning, RBF centers are initialized at random 

spots and their weights are set to very small values. In the 
main loop, when a sample is acquired, its nearest RBF unit 
with the same weight sign is selected for adaptation. 
Adaptation occurs only if the magnitude of the observed 
output is larger than network’s output. Hence, the 
height/depth of each RBF gradually rises in the correct 
direction until the largest peak of its local region is found. 

 

Determining misplaced units can make an efficient use 
of network resources. A misplaced unit barely contributes 
to reconstruction of the original function. Therefore, a unit 
that has successively won competition, but its amplitude 
remaining very small, is possibly misplaced. Misplaced 
units are moved to other places in the input space. 

 
Another resource management can be achieved by 

eliminating redundant units. It may occasionally happen 
that two near RBFs can be combined and replaced by a 
single RBF, or they cancel out each other. These cases may 
release one and two units respectively. Therefore, units are 
checked so that redundant units are eliminated and then 
implanted again as new seeds (units with very small 
weights, but with their original signs) in other places.  

 
Recent changes in parameters of a unit mean that such 

unit has not yet found its accurate place. Combining such a 
unit with one that has already settled down at its right place 
corrupts the settled RBF too. Therefore, two near units 
should be combined only if both have become stable. We 
call the fluctuation of an RBF unit its temperature and 
measure it from the recent changes in its parameters. 

 
To keep the algorithm lightweight, no statistics from the 

past observations is preserved. Therefore, while a redundant 
or misplaced unit may be found, we cannot suggest an 
adequate place for it. Perhaps the best zero-th order guess is 
the region about the current observation, hoping the unit 
can grow up there soon. Although this substitution may lead 
to a misplaced unit itself, at least it is located in a valid state 
where the system may encounter again. Note that we do not 
know the regions of input space that system may travel 
prior to observing them. 

 
 

5. PEAK STICK (PS) ALGORITHM 
 
The formal description of Peak Stick algorithm, suitable 

for computer-based simulation, is presented as follows. 
 
I. Initialization: 

1. Initialize the centers of units at random places and 
set their weights to +ε or – ε, where ε is a very 
small positive number. 

2. Initialize the temperatures t of units to T0. 
 
II. Shifting Misplaced Units: 

3. Acquire input vector x and output value y. 
4. Based on a predefined probability of shifting, either 

perform a shift (as described below) or go to step 
9.  

5. The set of misplaced units contains units whose 
weights are below a threshold α. 
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6. If M is null go to step 9 otherwise randomly choose 

one of its members, mj: 
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7. Shift the center of unit j to x and set its weight to ε. 
The sign of the ε is chosen randomly. 
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8. Reset its temperature.  
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III. Winner Determination 
9. The winning unit s is defined as the unit with the 

minimum distance from its centroid to x, and 
having similar output signs. 
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10. If y and ws have different signs, no winner is 

defined, therefore go to step 3.   
 
IV. Adaptation 

11. Adapt (winner’s) parameters only if moving 
toward a larger peak. Here η and ζ are learning 
rates for center and weight adaptation and γ is a 
forgetting factor.  

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∆+∆+−=

−−
−=∆

−=∆

→>∧>

)()1(

)
2

exp())((

)8()(

)(

22

2

2

ss
old
s

new
s

s
s

ss

s

wtt

fyw

wyfy

µ

µx
x

µxµ

x

γγ
σ

ζ

η
 

 
 

V. Filtering 
12. Find the nearest unit to s and call it r. 
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13. If the distance between centers of r and s is below 
a threshold β and their temperatures are colder than 
T, then combine them to one RBF, and shift the 
other. 
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14. Go to step 2. 
 
 

6. EXPERIMENTAL RESULTS 
 
To evaluate the performance of PS learning rule, two 

experiments were carried out; one with Matlab’s peaks 
function and another with a gray-scale image. In the first 
experiment, Mean Squared Error (MSE) was computed and 
plotted. Although RBF parameters are updated locally and 
online, for evaluation purpose, error is computed on the 
whole space at any moment of time. Below, A is the 
evaluation region in the input space. Network parameters 
and global error are denoted by Θ(k) and E(k) respectively, 
in k-th iteration. 
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Matlab’s Peaks is a function of two variables, obtained 

by translating and scaling Gaussians in equation (12) as 
shown in Figure 2. Uneven distribution was modeled by 
trigonometric functions as shown in equation (13). The 
shape of this distribution in 1000 iterations is shown in 
Figure 3. At points where the curve has less change along 
time axis (vertical), distribution becomes denser. 
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Figure 2. Top: Matlab’s Peaks Function, Bottom: PSRBF vs. 
Simple RBF reconstructions 
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Table 1 summarizes parameters used in PS and Simple 

RBF learning along with their corresponding errors. Other 
parameters that remained constant in our experiment were 
as follows: 

 
• Common: η=0.1, ζ=0.1 
• PS: α=0.1, β=0.1, γ=0.1, Pshift=0.01, T0=5.0, 

T=1.0 
 
The algorithm was executed five times for each set of 

parameters in rows of the table and the average of five 
MSE(k)’s were computed. Each execution was realized by 
10,000 iterations and error was measured within A=[-
3,3]x[-3,3] region of input space. Since the plotted errors 
for comparing Peak Stick and Simple RBF did not behave 
much differently, only the first plot is shown in Figure 4. 
The mean of each error over 10,000 iterations is also 
available in the table. 

 

 
Figure 3. An uneven sample distribution generated by 

trigonometric functions 

 
Figure 4 indicates that the error of a Simple RBF (which 

is itself a function of its weights) constantly oscillates with 
very large ripples, while that of PS-RBF converges quickly. 
Moreover, it is clear from Table 1 that the average error of 
PS-RBF is much less than that of Simple RBF. 
Reconstruction results can be seen in the bottom plots of 
Figure 2. 

 
In the second experiment a 256x256 gray-scale image 

was approximated using 100 RBF units with width of 
0.003. Gray values were normalized to range from -1 
(black) to 1 (white). The same parameters and trigonometric 
distribution were applied. Again while PS-RBF could 
converge quickly, Simple RBF oscillated aimlessly and 
finally had no achievement. Figure 5 shows reconstructed 
images of networks trained by PS-RBF and Simple RBF 
algorithms after 5000 iterations. Evolution of networks 
weights is available as movie files on Internet∗. 

 

 

Figure 4 Error Plots of PSRBFN vs Simple RBF 

                                                           
∗ http://www.digibrain.org/psrbf 



Table 1.  PS-RBFN vs. Simple RBF 

Common 
Parameters Average Error 

# 

Units Initial 
Width 

PS Simple 
RBF 

1 5 0.1 1.5665 3.5824 

2 10 0.1 1.3248 3.5592 

3 5 0.5 1.3586 3.6525 

4 10 0.5 1.4627 4.3836 

5 5 1.0 2.6271 4.5936 

6 10 1.0 2.7822 7.2759 

 
 
 

  

  
 Figure 5. Top-Left: The original image, Top-Right: Reconstructed 
image using PS-RBFN,Bottom Left and Right: Reconstructed image 

using Simple RBF with initial and final weights respectively. 

  
7. CONCLUSION AND FUTURE WORKS 

 
We postulated the problem of uneven sample 

distribution as a difficulty for a large class of online 
learning algorithms. The phenomenon results in fluctuation 
of network’s parameters and enormously enlarges the 
settling time of the network. We then proposed a new 
learning algorithm (PS) for RBF networks that is 
particularly developed for coping with this problem. Our 
experiments confirm that the proposed algorithm converges 
very quickly to a lower level of error. 

 

Although stability is shown empirically, no 
mathematical proof is presented. Therefore, stability 
analysis of PS algorithm is an important path for future 
research.  In addition, for combining two Gaussians and 
replacing a single one instead simple heuristic rules were 
adopted. Therefore, another issue for future study is finding 
the optimal combination and replacement for Gaussians. At 
last, the algorithm is restricted to learn time invariant 
systems. Generalizing PS to be applicable to time variant 
systems remains to be addressed. 
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