
Peak Stick RBF Network for Online System
Identification

Hossein Mobahi
Robotic Lab.

Dept. of Electrical and Computer Engineering
University of Tehran

Tehran, Iran
hmobahi@acm.org

Farrokh Janabi-Sharifi
Robotics and Manufacturing Automation Lab

Dept. of Mechanical and Industrial Engineering
Ryerson University

Toronto, Ontario, Canada
fsharifi@ryerson.ca

Abstract - In many practical problems of online system

identification, the distribution of observed samples is uneven.
For instance, at points where system is idle or changes slowly,
the sample density increases and where system moves quickly,
it is reduced. This generally results in performance
degradation of learning. We will propose a new algorithm for
training RBF networks that is particularly developed for
online learning with uneven sample distribution. The basic
idea is to find peaks and stick to them. Experiments show a
notable improvement in convergence rate, settling of weights
and error minimization.

1. INTRODUCTION

One of the problems for the control of complex non-

linear systems is often the difficulty in the identification of
an accurate mathematical model of the system. To address
this issue, in recent years, adaptive and online
approximation methods are receiving considerable attention
[6, 8, 9]. In this context, Artificial Neural Networks are
excellent candidate to deal with approximation problems,
thanks to their functional approximation capabilities and to
the availability of effective learning algorithms.

However, real-time, on-line learning of non-linear

mappings requires additional developments in neural
learning algorithms. In particular, the approximation
algorithm is very important since it can dramatically
influence the performance of the controlled system.
Therefore, aspects such as mapping accuracy and
convergence rate of the learning algorithm should be clearly
addressed.

In this paper, we will propose a new learning algorithm
named Peak Stick (PS), which is particularly developed for
online system identification using RBF networks. The
algorithm can robustly deal with a serious problem in on-
line learning, the uneven sample distribution problem.
Unfortunately this problem is often overlooked and there
are only a few works addressing it [1,2].

Among various types of neural networks, we selected

RBF network for system identification due to it suitable
properties in local specialization, global generalization and
smooth map generation capacities [4]. Peak Stick algorithm
attempts to localize function’s peaks and lock an RBF
center there. Therefore, future samples near to that unit will
no longer attract it.

This paper is organized as follows. In section 2, we will

introduce the uneven distribution problem. Then we will
give an overview of RBF networks and their learning.
Sections 4 and 5 explain the concepts behind "Peak Stick"
algorithm and provide its formal algorithm respectively.
Section 6 compares the proposed algorithm with the
common RBF learning rule and discusses the
improvements. Finally in section 7, we will have conclusion
and future works.

2. UNEVEN SAMPLE DISTRIBUTION

In a passive* system identification task, generally the

input and output variables of the reference system are

* The learning system is not allowed to choose its examples

measured and used unselectively and by the learning system
as its training samples. In many practical problems, the
density of the observed samples is uneven. For instance,
when the system becomes idle or it changes very slowly,
the density of samples increases and when it changes
quickly, the density is reduced.

Uneven sample distribution usually degrades the

learning quality of adaptive systems like neural networks.
This is due to the fact that the adjustable parameters of a
typical network continually change and therefore, high-
density regions of the state space are over-learned by
drifting parameters while low-density regions are learned
poorly and forgotten quickly.

In case of offline learning, one can store all samples and

then make any desired distribution out of it, e.g. uniform
distribution. For instance, Bohn [2] has proposed a method
for controlling signal distribution by resampling and has
applied it to RBF networks. However, in our literature
review, we could find a few works that have addressed this
problem for the online case.

Ahrns et.al [1] proposed error modulated Kohonen rule

to cope with this problem in on-line learning. Instead of
reflecting the input probability density, they try to achieve a
uniform distribution of local approximation errors. Local
error is approximated from instantaneous errors, using an
exponential recency-weighted average. To achieve a
reasonable approximation of error, the forgetting factor of
the average must be inversely proportional to the sampling
density. However, sampling density is generally not known
a priori and it may also change during system’s operation.

In this article we will develop a new learning algorithm

to cope with uneven distribution of samples in online
learning tasks. Since our learning algorithm is based on
RBF networks, we will first have a short review on this type
of network.

3. RBF NETWORKS

An RBF is a function whose output is symmetric around

an associated center. For example, a Gaussian function can
be viewed as an RBF by selecting the Euclidian norm. A
Radial Basis Function Network (RBFN) is a 3-layer feed-
forward network (Figure 1) in which each hidden unit
computes the RBF activation and the output units compute
a weighted sum of the hidden-unit activations.

Figure 1. RBF Network

The mapping of the input vector to each output unit
using Gaussian RBFs is mathematically shown in equation
(1). Here, a nonlinear function f(x) is approximated by a
weighted sum of Gaussians where µi, σi and wi denote the
center coordinate, width and weight of i-th RBF unit
respectively and x is the input vector. A detailed overview
of RBF networks is available in [5].

RBFNs have been used in different applications in order

to model unknown functions [3, 4, 6, 8]. They have suitable
properties to be used for function approximation [4]
because of their local specialization and global
generalization capabilities. In addition, they produce
smooth maps, appropriate for control applications,
compared with other local methods such as Locally Linear
Maps (LLM) [4]. Therefore, we adopt RBFN in our system
identification problem.

(1)
)

2
exp()(

:)(

2

2

∑
−−

=≈

→

i i

i
i

n

wfy

RRf

σ
µx

x

x

Since one would like at least one RBF unit to be active
in regions of the input space where data is presented, RBF
centers should be placed in regions of data concentration. In
online simple training, the winning center is updated using
standard competitive learning rule. For simple RBFNs,
widths of RBFs are generally considered constant.
However, output weights are updated using Least Mean
Square (LMS) method. Equation (2) shows updates for
online training of a simple RBFN, where s is the winning
unit and η with ζ are learning rates.

(2)

)
2

exp())((

)(

minarg

2

2

σ
ζ

η
s

s

ss

i
i

yfw

s

µx
x

µxµ

µx

−−
−=∆

−=∆

−=

It is obvious that these update rules are influenced by
sample distribution, i.e., in the long run low-density
samples have less impact on parameter adjustment.
Therefore the learning performance degrades when sample
distribution is uneven. Even more advanced RBFNs that are
particularly developed for online learning tasks such as
Resource Allocating Networks (RAN) [7] and Dynamic
Cell Structures (DCS) [1] suffer from this problem, because
their adaptable parameters change continually as well.

4. PEAK STICK LEARNING RULE

A Peak Stick network is an RBFN whose learning

algorithm is particularly developed for on-line training of
samples with uneven distribution. Peak Stick algorithm
attempts to localize function’s peaks. Since RBF centers are
sensible choices for representing smooth peaks, they are
placed at the discovered hills or valleys. Once the largest
peak about an RBF unit is found, the unit is frozen there.
Therefore future samples near to that unit will no longer
attract it.

In order for this algorithm to work, a few assumptions

must be made:
1. The mapping to be learned must be smooth enough

such that it can be approximated by a reasonable number of
RBF functions.

2. We assume that placing an RBF center at a peak
location is a fine choice. This is true again if the peaks are
RBF-like.

3. Once a peak is found in a region, the RBF in that
region is locked there and it will never shorten its height
(weight) again. Therefore, if the system to be learned in not
time invariant, Peak Stick learning will fail to learn.

The incremental process of peak finding is achieved by

restricting parameter adaptation to when the absolute value
of the observed sample is larger than RBF’s weight. This
coagulation prevents drift of the parameters when the actual
location of the peak is found. Peak Stick acts in a
competitive manner. Therefore each RBF unit is
responsible to find the largest peak only within its Vornoi
region.

At the beginning, RBF centers are initialized at random

spots and their weights are set to very small values. In the
main loop, when a sample is acquired, its nearest RBF unit
with the same weight sign is selected for adaptation.
Adaptation occurs only if the magnitude of the observed
output is larger than network’s output. Hence, the
height/depth of each RBF gradually rises in the correct
direction until the largest peak of its local region is found.

Determining misplaced units can make an efficient use
of network resources. A misplaced unit barely contributes
to reconstruction of the original function. Therefore, a unit
that has successively won competition, but its amplitude
remaining very small, is possibly misplaced. Misplaced
units are moved to other places in the input space.

Another resource management can be achieved by

eliminating redundant units. It may occasionally happen
that two near RBFs can be combined and replaced by a
single RBF, or they cancel out each other. These cases may
release one and two units respectively. Therefore, units are
checked so that redundant units are eliminated and then
implanted again as new seeds (units with very small
weights, but with their original signs) in other places.

Recent changes in parameters of a unit mean that such

unit has not yet found its accurate place. Combining such a
unit with one that has already settled down at its right place
corrupts the settled RBF too. Therefore, two near units
should be combined only if both have become stable. We
call the fluctuation of an RBF unit its temperature and
measure it from the recent changes in its parameters.

To keep the algorithm lightweight, no statistics from the

past observations is preserved. Therefore, while a redundant
or misplaced unit may be found, we cannot suggest an
adequate place for it. Perhaps the best zero-th order guess is
the region about the current observation, hoping the unit
can grow up there soon. Although this substitution may lead
to a misplaced unit itself, at least it is located in a valid state
where the system may encounter again. Note that we do not
know the regions of input space that system may travel
prior to observing them.

5. PEAK STICK (PS) ALGORITHM

The formal description of Peak Stick algorithm, suitable

for computer-based simulation, is presented as follows.

I. Initialization:

1. Initialize the centers of units at random places and
set their weights to +ε or – ε, where ε is a very
small positive number.

2. Initialize the temperatures t of units to T0.

II. Shifting Misplaced Units:

3. Acquire input vector x and output value y.
4. Based on a predefined probability of shifting, either

perform a shift (as described below) or go to step
9.

5. The set of misplaced units contains units whose
weights are below a threshold α.

)3()},{(U
α<

=Μ
iw

ii wµ

6. If M is null go to step 9 otherwise randomly choose

one of its members, mj:

(4)),(Μ∈=→∅≠Μ jjj wm µ

7. Shift the center of unit j to x and set its weight to ε.
The sign of the ε is chosen randomly.

ε±=

=

j

j

w

)5(xµ

8. Reset its temperature.

)6(0Tt j =

III. Winner Determination
9. The winning unit s is defined as the unit with the

minimum distance from its centroid to x, and
having similar output signs.

)7(minarg

0;
i

ywi i

s µx −=
>

10. If y and ws have different signs, no winner is

defined, therefore go to step 3.

IV. Adaptation

11. Adapt (winner’s) parameters only if moving
toward a larger peak. Here η and ζ are learning
rates for center and weight adaptation and γ is a
forgetting factor.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∆+∆+−=

−−
−=∆

−=∆

→>∧>

)()1(

)
2

exp())((

)8()(

)(

22

2

2

ss
old
s

new
s

s
s

ss

s

wtt

fyw

wyfy

µ

µx
x

µxµ

x

γγ
σ

ζ

η

V. Filtering
12. Find the nearest unit to s and call it r.

)9(minarg is
i

r µµ −=

13. If the distance between centers of r and s is below
a threshold β and their temperatures are colder than
T, then combine them to one RBF, and shift the
other.

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

±=
=

+=
+
+

=

→<∧<∧<−

ε

β

s

s

srr

sr

ssrr
r

rssr

w

www
ww
ww

TtTt

xµ

µµ
µ

µµ

)10(

)()()(

14. Go to step 2.

6. EXPERIMENTAL RESULTS

To evaluate the performance of PS learning rule, two

experiments were carried out; one with Matlab’s peaks
function and another with a gray-scale image. In the first
experiment, Mean Squared Error (MSE) was computed and
plotted. Although RBF parameters are updated locally and
online, for evaluation purpose, error is computed on the
whole space at any moment of time. Below, A is the
evaluation region in the input space. Network parameters
and global error are denoted by Θ(k) and E(k) respectively,
in k-th iteration.

)11(
))((

)(

2
)(

∫

∫ −
=

Θ

A

A
Ak

dA

dAyAf
kE

Matlab’s Peaks is a function of two variables, obtained

by translating and scaling Gaussians in equation (12) as
shown in Figure 2. Uneven distribution was modeled by
trigonometric functions as shown in equation (13). The
shape of this distribution in 1000 iterations is shown in
Figure 3. At points where the curve has less change along
time axis (vertical), distribution becomes denser.

))1(exp(
3
1

)12()exp()
5

(10

))1(exp()1(3

2
2

2
1

2
2

2
1

5
2

3
1

1

2
2

2
1

2
1

xx

xxxx
x

xxxz

−+−−

−−−−−

+−−−=

Figure 2. Top: Matlab’s Peaks Function, Bottom: PSRBF vs.
Simple RBF reconstructions

)13(

1000
2)(

)
1000

)14((sin)(

)(sin)(
)(cos)(

2

2

1

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

+=

=
=

tt

ttr

ttrx
ttrx

πθ

π
θ
θ

Table 1 summarizes parameters used in PS and Simple

RBF learning along with their corresponding errors. Other
parameters that remained constant in our experiment were
as follows:

• Common: η=0.1, ζ=0.1
• PS: α=0.1, β=0.1, γ=0.1, Pshift=0.01, T0=5.0,

T=1.0

The algorithm was executed five times for each set of

parameters in rows of the table and the average of five
MSE(k)’s were computed. Each execution was realized by
10,000 iterations and error was measured within A=[-
3,3]x[-3,3] region of input space. Since the plotted errors
for comparing Peak Stick and Simple RBF did not behave
much differently, only the first plot is shown in Figure 4.
The mean of each error over 10,000 iterations is also
available in the table.

Figure 3. An uneven sample distribution generated by

trigonometric functions

Figure 4 indicates that the error of a Simple RBF (which

is itself a function of its weights) constantly oscillates with
very large ripples, while that of PS-RBF converges quickly.
Moreover, it is clear from Table 1 that the average error of
PS-RBF is much less than that of Simple RBF.
Reconstruction results can be seen in the bottom plots of
Figure 2.

In the second experiment a 256x256 gray-scale image

was approximated using 100 RBF units with width of
0.003. Gray values were normalized to range from -1
(black) to 1 (white). The same parameters and trigonometric
distribution were applied. Again while PS-RBF could
converge quickly, Simple RBF oscillated aimlessly and
finally had no achievement. Figure 5 shows reconstructed
images of networks trained by PS-RBF and Simple RBF
algorithms after 5000 iterations. Evolution of networks
weights is available as movie files on Internet∗.

Figure 4 Error Plots of PSRBFN vs Simple RBF

∗ http://www.digibrain.org/psrbf

Table 1. PS-RBFN vs. Simple RBF

Common
Parameters Average Error

Units Initial
Width

PS Simple
RBF

1 5 0.1 1.5665 3.5824

2 10 0.1 1.3248 3.5592

3 5 0.5 1.3586 3.6525

4 10 0.5 1.4627 4.3836

5 5 1.0 2.6271 4.5936

6 10 1.0 2.7822 7.2759

 Figure 5. Top-Left: The original image, Top-Right: Reconstructed
image using PS-RBFN,Bottom Left and Right: Reconstructed image

using Simple RBF with initial and final weights respectively.

7. CONCLUSION AND FUTURE WORKS

We postulated the problem of uneven sample

distribution as a difficulty for a large class of online
learning algorithms. The phenomenon results in fluctuation
of network’s parameters and enormously enlarges the
settling time of the network. We then proposed a new
learning algorithm (PS) for RBF networks that is
particularly developed for coping with this problem. Our
experiments confirm that the proposed algorithm converges
very quickly to a lower level of error.

Although stability is shown empirically, no
mathematical proof is presented. Therefore, stability
analysis of PS algorithm is an important path for future
research. In addition, for combining two Gaussians and
replacing a single one instead simple heuristic rules were
adopted. Therefore, another issue for future study is finding
the optimal combination and replacement for Gaussians. At
last, the algorithm is restricted to learn time invariant
systems. Generalizing PS to be applicable to time variant
systems remains to be addressed.

8. REFERENCES

[1] Ahrns, I., Bruske, J., Sommer, G., "On-line learning with

dynamic cell structures", Proc. 1995 Int. Conf. Artificial Neural
Networks: ICANN'95, Paris, France, pp. 141-146, 1995.

[2] Bohn, C., "An incremental unsupervised learning scheme

for function approximation", Proc. 1997 IEEE Int. Conf. Neural
Networks, pp. 1792-1797, Piscataway, NJ, June 1997.

[3] Fritzke, B., "Fast learning with incremental RBF

networks", Neural Processing Letters, vol. 1, no. 1, pp. 2-5, 1994.

[4] Fritzke, B., "Incremental learning of local linear

mappings", In F. Fogelman and P. Gallinari, editors, Proc. 1995
Int. Conf. Artificial Neural Networks: ICANN'95, pp. 217-222,
Paris, France, 1995.

[5] Ghosh, J., Nag, A., “An Overview of Radial Basis

Function Networks”, Radial Basis Function Neural Network
Theory and Applications, R. J. Howlerr and L. C. Jain (Eds),
Physica-Verlag., 2000.

[6] Kim B.S., Calise A.J, “Nonlinear flight control using

Neural Networks”, AIAA Journal of Guidance, Control, and
Dynamics, vol. 20, no. 1, pp. 26--33, 1997.

[7] Platt J.C., “A resource allocating network for function

interpolation”, Neural Computation 1991, vol. 3, no. 2, pp. 213-
225.

[8] Polycarpou M., “Online approximators for nonlinear

system identification: A unified approach”, Control and Dynamics
Systems Serries, vol. 7, Neural Networks Systems and
Applications (Academic Press, January 1998).

[9] Sanner R.M., Slotine J., “Gaussian Networks for direct

adaptive control”, IEEE Trans. Automatic Control, vol.3, no.6, pp.
837-863, 1992.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

