
Training Recurrent Neural Networks by Diffusion

Hossein Mobahi
Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology
Cambridge, MA, USA

hmobahi@csail.mit.edu

Abstract

This work presents a new algorithm for training recurrent neural net-
works (although ideas are applicable to feedforward networks as well).
The algorithm is derived from a theory in nonconvex optimization re-
lated to the diffusion equation. The contributions made in this work are
two fold. First, we show how some seemingly disconnected mechanisms
used in deep learning such as smart initialization, annealed learning rate,
layerwise pretraining, and noise injection (as done in dropout and SGD)
arise naturally and automatically from this framework, without manually
crafting them into the algorithms. Second, we present some preliminary
results on comparing the proposed method against SGD. It turns out that
the new algorithm can achieve similar level of generalization accuracy of
SGD in much fewer number of epochs.

1 Introduction

Deep learning has recently beaten records in image recognition [Krizhevsky et al., 2012],
speech recognition [Hinton et al., 2012a] and has made significant improvements
in natural language processing [Bahdanau et al., 2014, Sutskever et al., 2014].
However, currently “training” deep networks, and specially recurrent neural net-
works (RNNs), is a challenging task [Martens and Sutskever, 2011]. To improve
learning (in terms of convergence speed, attained training cost and generaliza-
tion error) gradient based optimization methods are often used in combination
with other techniques such as smart initialization [Sutskever et al., 2013], layer-
wise pretraining [Bengio et al., 2007], dropout [Hinton et al., 2012b], annealed
learning rate, and curriculum learning [Bengio et al., 2009].

The difficulty in training deep networks is mainly attributed to their opti-
mization landscape, where saddle points [Dauphin et al., 2014, Pascanu et al., 2014],
plateaus, and sharp curvatures are prevalent. A general strategy for tackling
difficult optimization problems is the continuation method. This method
gradually transforms a highly simplified version of the problem back to its orig-
inal form while following the solution along the way. The simplified problem is

1

Figure 1: Optimization by the continuation method. Top is the simplified
function and bottom is the original complex objective function. The solution of
each subproblem initializes the subproblem below it.

supposedly easy to solve. Then, each intermediate subproblem is initialized by
the solution from the previous subproblem until reaching the final problem (see
Figure 1).

There are two loose ends for using optimization by continuation: 1. how to
choose the simplified problem, 2. how to transform the simplified problem to
the main task. For both of these questions, there are infinite answers. More
precisely, given an objective function, there are infinite ways infinite smooth
convex functions that could be used as initial “easy” task, and also infinite
ways to gradually transform that to the main objective function. The quality of
the solution attained by the continuation method critically depends on these
choices. Recently we have proved that these choices can be made optimally
via the diffusion equation [Mobahi and Fisher III, 2015]. Specifically, the
objective function is considered as the initial heat distribution on a domain,
and the heat is diffused over time according to the heat equation.

The solution to the heat equation on Rn is known analytically: it is the con-
volution of the initial heat distribution (i.e., the objective function) with the
Gaussian kernel. Obviously, convolution with the Gaussian kernel smoothes
the objective function1. The bandwidth parameter σ of the Gaussian kernel de-
termines the amount of smoothing. The algorithm for optimization by diffusion
starts from a large σ (highly simplified objective function), and then follows the
minimizer as σ shrinks toward zero (which leads to the original cost function).

The optimality result we derived in [Mobahi and Fisher III, 2015] is a step-
ping stone for developing practical algorithms. Specifically, it suggests using
Gaussian convolution for creating intermediate optimization tasks, but it does
not answer whether the resulted convolution could be computed efficiently or
not. In fact, the answer to this question is problem specific. We have shown
that for some family of functions such as multivariate polynomials, the resulted
convolution can be computed in closed form [Mobahi, 2016]. In this work,

1This happens when the objective function has well-defined Fourier transform. Then the
convolution transform to product in the frequency domain. As the Fourier transform of the
Gaussian is also a Gaussian, the resulted product attenuates higher frequencies.

2

we push that result further and show that, up to very reasonable approxima-
tion, common objective functions arising in deep learning also have a closed
form Gaussian convolution. This is surprising because such objective function
is highly nonlinear; involving a nested form of ill-behaved activation functions
as such sign and ReLU.

By studying deep learning through the diffusion and continuation method,
we discover two interesting observations. First, from theoretical viewpoint, some
common and successful techniques to improve learning, such as noise injection
[Hinton et al., 2012b], layerwise pretraining [Bengio et al., 2007], and annealed
learning rate, automatically emerge from the diffused cost function. There-
fore, this theory unifies some seemingly isolated techniques. Second, from a
practical viewpoint, training deep networks by this method seems to result in
a significant speed up compared to stochastic gradient descent (SGD) method.
The preliminary results presented in this draft indicate up to 25% reduction
in training time for learning RNNs.

This article is organized as follows. We first show that the diffused form of
common activation functions has a closed form expression. After that, when we
compute the diffused cost function for training a deep network, where the result
depends on the diffused activation function introduced earlier. We discuss some
properties of the diffused cost function and make connections to noise injection
[Hinton et al., 2012b], layerwise pretraining [Bengio et al., 2007], and annealed
learning rate. We conclude this article by presenting a preliminary evaluation
of the proposed algorithm against SGD.

2 Optimization by Diffusion and Continuation

The optimality of using the diffusion equation for creating intermediate opti-
mization problems is studied in our earlier work [Mobahi and Fisher III, 2015].
Briefly, diffusion is a relaxation of a time evolution process that converts an ob-
jective function to its convex envelope2 [Vese, 1999]. The latter is a nonlinear
partial differential equation that lacks a closed form, but once linearized, the
heat equation (a special type of diffusion equation) arises,

d

dt
g(x, t) = ∆xg(x, t) , s.t. g(x, 0) = f(x) . (1)

Here f is the original objective function, and g is its time evolution according
to the heat equation. Here ∆x is the Laplace operator w.r.t. the variable x.
Diffusion is a powerful tool for simplifying the objective function. For example,
the number of local minima in the Ackley’s function [Ackley, 1987] is exponential
in the number of variables. By diffusing this function via the heat equation,
however, all local minima eventually disappear (see Figure 2).

2The convex envelope of a function is an interesting choice (versus any other convex func-
tion) for the initial simplified version of it for various reasons. 1. Any global minimizer of the
cost function is also a global minimizer of its convex envelope. 2. it provides the tightest con-
vex underestimator of the cost function. 3. Geometrically, tt is the function whose epigraph
coincides with the convex hull of the epigraph of the cost function.

3

Figure 2: Diffusion of Ackley’s function with time progressing from the left to
the right plot.

Algorithm 1 Algorithm for Optimization by Diffusion and Continuation

1: Input: f : X → R, Sequence ∞ > σ0 > σ1 > · · · > σm = 0.
2: x0 = global minimizer of g(x;σ0).
3: for k = 1 to m do
4: xk = Local minimizer of g(x;σk), initialized at xk−1.
5: end for
6: Output: xm

Going from the nonlinear PDE of [Vese, 1999] to the (linear) heat equation
is computationally of great value. That is, the solution to the heat equation is
known analytically [Widder, 1975]: it is the Gaussian convolution of the original
(objective) function and the bandwidth parameter of the Gaussian determines
the time point at which the diffused function is evaluated. Diffusion combined
with the path following lead to a simple optimization algorithm listed in Algo-
rithm 1.

3 Diffused Activation Functions

Let kσ(w) be the Gaussian kernel with zero mean and covariance σ2I. The
diffused activation functions listed in Table 3 are simply obtained3 by convolving
them with the Gaussian kσ. Similar forms of smoothed ReLU and sign are used
by [Zhang et al., 2015] with a fixed σ = 1√

2π
, for a proving learnability of deep

networks.

3All listed diffused functions are exact except tanh. Unfortunately, tanh ?kσ does not

have a closed form. We leverage the approximation tanh(y) ≈ erf(
√
π
2
y). Notice that we

know the exact diffused form for erf as listed in the table. Thus, by convolving both sides

with kσ we obtain [tanh ?kσ](y) ≈ erf(
√
π
2

y√
1+π

2
σ2

). The R.H.S. of the latter form can

be again approximated via tanh(y) ≈ erf(
√
π
2
y). This leads to the approximate identity

[tanh ?kσ](y) ≈ tanh(y√
1+π

2
σ2

).

4

Name Original Diffused
Sign sign(x) erf(x√

2σ
)

Error erf(ax) erf(ax√
1+2(aσ)2

)

Tanh tanh(x) tanh(x√
1+π

2 σ
2
)

ReLU max(0, x) σ√
2π
e−

x2

2σ2 + 1
2x
(
1 + erf(x√

2σ
)
)

Table 1: List of some functions and their diffused form by the heat kernel.

Sign Tanh ReLU

Plot of smoothed responses of activation functions within x ∈ [−2, 2]. Blue is the original

function. Red, green, and orange show the suggested functions with σred < σgrn < σorn.

4 Training RNNs

4.1 RNN Cost Function

Given a set of S training sequences, each of length T . Denote the s’th se-
quence by 〈(xs,1,ys,1), . . . , (xs,T ,ys,T)〉. Given some discrepancy function d.
The problem of sequence learning by an RNN can be stated as below,

min
a,b,m0,U ,V ,W

S∑
s=1

T∑
t=1

d(h(ns,t)− ys,t) (2)

s.t. ns,t ,W h(ms,t) + b (3)

ms,t , Uxs,t + V h(ms,t−1) + a , (4)

where a, b, m0, W , U and V are the weights of the network. Denote the
dimension of xs,t and ys,t be X and Y respectively. Also denote the number of
neurons by H. Then, a is H × 1, b is Y × 1, m0 is H × 1, W is Y ×H, U is
H ×X, and V is H ×H. Obviously ns,t is Y × 1 and ms,t is H × 1.

Suppose ms,0 = m0, i.e. the initial state is independent of the training
sequence. Here h is some activation function. When the argument of h is a
vector, the result will be a vector of the same size, whose entries consists of the
element-wise application of h.

5

Figure 3: A Recurrent Neural Network. Figure is adapted with permission from
[Martens and Sutskever, 2011] and slightly modified.

Treating each ns,t and ms,t as independent variables and forcing their
definition (equality) by some penalty function, we arrive at the following un-
constrained problem,

min
a,b,m0,U ,V ,W ,M ,N

S∑
s=1

T∑
t=1

d(h(ns,t)− ys,t)

+ λ
(
p
(
W h(ms,t) + b− ns,t

)
+ p

(
Uxt + V h(ms,t−1) + a−ms,t

))
,

where the notation N and M are matrices whose columns are comprised of
ns,t and ms,t for all choices of (s, t).

Letting, d(e) , ‖e‖2 (mean squared error) and p(e) , ‖e‖2 (quadratic
penalty), the problem can be expressed as below,

min
a,b,m0,U ,V ,W ,M ,N

S∑
s=1

T∑
t=1

‖h(ns,t)− ys,t‖2

+ λ
(
‖W h(ms,t) + b− ns,t‖2 + ‖Uxs,t + V h(ms,t−1) + a−ms,t‖2

)
.

Here λ determines the weight of the penalty for constraint violation.

4.2 Diffused Cost

When the objective function is evolved according to the diffusion equation (1),
the diffused objective has a closed form expression. Specifically, it is obtained
by the convolution of the original objective with the Gaussian kernel. This can
be more formally expressed as the following. Arrange all optimization variables
into a long vector w, i.e. w , vec(a, b,m0,U ,V ,W ,M ,N). Hence, the cost
function can be denoted by f(w). The diffused cost function g is obtained by:

g(w;σ) , [f ? kσ](w) . (5)

6

After computing this convolution, the variables in w can be replaced by their
original names according to the arrangements made in w , vec(a, b,m0,U ,V ,W ,M ,N).

Denote the diffused form of the activation function h by h̃σ, that is h̃σ(x) ,

[h ? kσ](x). Similarly, define h̃2σ(x) , [h2 ? kσ](x). The diffused cost w.r.t.
optimization variables has the following closed form (see Appendix A):

S∑
s=1

(
T∑
t=1

‖h̃σ(ns,t)− ys,t‖2 + ‖
√
h̃2σ(ns,t)‖2 − ‖h̃σ(ns,t)‖2

+ λ
(
‖W h̃σ(ms,t) + b− ns,t‖2 + ‖Uxs,t + V h̃σ(ms,t−1) + a−ms,t‖2

+‖W diag(

√
h̃2σ(ms,t))‖2F − ‖W diag(h̃σ(ms,t))‖2F + σ2Y ‖h̃σ(ms,t)‖2

)
+λ

T−1∑
t=0

‖V diag(

√
h̃2σ(ms,t))‖2F − ‖V diag(h̃σ(ms,t))‖2F + σ2H ‖h̃σ(ms,t)‖2

)
.

Here ‖ . ‖F denotes the Frobenius norm of a matrix.

4.3 Approximate Diffused Cost

Ideal solution requires S × T auxiliary variables for ns,t and ms,t. This is not
practical as often S is large. Thus, we resort to an approximate formulation
here. Instead of solving for the optimal ns,t and ms,t, we fix them as below,

ns,t ,W h̃σ(ms,t) + b , ms,t , Uxs,t + V h̃σ(ms,t−1) + a . (6)

This allows us to drop ns,t and ms,t from the optimization variables. We
computing the gradient, however, derivatives involving ns,t and ms,t must be
handled carefully to recognize the dependency stated in (6). The simplified
optimization problem is as below,

min
a,b,m0,U ,V ,W

S∑
s=1

(
T∑
t=1

‖h̃σ(ns,t)− ys,t‖2 + ‖
√
h̃2σ(ns,t)‖2 − ‖h̃σ(ns,t)‖2

+ λ
(
‖W diag(

√
h̃2σ(ms,t))‖2F − ‖W diag(h̃σ(ms,t))‖2F + σ2Y ‖h̃σ(ms,t)‖2

)
+λ

T−1∑
t=0

‖V diag(

√
h̃2σ(ms,t))‖2F − ‖V diag(h̃σ(ms,t))‖2F + σ2H ‖h̃σ(ms,t)‖2

)
s.t. ns,t ,W h̃σ(ms,t) + b , ms,t , Uxs,t + V h̃σ(ms,t−1) + a .

The gradient of this cost w.r.t. learning parameters are provided in Appendix
B.

7

5 Properties of Diffused Cost

The optimization problem that arises from training a deep network is often
challenging. Therefore, local optimization methods (e.g., SGD) are used with
a combination of some helping techniques. Although these techniques seem
disconnected from each other, some of them emerge automatically from the
diffused cost function. Therefore, these techniques might be unified under one
simple theory. These methods and their connection to the diffused cost are
discussed in the following.

5.1 Careful Initialization

Local optimization methods are generally sensitive to initialization when it
comes to nonconvex cost functions. Deep learning is not an exception [Sutskever et al., 2013];
a recent study shows that the performance of deep networks and recurrent net-
works critically depends on initialization [Safran and Shamir, 2015]. In con-
trast, the diffusion algorithm is deterministic and almost independent of ini-
tialization4 for two reasons. First, after enough smoothing the cost function
becomes unimodal, and in case of convexity, will have one global minimum. In
fact, the minimizer of the heavily smoothed function coincides with its center
mass [Mobahi, 2012]. Thus, diffusion provides an interesting deterministic ini-
tialization. Second, the update rules are completely deterministic (unless one
chooses to use SGD instead of GD for local optimization in Algorithm 1) and
no notion of randomness is involved in the updates.

5.2 Annealed Learning Rate

Each iteration of the gradient descent essentially sees the first order Taylor
expansion of the cost function g(x) at the current estimate of the solution
point x0. The linear approximation has good accuracy only within a small
neighborhood of x0, say of radius ρ. Enforcing accuracy by the constraint
‖x− x0‖ ≤ ρ, we arrive at the following problem,

min
x
g(x0) + (x− x0)T∇g(x0) s.t. ‖x− x0‖ ≤ ρ . (7)

Using Lagrange multipliers method, the solution of this optimization turns

out to be x∗ = x0 − ρ ∇g(x0)
‖∇g(x0)‖ .

The radius ρ could be chosen intelligently, e.g., by restricting the tolerated
amount of linearization error. Specifically, in order to ensure ∀x ; ‖x − x0‖ ≤

4Path following process could be sensitive to initialization when it reaches a saddle point.
Due to instability of saddle points, the direction the algorithm takes could be affected even by
small perturbations. Thus, different initializations may end up reaching different solutions.
However, these saddle points often occur due to the symmetry in the problem (either the
original or the diffused) and the chosen direction does not affect the quality of the solution.
This contrasts to gradient descent on a nonconvex objective, where depending on initialization,
very solutions of different quality might be reached.

8

ρ⇒ |g(x0) + (x− x0)T∇g(x0)− g(x)| ≤ ε, we can choose ρ =
√

ε
cf
σ (see Ap-

pendix C for proof). Here cf is some number satisfying cf ≥ 1
2π

∑
j,k ‖

d2f
dxj dxk

‖n
2

,

which obviously exists when the norm is bounded.
Putting the pieces together, the solution of the linearized problem can be

expressed as x∗ = x0 − η σ ∇g(x0)
‖∇g(x0)‖ , where η ,

√
ε
cf

is a constant. This is

essentially a gradient descent update with a specific choice of the step size.
Since σ decays toward zero within the continuation loop, the step size (also
called learning rate) anneals form an initially large value to eventually a small
value.

5.3 Noise Injection

Injection of random noise into the training process can lead to more stable
solutions. This is often crucial in order to obtain satisfactory generalization in
deep learning. The well known dropout is a specific way of noise injection: in
each iteration, it eliminates a random subset of nodes throughout the learning
[Hinton et al., 2012b]. The stochasticity in SGD is another relevant example.
It is known that SGD achieves better generalization compared to a full batch
gradient descent. More recently, it has been shown that adding Gaussian noise to
the computed gradient can significantly improve learning for very deep networks
[Neelakantan et al., 2015]. Although these schemes differ in details, e.g., the
distribution of the noise or how it is applied to the learning process, they share
the same idea of noise injection in learning.

It turns out that the diffused cost function also has this property. In order
to see that, recall the definition of the diffused cost function from (5):

g(w;σ) , [f ? kσ](w) =

∫
W
f(w − t)kσ(t) dt (8)

Thus, the gradient at a point w0 has the following form.

∇g(w0;σ) =

∫
W
∇f(w0 − t)kσ(t) dt (9)

≈ 1

J

J∑
j=1

∇f(w0 − tj) , tj ∼ N (0, σ2I) . (10)

This means if we were to approximate the gradient of the diffused cost by
MCMC method, it would average over a number of noisified gradients. Specif-
ically, the noise would be additive w.r.t. the weights of the network and it
would have a normal distribution with zero mean and variance of σ2. The
noise injection of (10) has also been used by [Bachman et al., 2014] via numer-
ical sampling exactly as in (10). From a higher level perspective, this noise
injection has some similarity to SGD; the latter also averages (over multiple
epochs) the effect of noisified gradients.

A key advantage of using the diffusion framework for noise injection, how-
ever, is that the expected noisified gradient (the integral in (9)) has a closed

9

form expression, while the other schemes are mainly sampling based. This
leads to a huge computational gain for the diffusion method: while other meth-
ods would need a lot of sampling iterations in order to reach a reasonable ap-
proximation to the expected noisified gradient (and the number of these sam-
ples could grow exponentially in the number of weights), the diffusion method
achieves this with almost no computational effort and without any sampling.

5.4 Layerwise Pretraining

We argue that when σ is large, the network only focuses on short range depen-
dencies, and as σ shrinks toward zero, longer range dependencies are gradually
learned. In order to see why this happens, let’s for example inspect the partial
gradient ∇a g, which has the form

∑T
t=1 rtM t (see Appendix B for deriva-

tions and the definition of rt), where M t , I + V diag
(
h̃′(mt−1)

)
M t−1 and

M1 , I. Resolving the recursion in M t leads to,

M t = I + V diag
(
h̃′σ(mt−1)

)
+ V h̃′σ(mt−1)V h̃′σ(mt−2) +

When σ →∞, all the sigmoid-like activation functions listed in (3) become

flat and their gradient vanishes h̃′σ → 0. This implies that by choosing σ large

enough, one can find a small enough ε that satisfies ‖ diag(h̃′σ)‖ ≤ ε. Since the
contribution of each term in the above sum will be at most equal to its matrix
norm, we can derive,

‖M t‖ ≤ ‖I‖+ ε‖V ‖+ (ε‖V ‖)2 + (ε‖V ‖)3 +

when σ is very large, and thus ε is very small, we can ignore all the terms
involving ε, which leaves us with M t ≈ I. As we gradually reduce σ, and
thus increase ε, we can reconsider terms involving smaller exponents, while the
higher order terms still remain negligible. By gradually decreasing σ, M t can be
approximated by I, then, I+V diag

(
h̃′σ(mt−1)

)
, then I+V diag

(
h̃′σ(mt−1)

)
+

V h̃′σ(mt−1)V h̃′σ(mt−2) and so on.
This is conceptually very similar to layerwise pretraining [Bengio et al., 2007],

as the learning in each layer starts from considering only its immediate previous
layer and then gradually switches to the full consideration by considering larger
and larger number of previous layers.

6 Choice of the Activation Function

In order to implement the method, we need to obtain the explicit expressions of

h̃σ and h̃2σ for a given activation function h. For example, suppose we set h(x) =
erf(ax), where a is a parameter that determines the sharpness of the activation

function. Note that lima→∞ erf(ax) = sign(x) and erf(
√
π
2 x) ≈ tanh(x). The

form of h̃σ can be already looked up from Table 3, which is repeated below,

10

Figure 4: Blue and brown curves respectively plot erf2(x) and 1− e− 4
π x

2

. Due
to the strong overlap, the blue curve is barely visible.

h̃(x) = erf(
ax√

1 + 2(aσ)2
) . (11)

In the following, we only focus on h̃2σ. Unfortunately, h̃2σ(x) lacks a closed

form expression. However, observe that erf2(x) ≈ 1− e− 4
π x

2

. This approxima-
tion has a reasonably good accuracy as shown in Figure 4. Using this approxi-
mation, it follows that [erf2(a�) ? kσ](x) ≈ [1− e− 4

π (a�)2kσ](x).

h̃2(x) , [erf2(a�) ? kσ](x)

≈ [1− e− 4
π (a�)2kσ](x)

= 1−
√
π e
− 4a2x2

π+8a2σ2

√
π + 8a2σ2

.

7 Preliminary Results

Here we present a comparison between SGD and the proposed diffusion frame-
work. The hyperparameters in both methods are carefully searched to ensure
a fair comparison. We use erf as the activation function. The task is to learn
adding two numbers, and is adapted from [Martens and Sutskever, 2011]. The
network consists of has 10 hidden units, and it has two inputs and one output.
One of the input units reads a sequence of 10 real numbers, and the other a
sequence of 10 binary numbers. The binary numbers are zero everywhere except
two random locations. The task is to add the values from the first sequence, at
the two locations marked by the second sequence.

We trained the network by 1000 sequences, and generalization is computed
from a test set of 100 sequences. The result is shown in the plots. The horizontal
axis shows the generalization error, and the vertical axis shows how many
epochs it takes to reach that generalization error. For example, with 50 batches
of size 50 samples, in order to reach around error of 0.02, SGD (blue) needs about
90 epochs, while diffusion methods (red) needs about 20 epochs.

11

Figure 5: Learning to add by RNNs. Figure adapted with permission from
[Martens and Sutskever, 2011].

Figure 6: Experiments with mini batches of size 10 (left) and 50 (right).

8 Related Works & Future Directions

This work specifically studies the use of the diffusion equation for optimizing
the objective function in deep learning. However, there is a growing number
of techniques by others that propose new algorithms for deep learning. Using
tensor decomposition techniques, [Janzamin et al., 2015] offers new algorithms
for deep learning with performance guarantee. [Hazan et al., 2015] provides
a conceptual similar algorithm to ours. However, instead of computing the
convolution analytically, the latter work relies on numerical sampling. It can
guarantee reaching the global minimum for certain scenarios.

This work relies on smoothing the objective function by convolving it with
the Gaussian kernel. We have previously shown that this particular form of
smoothing is optimal in a certain sense, by relating Gaussian convolution to a
relaxation of the convex envelope. Although connection to the convex envelope
is meaningful in the context of nonconvex objective functions, there are side
benefits in smoothing even when the objective function is convex. For example,
smoothing a nonsmooth convex objective function by convolution can improve
the convergence rate of stochastic optimization algorithms [Duchi et al., 2012].

As discussed in Section 5.3, smoothing can be considered as means to in-
ject noise into the training process. The idea of noise injection is already used
in methods such as SGD or dropout [Hinton et al., 2012b] in order to improve

12

learning. The key advantage of our framework for noise injection, however, is
that the noise injection can be achieved in closed form and without need of
sampling. In order words, we can compute the effect of infinitely many noisified
objective functions in closed form. This is similar to the idea of Marginalized
Denoising Autoencoders (mDA) [Chen et al., 2014], where the effect of infinitely
many nosified inputs is marginalized to obtain a closed form expression. How-
ever, mDA limits the form of the injected noise. Specifically, the marginalized
effect is only computable in a linear reconstruction setup (nonlinearity is ap-
plied only after computation of the marginalized reconstruction). In addition,
mDA performs noise injection layer by layer in a greedy fashion. In contrast,
our framework is able to compute closed form expression for the entire deep
network and allowing full nonconvexity of the associated optimization, up to
reasonable approximation.

Diffusion equation provides an approximate evolution toward the convex
envelope. Consequently, it is not perfect: if global minimum is very narrow, dif-
fusion can miss that minima in favor of a wider minimum whose value is slightly
larger than the narrow global minimum (see Figure 7). This may seem a disad-
vantage at the first glance. However, the wider minima are in fact more stable5,
which could be more desired in practice, e.g. generalizing better. In fact, a
recent analysis has shown that SGD attains better generalization when the ob-
jective function is smoother [Hardt et al., 2015]. Note that in our framework,
initializing the algorithm with larger σ automatically provides a smoother sur-
rogate cost function where unstable minima disappear. Thus, it is more likely
to remain in the basin of attraction of the stable minima. A thorough investi-
gation of how smoothing the cost function in the diffusion setting may improve
the generalization performance is a direction for future research.

A closely related work to ours is Annealed Gradient Descent [Pan and Jiang, 2015],
where the objective landscape is also initially approximated by a smoother func-
tion and is gradually transformed to the original one. However, the unlike this
work where Gaussian smoothing is theoretically motivated for nonconvex opti-
mization [Mobahi and Fisher III, 2015], in [Pan and Jiang, 2015] coarse-to-fine
approximation of the objective function is based on heuristically motivated pro-
cedure. More precisely, the latter uses vector quantization methods in order
to generate a code book by which the coarse cost function is approximated.
Another difference between these two works is that the representation of the
smoothed function in our framework is simpler, as we directly obtain a closed
form expression of the objective function. that is a simpler setup than approx-
imation by codebook generation.

Very recently, the diffusion process has been proposed for learning difficult
probability distributions [Sohl-Dickstein et al., 2015]. In forward time diffusion,
the method converts any complex distribution into a simple distribution, e.g.,
Gaussian. It then learns the reverse-time of this diffusion process to define
a generative model distribution. By sampling from such trained model, the

5By a stable minimum we mean that a small perturbation of the equilibrium resides in the
basin of attraction of the same equilibrium. This is not true if the minimum is too narrow;
slight perturbation may put the gradient decent into a different basin of attraction.

13

Figure 7: Starting from the original function at the bottom, moving upward
the plots correspond to more aggressive smoothing (i.e. larger σ). The origi-
nal function has three wide minima, and a narrow global minimum. Following
the path of the minimizer from top to the bottom, it is obvious that the pro-
cess misses the narrow global minimum and reaches one of the wider minima.
However, among the three wide minima, it finds the lowest one.

authors have achieved inpainting of missing regions in natural images.

9 Acknowledgment

This research is partially funded by Shell Research. Hossein Mobahi is thankful
to John W. Fisher, William T. Freeman, Yann LeCun, and Yoshua Bengio for
comments and discussions and to Peter Bartlett and Fei Sha for suggesting con-
nections to [Duchi et al., 2012, Chen et al., 2014]. Hossein Mobahi is grateful
to Geoffrey Hinton, Marc’Aurelio Ranzato, and Philip Bachman for comments
and Kate Saenko for discussions in earlier phase of this work.

References

[Ackley, 1987] Ackley, D. (1987). A Connectionist Machine for Genetic Hill-
climbing, volume SECS28 of The Kluwer International Series in Engineering
and Computer Science. Kluwer Academic Publishers, Boston. 3

[Bachman et al., 2014] Bachman, P., Alsharif, O., and Precup, D. (2014).
Learning with pseudo-ensembles. In Advances in Neural Information Pro-
cessing Systems 27. 9

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neu-
ral machine translation by jointly learning to align and translate. CoRR,
abs/1409.0473. 1

14

[Bengio et al., 2007] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.
(2007). Greedy layer-wise training of deep networks. In Advances in Neural
Information Processing Systems 19. 1, 3, 10

[Bengio et al., 2009] Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
(2009). Curriculum learning. In ICML. 1

[Chen et al., 2014] Chen, M., Weinberger, K. Q., Sha, F., and Bengio, Y.
(2014). Marginalized denoising auto-encoders for nonlinear representations.
In Proceedings of the 31st International Conference on Machine Learning
(ICML-14), pages 1476–1484. 13, 14

[Dauphin et al., 2014] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K.,
Ganguli, S., and Bengio, Y. (2014). Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. pages 2933–2941. 1

[Duchi et al., 2012] Duchi, J. C., Bartlett, P. L., and Wainwright, M. J. (2012).
Randomized smoothing for stochastic optimization. SIAM Journal on Opti-
mization, 22(2):674–701. 12, 14

[Hardt et al., 2015] Hardt, M., Recht, B., and Singer, Y. (2015). Train
faster, generalize better: Stability of stochastic gradient descent. CoRR,
abs/1509.01240. 13

[Hazan et al., 2015] Hazan, E., Levy, K. Y., and Shalev-Shwartz, S. (2015).
On graduated optimization for stochastic non-convex problems. CoRR,
abs/1503.03712. 12

[Hinton et al., 2012a] Hinton, G. E., Deng, L., Yu, D., Dahl, G. E., Mohamed,
A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., and
Kingsbury, B. (2012a). Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal Process.
Mag., 29(6):82–97. 1

[Hinton et al., 2012b] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. (2012b). Improving neural networks by preventing
co-adaptation of feature detectors. CoRR, abs/1207.0580. 1, 3, 9, 12

[Janzamin et al., 2015] Janzamin, M., Sedghi, H., and Anandkumar, A. (2015).
Generalization bounds for neural networks through tensor factorization.
CoRR, abs/1506.08473. 12

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E.
(2012). Imagenet classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems 25. 1

[Martens and Sutskever, 2011] Martens, J. and Sutskever, I. (2011). Learning
recurrent neural networks with hessian-free optimization. In ICML, pages
1033–1040. Omnipress. 1, 6, 11, 12

15

[Mobahi, 2012] Mobahi, H. (2012). Optimization by Gaussian Smoothing with
Application to Geometric Alignment. PhD thesis, University of Illinois at
Urbana Champaign. 8

[Mobahi, 2016] Mobahi, H. (2016). Closed form for some gaussian convolutions.
CoRR. 2

[Mobahi and Fisher III, 2015] Mobahi, H. and Fisher III, J. W. (2015). On the
Link Between Gaussian Homotopy Continuation and Convex Envelope. 2, 3,
13

[Neelakantan et al., 2015] Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I.,
Kaiser, L., Kurach, K., and Martens, J. (2015). Adding gradient noise im-
proves learning for very deep networks. CoRR, abs/1511.06807. 9

[Pan and Jiang, 2015] Pan, H. and Jiang, H. (2015). Annealed gradient descent
for deep learning. In Proc. of 31th Conference on Uncertainty in Artificial
Intelligence (UAI 2015). 13

[Pascanu et al., 2014] Pascanu, R., Dauphin, Y. N., Ganguli, S., and Bengio,
Y. (2014). On the saddle point problem for non-convex optimization. CoRR,
abs/1405.4604. 1

[Safran and Shamir, 2015] Safran, I. and Shamir, O. (2015). On the quality of
the initial basin in overspecified neural networks. CoRR, abs/1511.04210. 8

[Sohl-Dickstein et al., 2015] Sohl-Dickstein, J., Weiss, E. A., Mah-
eswaranathan, N., and Ganguli, S. (2015). Deep unsupervised learning
using nonequilibrium thermodynamics. CoRR, abs/1503.03585. 13

[Sutskever et al., 2013] Sutskever, I., Martens, J., Dahl, G., and Hinton, G.
(2013). On the importance of initialization and momentum in deep learning.
In Proceedings of the 30th International Conference on Machine Learning
(ICML-13). 1, 8

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Se-
quence to sequence learning with neural networks. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Weinberger, K., editors, Advances
in Neural Information Processing Systems 27, pages 3104–3112. 1

[Vese, 1999] Vese, L. (1999). A method to convexify functions via curve evolu-
tion. Commun. Partial Differ. Equations, 24(9-10):1573–1591. 3, 4

[Widder, 1975] Widder, D. V. (1975). The Heat Equation. Academic Press. 4

[Zhang et al., 2015] Zhang, Y., Lee, J. D., and Jordan, M. I. (2015). `1-
regularized neural networks are improperly learnable in polynomial time.
CoRR, abs/1510.03528. 4

16

17

Appendices

A Diffused RNN Training Cost

Diffusing the cost function w.r.t. a, b,U ,V ,W yields6,

T∑
t=1

‖h(nt)− yt‖2 (12)

+ λ
(
‖W h(mt) + b− nt‖2 + ‖Uxt + V h(mt−1) + a−mt‖2 (13)

+σ2Y (1 + ‖h(mt)‖2) + σ2H(1 + ‖xt‖2 + ‖h(mt−1)‖2)
)
. (14)

Smoothing w.r.t. mt and nt leads7 to,

T∑
t=1

‖h̃(nt)− yt‖2 + ‖
√
h̃2(nt)‖2 − ‖h̃(nt)‖2 (15)

+ λ
(
‖W h̃(mt) + b− nt‖2 + ‖Uxt + V h̃(mt−1) + a−mt‖2 (16)

+σ2Y (2 + ‖h̃(mt)‖2) + σ2H(2 + ‖xt‖2 + ‖h̃(mt−1)‖2) (17)

+‖W diag(

√
h̃2(mt))‖2F − ‖W diag(h̃(mt))‖2F (18)

+‖V diag(

√
h̃2(mt−1))‖2F − ‖V diag(h̃(mt−1))‖2F

)
. (19)

Discarding constants terms, i.e. those that do not depend on neither of
optimization variables a, b,U ,V ,W ,M ,N , simplifies the diffused cost to the
following,

T∑
t=1

‖h̃(nt)− yt‖2 + ‖
√
h̃2(nt)‖2 − ‖h̃(nt)‖2 (20)

+ λ
(
‖W h̃(mt) + b− nt‖2 + ‖Uxt + V h̃(mt−1) + a−mt‖2 (21)

+‖W diag(

√
h̃2(mt))‖2F − ‖W diag(h̃(mt))‖2F + σ2Y ‖h̃(mt)‖2

)
(22)

+λ

T−1∑
t=0

‖V diag(

√
h̃2(mt))‖2F − ‖V diag(h̃(mt))‖2F + σ2H ‖h̃(mt)‖2 . (23)

6We use the fact that convolution of (xTy)2 with kσ(x) is (xTy)2 + σ2‖y‖2.
7We use the identity that convolution of ‖Ah(x) + b‖2 with kσ(x) is equal to ‖Ah̃(x) +

b‖2 + ‖A diag(
√
h̃2(x))‖2F − ‖A diag(h̃(x))‖2F .

18

B Gradient of Diffused Cost

Below � denotes the element-wise product of two matrices.

dg

db
=

∑
t

∂nt
∂b

∂g

∂nt
(24)

=
∑
t

I
(

2h̃′(nt)� (h̃(nt)− yt) + h̃2
′
(nt)− 2h̃′(nt)� h̃(nt)

)
(25)

=
∑
t

(
h̃2
′
(nt)− 2h̃′(nt)� yt

)
. (26)

dg

dW
=

∑
t

∂g

∂W
+
∑
d

∂g

∂n
(d)
t

∂n
(d)
t

∂W
(27)

= 2λW diag
(T∑
t=1

(
h̃2(mt) − h̃2(mt)

))
(28)

+

T∑
t=1

(
h̃2
′
(nt)− 2h̃′(nt)� yt

)
h̃(mt)

T (29)

rt ,
(
h̃2
′
(nt)− 2h̃′(nt)� yt

)T (
W diag(h̃′(mt))

)
+λ
((
h̃2
′
(mt)− 2h̃′(mt)� h̃(mt)

)T � (1T (W �W) + It6=T1T (V � V)
)

+2σ2(It 6=TH + Y)(h̃′(mt)� h̃(mt))
T
)
. (30)

(
dg

da
)T =

T∑
t=1

(
dg

dmt
)T

dmt

da
(31)

=

T∑
t=1

((
∂g

∂nt
)T

∂nt
∂mt

+ (
∂g

∂mt
)T)

dmt

da
(32)

=

T∑
t=1

rtM t (33)

M t ,
dmt

da
=
∂mt

∂a
+

∂mt

∂mt−1
M t−1 = I + V diag

(
h̃′(mt−1)

)
M t−1(34)

M1 , I . (35)

19

dg

dV
=

∂g

∂V
+

T∑
t=1

∑
d

dg

dm
(d)
t

dm
(d)
t

dV
(36)

=
∂g

∂V
+

T∑
t=1

∑
d

((
∂g

∂nt
)T

∂nt
∂mt

+ (
∂g

∂mt
)T)(d)

dm
(d)
t

dV
(37)

= 2λV diag
(T−1∑
t=0

(
h̃2(mt) − h̃2(mt)

))
+

T∑
t=1

∑
d

r
(d)
t M

(d)
t (38)

M
(d)
t ,

dm
(d)
t

dV
(39)

=
∂m

(d)
t

∂V
+
∑
d′

∂m
(d)
t

∂m
(d′)
t−1

M
(d′)
t−1 (40)

= ”Zero matrix except d’th row set to h̃T (mt−1)” +
∑
d′

vd,d′ h̃
′(m

(d′)
t−1)M

(d′)
t−1(41)

M
(d)
1 , ”Zero matrix except d’th row set to h̃T (m0)” . (42)

dg

dU
=

∂g

∂U
+

T∑
t=1

∑
d

dg

dm
(d)
t

dm
(d)
t

dU
(43)

=
∂g

∂U
+

T∑
t=1

∑
d

((
∂g

∂nt
)T

∂nt
∂mt

+ (
∂g

∂mt
)T)(d)

dm
(d)
t

dU
(44)

= 0 +

T∑
t=1

∑
d

r
(d)
t

(
P

(d)
t

)
(45)

P
(d)
t ,

dm
(d)
t

dU
(46)

=
∂m

(d)
t

∂U
+
∑
d′

∂m
(d)
t

∂m
(d′)
t−1

P
(d′)
t−1 (47)

= ”Zero matrix except d’th row set to xTt ” +
∑
d′

vd,d′ h̃
′(m

(d′)
t−1)P

(d′)
t−1(48)

P
(d)
1 , ”Zero matrix except d’th row set to xT1 ” . (49)

20

(
dg

dm0
)T = (

∂g

∂m0
)T +

T∑
t=1

(
dg

dmt
)T

dmt

dm0
(50)

= (
∂g

∂m0
)T +

T∑
t=1

((
∂g

∂nt
)T

∂nt
∂mt

+ (
∂g

∂mt
)T)

dmt

dm0
(51)

= λ
((
h̃2
′
(m0)− 2h̃′(m0)� h̃(m0)

)T � (1T (V � V)
)

(52)

+2Hσ2(h̃′(m0)� h̃(m0))T
)

(53)

+

T∑
t=1

rt

(
Qt

)
(54)

Qt ,
dmt

dm0
=

∂mt

∂mt−1
Qt−1 = V diag

(
h̃′(mt−1)

)
Qt−1 (55)

Q0 , I . (56)

C Bounding Linearization Error

Proposition 1 Assume n ≥ 5, cf ≥ 1
2π

∑
j,k ‖

d2f
dxj dxk

‖n
2

and ρ2cf
1
σ2 ≤ ε. Then

if follows that ∀x ; ‖x− x0‖ ≤ ρ⇒ |g(x0) + (x− x0)T∇g(x0)− g(x)| ≤ ε.

Proof First we claim that 1
2Λg ≤ 1

2πσ2

∑
j,k ‖

d2f
dxj dxk

‖n
2

. We prove this claim

as below,

21

1

2
Λg ≤ max

x
‖∇2g(x)‖F (57)

≤ max
x

∑
j,k

| d2g

dxj dxk
(x)| (58)

≤
∑
j,k

max
x
| d2g

dxj dxk
(x)| (59)

=
∑
j,k

‖ d2g

dxj dxk
‖∞ (60)

=
∑
j,k

‖ d2f

dxj dxk
? kσ‖∞ (61)

≤
∑
j,k

‖ d2f

dxj dxk
‖ p
p−1
‖kσ‖p (62)

≤
(∑
j,k

‖ d2f

dxj dxk
‖ p
p−1

)(∫
X
kpσ(x) dx

) 1
p

(63)

≤
(∑
j,k

‖ d2f

dxj dxk
‖ p
p−1

)((2π)(1−p)σ2(1−p)

p

) n
4p

(64)

=
(∑
j,k

‖ d2f

dxj dxk
‖ p
p−1

)((2π)(1−p)

p

) n
4p

σ
n(1−p)

2p , (65)

where (62) is due to Young’s convolution inequality and holds for any p ≥ 1.
In particular, when n ≥ 5, by setting p = n

n−4 , we obtain

1

2
Λg ≤

(∑
j,k

‖ d2f

dxj dxk
‖ p
p−1

)((2π)(1−p)

p

) n
4p

σ
n(1−p)

2p (66)

1

2
Λg =

(∑
j,k

‖ d2f

dxj dxk
‖n

2

) 1

2πσ2

(
1− 4

n

)n
4−1

(67)

1

2
Λg ≤

(∑
j,k

‖ d2f

dxj dxk
‖n

2

) 1

2πσ2
. (68)

This proves our earlier claim that 1
2Λg ≤ 1

2πσ2

∑
j,k ‖

d2f
dxj dxk

‖n
2

. Combining

this with the assumption 1
2π

∑
j,k ‖

d2f
dxj dxk

‖n
2
≤ cf , it follows that 1

2Λg ≤ cf
1
σ2 ,

which implies 1
2ρ

2Λg ≤ ρ2cf
1
σ2 . The latter combined with the assumption

ρ2cf
1
σ2 ≤ ε yields 1

2ρ
2Λg ≤ ε. Combining this with the Taylor’s remainder theo-

rem |g(x0)+(x−x0)T∇g(x0)−g(x)| ≤ 1
2ρ

2Λg gives |g(x0)+(x−x0)T∇g(x0)−
g(x)| ≤ ε.

�

22

