
Swarm Contours: A Fast Self-Organization
Approach for Snake Initialization

HOSSEIN MOBAHI,1,2,3 MAJID NILI AHMADABADI,1,2 AND BABAK NADJAR ARAABI1,2

1Control and Intelligent Processing Center of Excellence, Department of Electrical and Computer
Engineering, University of Tehran, Tehran 14395, Iran; 2School of Cognitive Sciences, Institute for Studies in
Theoretical Physics and Mathematics, Tehran 19395, Iran; 3Department of Computer Science, University of

Illinois at Urbana Champaign, Urbana, Illinois 61801

This paper was submitted as an invited paper resulting from the “Understanding Complex Systems”
conference held at the University of Illinois–Urbana Champaign, May 2005

Received October 17, 2005; revised April 5, 2006; accepted May 2, 2006

A major obstacle in real-time performance of a visual tracking system is its initialization phase. Inspired by
social behavior in fish and ant groups, a fast self-organization approach to active-contour initialization is
proposed. Contours are emerged during two separate phases of aggregation and self-assembly. Aggregation is
achieved by a superposition of simpler behaviors, hunting, avoidance, and opportunism. Self-assembly, which
constitutes the explicit contour formation, occurs by mating behavior when the swarm becomes quite stable.
Experiments indicate that the proposed method outperforms exhaustive image search for finding contours in
high resolutions. © 2006 Wiley Periodicals, Inc. Complexity 12: 41–52, 2006

Key Words: image processing; active contours; self-organization; swarm intelligence

1. INTRODUCTION

V isual tracking constitutes a basic but essential problem in
computer vision and image processing. In fact, many
popular applications of computer vision such as motion

estimation, surveillance, video database management, vision-
based robot control, augmented reality environments, and
high-resolution satellite depend on visual tracking. Basically,
in visual tracking one is interested in estimation of inter-frame
correspondence of items within an image sequence.

For the sake of tractability, often a compact parametric
model is used to encode the shape of the object being

tracked. A popular representation scheme is to overlay a

bounding box around the object of interest [1]. Depending

on the shape of the object, a circle, oval, and parabola, or a

combination are other alternatives [2]. However, for com-

plex-shaped objects, however, a contour model should be

used. A popular contour model in image processing is an

active contour or snake [3], which is also the focus of this

work. A snake is a contour approximated by a finite number

of control points and is able to refine its shape iteratively

toward the desired shape.

Once we decided about the representation, the second

problem is establishing inter-frame correspondence for the

object being tracked. A common approach for estimating

such correspondence is Bayesian sequential estimation [4].Hossein Mobahi, E-mail: hmobahi2@uiuc.edu

© 2006 Wiley Periodicals, Inc., Vol. 12, No. 1 C O M P L E X I T Y 41
DOI 10.1002/cplx.20147



This method recursively estimates a time-evolving distribu-
tion that describes the object state conditional on all obser-
vations seen so far. Using such estimation from past obser-
vations, the tracker may predict the next state of the object,
which reduces search space of a feature detector accord-
ingly. The reduction of search space not only improves
robustness of a tracker by eliminating false positives, but
also speeds up the detection process.

Nevertheless, initially there are not enough frames to
launch such a recursive estimator. Consequently, no pre-
diction can be made during initialization and the whole
image must be searched exhaustively for detecting objects
of interest, which is very time-consuming. Worse is that, for
relatively long video streams the tracker may have to be
reinitialized repeatedly, as the accumulated tracking error
increases such that the tracking confidence drops below a
threshold [5]. Therefore, initialization is a significant speed
bottleneck in real-time visual tracking. The initial exhaus-
tive search checks all pixels in the image for certain features,
e.g., edge or color, to localize the object and fit it to the given
representation.

Regardless of how fast the feature extraction operators
are, the exhaustive search of an image becomes computa-
tionally expensive as the image size grows. This fact has
limited the practical resolution of images used in real-time
video processing, particularly for color videos [6]. A possible
solution to this problem would be performing a partial
exploration of the image while using the same simple fea-
ture detectors and yet achieving a satisfactory localization.
However, we would benefit only when the partial explora-
tion algorithm is not computationally expensive itself.

In this article, we propose an efficient algorithm for
localizing objects in a digital image by exploring only a small
fraction of the image. Because each object contour is rep-
resented by a set of discrete points, this contour can directly
be considered as the initial condition of a snake. The pro-
posed method automatically obtains the number of re-
quired snakes as well as the appropriate number of the
control points. Experiments confirm that this method works
faster than exhaustive search, without resorting to special
hardware or parallel processing facility.

Our proposed idea is mainly inspired by the social be-
havior arising in fish schools and ant colonies. In the past
two decades, engineering has enjoyed a substantial effort
for transforming models of social behavior of insects and
animals into useful optimization or control algorithms.
These algorithms are usually referred to as swarm intelli-
gence [7]. Using distributed and simple multiagent methods,
these techniques generally achieve reasonable solutions of
hard problems in a practical amount of time. For example,
optimization algorithms inspired by models of cooperative
food retrieval in ants have been unexpectedly successful in
real-world problems such as telecommunication [8] and
vehicle routing [9].

This article is organized as follows. In section two, re-
lated works in the literature of multiagent and swarm tech-
niques for image processing are reviewed. The essentials of
active contours are summarized in section three. Section
four focuses on self-organization of patterns in social ani-
mals. Specifically this section brings out properties of ag-
gregation and self-assembly which are useful in our model.
Mathematical models for the behaviors of interest are illus-
trated in section five. Section six evaluates the proposed
algorithm using real images taken in different resolutions.
Finally, section seven contains our conclusion and possible
paths for future works on the proposed algorithm.

2. RELATED WORKS
Swarm intelligence is a special case of systems composed of
several agents capable of reaching goals that are difficult to
achieve by an individual system. Here we will first provide a
summary of the literature on recent multiagent works for
solving vision problems. Then we will clarify its difference
with swarm intelligence and narrow down our survey to
swarm approaches. Finally, we will clarify how these works
differ from our proposed algorithm.

A part of these works can be criticized for merely replac-
ing traditional algorithms by multiagent systems without
any major and explicit improvement. In these researches,
the multiagent solution seems just as a sophisticated met-
aphor without providing better results than traditional tech-
niques [10,11]. However, some studies have applied mul-
tiagent ideas in order to achieve practically distinctive
results. The goal of these efforts are improving precision
and robustness or reducing the processing time. Recent
studies in robustness direction have generally focused on
providing the agents with knowledge and deliberative capa-
bilities [12,13]. In these works, low-level processing is still
carried out by traditional algorithms.

On the other side are applications of multiagent ap-
proach for reducing processing time. Because of the distrib-
uted and asynchronous nature of multiagent systems, par-
allel processing is an apparent answer for speeding up
image processing. For example, Yanai [14] proposed a mul-
tiagent architecture implemented on a highly parallel com-
puter with 16 processing elements, each of which was allo-
cated to a separate agent. Besides this trivial application,
there were attempts with the same goal but using uni-
processor platforms. For instance, Zhou et al. [15] intro-
duced an agent-based architecture that uses a utility opti-
mization technique to guarantee that important vision tasks
are fulfilled even under resource (e.g., CPU and memory)
constraints.

In all of the mentioned works, low-level image process-
ing was based on traditional algorithms. There is another
research avenue in applications of multiagent systems in
image processing that explores their capacity for accom-
plishing low-level operations. Before reviewing these works,

42 C O M P L E X I T Y © 2006 Wiley Periodicals, Inc.
DOI 10.1002/cplx



we first explain what characteristics agents in a swarm pos-
sess. In contrast to the discussed multiagent systems that
were based on small-size population of complicated agents,
a swarm consists of simple reactive agents in a relatively
large population. These agents usually interact through a
shared and quite large environment, e.g., the image. Limited
percept-motor capabilities of agents are generally ingredi-
ents of swarm simplification that makes it suitable for de-
velopment of local functions such as low-level image pro-
cessing.

In the realm of swarm methods, particle swarm optimi-
zation (PSO) has recently raised a lot of interest in image
processing. The PSO idea has been applied to different areas
of computer vision including object recognition [16] and
image clustering [17]. In a PSO, each individual encodes the
whole solution of the problem. Therefore, when the search
space is very large (as in image processing) execution of a
PSO is lengthy. In contrast, we prefer the solution to be
distributed among its members. This might reduce the com-
plexity of the problem that each agent has to solve individ-
ually and therefore decrease the processing time. In the
following, we only focus on swarm methods that utilize a
distributed solution.

Rodin et al. [18] present a system in which the agents
move within the image and modify it gradually. There is no
direct communication among the agents; rather they influ-
ence each other by modifying the shared environment (im-
age). Their system is applied to detection of concentric
striate, like the year rings of trees, with darkening and light-
ing agents. The authors claim that their result is hard to
achieve by traditional global feature detection methods.

Germond et al. [19] propose an agent-based segmenta-
tion of MRI brain scans in dark and white matters. Agents
can resolve conflicts on a first-come, first-served basis with-
out any negotiation. Spinu et al. [20] introduced a system
with low-level agents that produce partial data-driven,
edge-based segmentations of medical images that are
merged into a global result. The agents have only indirect
influence on the global result and have no possibility to
communicate with the other agents operating on the image.

Liu and Tang [21] used a swarm system to detect homo-
geneous regions and applied it to brain scan images. Each
agent can test pixels around it in a circular neighborhood.
Neighboring pixels are evaluated in terms of simple statis-
tics such as the variance or the mean of gray level. If an
agent finds that its neighborhood satisfies the conditions to
be a region, the central pixel will be marked and new agents
will be generated in this neighborhood; otherwise the agent
will exhibit a diffusion behavior by moving to a new location
within its neighboring region. When the age of an agent
exceeds its life span, the agent will vanish. Also, when the
activity of agents drops, the algorithm is stopped.

Their method is well adapted to brain scan images, be-
cause regions characteristics are regular for tumors, sane

parts, etc. The authors state that their approach is different
from conventional methods because the proposed agents
do not need to perform an exhaustive search on the image.
However, there is no comparative report on execution time
of Liu’s and other swarm approaches with conventional
methods.

In summary, up to our knowledge, no swarm-based im-
age processing system has improved execution time of the
algorithm. In addition, we are not aware of any swarm-
based method for snake initialization. From the works re-
viewed in this section, Liu and Tang’s is the closest to our
proposed model. Yet there are fundamental differences in
between. For instance they represent regions by dense
maps marked by agents. In other words, the number of
agents must be approximately equal to the number of pixels
in the regions of interest. Computational cost of such a
tremendously large population puts any hope for achieving
a fast algorithm in doubt. In this article we will take another
route to specifically achieve an economic swarm-based so-
lution for contour localization. The main stream of our
approach is based on contours approximated by a few con-
trol points, as in snakes. We will show that we could achieve
a computationally more effective method.

3. ACTIVE CONTOURS
Because our work is concentrated on snake initialization,
we briefly review snake definition and its characteristics. An
active contour or snake, first introduced by Kass et al. [3], is
a popular instance of free-form deformable models. A snake
is described parametrically by v(s) � (x(s), y(s)), where x(s)
and y(s) are x,y coordinates along the contour and s � [0,1)
is normalized arc length. The snake model defines the en-
ergy of a contour v(s), the snake energy, Esnake, as follows:

Esnake�v�s�� ��
s�0

1

Einternal�v�s�� � Eimage�v�s��ds, (1)

where Einternal is the internal energy of the contour, impos-
ing continuity and curvature constraints, Eimage is the image
energy constructed to attract the snake to desired feature
points in the image. In nonautomatic applications, human
operator can interactively impose constraints on the con-
tour through another energy term called external energy.

Internal force of an agent characterizes the regulariza-
tion properties of the snake. A widely used formulation for
internal energy is as shown in (2). It is a weighted sum of
elasticity and stiffness derived from the first and the second
derivatives of the contour, respectively,

E internal�s� �
1
2

���s��vs�2 � ��s��vss�s��2�. (2)

© 2006 Wiley Periodicals, Inc. C O M P L E X I T Y 43
DOI 10.1002/cplx



Once the forces are defined, each force creates its own
potential field and then initial contour evolves by minimiz-
ing the overall force in (1) using variational calculus tech-
niques. This evolution of the snake deforms it to conform to
the nearest salient contour, and therefore it is very sensitive
to its initial condition. Consequently, a snake must be ini-
tialized about the item of interest before starting its evolu-
tion. The snake algorithm says nothing about initial location
of a snake, and this must be determined by another process.
However, because of the lack of an efficient method for
snake initialization, generally an exhaustive search is per-
formed over the image to coarsely localize items of interest.
Next, snakes are initialized at those locations to finely ex-
tract their shapes.

4. SWARMS IN NATURE
Social insects and animals like ants, bees, and fish are
generally conceived as simple species with no or a low level
of intelligence. This is because each individual has limited
cognitive ability and limited knowledge about its environ-
ment [22–24]. However, these species collectively exhibit
exciting problem-solving skills. The defining characteristic
of a swarm (a crowd of social insects) is self-organization,
i.e., there is no central planning component and any com-
plex behavior of the swarm emerges from interaction of the
agents’ low level behavior.

These interactions are based on local information, with-
out reference to the global pattern [7,22]. This is how the
behavior of many biological systems, such as colonies of
ants and bees, flocks of birds, and schools of fish is ex-
plained. Animal societies present multiple forms of self-
organization. In the following section, we study two of these
forms that our method takes inspiration from, namely ag-
gregation and self-assembling.

4.1. Aggregation
Aggregation is a crucial social phenomenon because of be-
ing a prerequisite for the development of other forms of
cooperation (including self-assemblage). The patterns of
aggregation are very diverse, ranging from the gathering of
all insects in one site to scattering them among several ones.

We model aggregation behavior according to the ob-
served behavior in a fish school. Schooling means that a
group of fish acts as a single organism than a collection of
individuals. Schooling would appear to follow the rules of a
distributed model, i.e., each individual applies the same set
of simple behavioral rules. More specifically, each fish takes
into account all fish that swim in its neighborhood, paying
more attention to the closest ones and trying to match its
velocity and direction with that of its neighbors [25]. Such
local interactions result in a highly coordinated structure
without any leader to determine the form of this configura-
tion.

The arrangement emerged in a fish school does not have

a fixed geometric form; the structure is loose and it results

from each fish’s applying a few simple behavior rules. This

is similar to an active contour or snake in image processing

where the contour deforms as the result of local interactions

among its control points internally and with the image.

However, unlike fish schools where mating emerges dynam-

ically, in snakes’ neighborhood, connections must be estab-

lished a priori. This constrains the evolution space of a

snake and reduces its exploratory capability and expressiv-

ity. Inspired from animal societies, our model does not force

fixed mates for the agents; mating emerges through agents’

local interactions.

Specifically, there are three basic observations in a fish

school that will constitute our computational model. First,

each fish searches its nearby surroundings to hunt food.

Second, fish maximize the search area by barely remaining

in the sight of one another [25]. Third, if a member of the

school finds food, the other members can take advantage of

its finding [25]. Note that the area that a fish can hunt (small

pieces of) food in is generally much smaller than the area

that it can see other (large) fish. We will take advantage of

this target-dependent acuity of perception in our model as

well.

4.2. Self-Assembling
Self-Assembly is another form of self-organization that is

observed in some social insects such as ants, bees, and

wasps. In self-assembly each member connects to some

other members, creating complex physical structures [26].

For instance, ants of the genus Oecophylla [27] are charac-

terized by their capacity to hang on to each other to form

chains. This allows the bridging of an empty space, for

example, between two branches [28]. Self-assemblages may

have different patterns like bridges, curtains, ladders, rafts,

tunnels, walls, etc. [26]. In this work we are interested in

structures that form a contour. Similar to aggregation, self-

assembly follows local rules and the overall chain is resulted

by self-organization.

5. COMPUTATIONAL MODEL
Inspired by biological observations reviewed in the previous

section, we develop our own creatures adapted for fast

image exploration. Because the system implements a swarm

of agents, it needs the metaphor of an environment in

which the agents are situated. This environment is a set of

selected properties of the image such as edges or high-

intensity regions. In this article, we focus on two-dimen-

sional (2D) environments, i.e., planar images. However, the

proposed model is scalable to 3D images as well, because it

entirely relies on vector operations.

44 C O M P L E X I T Y © 2006 Wiley Periodicals, Inc.
DOI 10.1002/cplx



5.1. Aggregation
Our proposed swarm consists of a set of agents with simple

sensory motor capability. Initially the agents are distributed

over the image plane at random locations. Throughout

swarm evolution, the agents seek for better food resources

by following food trails. Food sources are regions that con-

tain the desired image features, e.g., edges. Formally, food is

a scalar function of the environment that is large where

features of interest exist. This response can be a matter of

degree because the feature quality may differ from location

to location, e.g., edge strength. We constrain the definition

of food to simple local operations, i.e., dependence on a

limited neighborhood, to keep the agents light-weight and

efficient. Fortunately, such a simple definition can be real-

ized by a large class of linear or nonlinear local filters known

in image processing literature.

The behavior of each agent is defined by three state

variables, namely position (X), velocity (V), and energy (E).

In the following we explain these variables individually and

describe how together they form the behavior of agents.

Ultimately, the self-organized structure of the swarm must

reflect the shape of the underlying objects. Therefore, the

density of food should be higher at the boundary of the

desired objects to attract agents there. Nevertheless, it may

happen that some agents get stuck in their way to reach the

boundaries (due to other forces that will be introduced

later). These agents should not participate in contour for-

mation; thus they are eliminated. This is achieved by con-

sidering an energy resource for each agent, which decreases

over time, but increases when the agent meets a food

source. Once the energy reaches zero, the agent dies.

Let us denote the energy of the ith agent by scalar Ei(t).

In the beginning, this energy is initialized to a nonzero

value. As (3) shows, the energy decreases continually over

time, and it resets when the agent moves into a nutritious

region. Here, d is a constant:

Ei�t� � E0 if t � 0 or Food�Xi� � TF

dEi�t�

dt
� � �d; Ei(t) � 0

0; otherwise. (3)

The two other state variables determine the motion of an

agent in the environment. The 2D position and velocity

vectors for the ith agent are denoted by Xi and Vi, respec-

tively. These state variables are influenced by a superposi-

tion of attractive and repulsive force fields emitted from the

environment and the other agents. The agent’s trajectory is

evolved according to a first-order differential equation de-

scribed in (4). Note that these vectors are time-dependent,

but the notation of time is eliminated for the sake of sim-

plicity:

Fi � KaA�Xi� � KhH�Xi� � KoO�Xi�

V̇i � ��sat�Fi� � Vi�

Ẋi � Vi. (4)

The effective force vector Fi of each agent is a weighted sum
of three partial forces corresponding to avoidance, hunting,
and opportunism. This effective force is filtered to reduce
the sensitivity of the swarm to agents’ local fluctuations. The
smoothening degree of the filter is equal to 1 � �. In addi-
tion, for the sake of stability, we limit the maximum velocity
of agents using a saturation function.

A schematic representation of the agents and their forces
are shown in Figure 1. Moreover, Figure 2 shows the effect
of each individual force as well as their superposition in a
face detection task where the edge of skin-toned regions is
considered as food (more details will be presented in sec-
tion 6). In the rest of this section we describe each of the
partial forces separately.

5.1.1. Hunting
In order for agents to survive, they must sense the environ-
ment and seek for food. Similar to insects and animals, our
agents have a limited field of view (FOV), which decreases
the computational load of the algorithm. Indeed, this is the
key point in our method that results in fractional explora-
tion of the image. The regions out of FOV are ignored
completely. Nevertheless, not all areas within the FOV are
the same; the farther a point is, the less it influences the
agent’s behavior. Given a point within the FOV, we formu-
late the magnitude of the hunting force such that it is

FIGURE 1

Forces and hunting. FOV: The agent at the bottom has discovered a
nourishing region. The lower agent uses hunting and avoidance,
whereas two others head according to avoidance and opportunism.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

© 2006 Wiley Periodicals, Inc. C O M P L E X I T Y 45
DOI 10.1002/cplx



proportional to the quality of food at that location and
inversely related to its distance. The total hunting force in
the entire FOV is computed in (5) by integrating all force
vectors that fall inside the FOV. The parameter R defines the
resolution of the image by computing the average of width
and height of the image. This helps to attain scale invariant
constants for the model:

H�Xi� � R �
s�FOV

s
�s�

Food�Xi � s�

�s� ds. (5)

5.1.2. Avoidance
Avoidance behavior pushes the agents toward a uniform
inhabitation around features. Uniform distribution of con-
tour points often results in more accurate reconstruction of
the underlying shape. Each agent finds the location of its
nearest neighbor according to (6). The agent then avoids it
by the repulsive force emitted from the neighbor:

k � Arg Min
j�i

�Xi � Xj�

A�Xi� �
Xi � Xk

�Xi � Xk�2 . (6)

5.1.3. Opportunism
It could take a long time for an agent to discover food

merely on its own exploration. To accelerate food localiza-

tion and contour formation, opportunism behavior is intro-

duced. An opportunistic agent picks the target agent as

which is located in a food-rich location. As mentioned in

4.1, we consider a target-dependent perception for our

agents, meaning the FOV for opportunism (which senses

other agents) should be much larger than for hunting

(which senses food). Here we assume the whole swarm can

potentially take advantage of an agent who has found su-

perior food. Considering such a view field as wide as the

swarm does not affect speed performance as FOV does for

FIGURE 2

The swarm result after 250 iterations with different combination of forces. Skin-tone regions are shown by dark and their edges by the following: top left:
green, original image; top right: superposition of all forces; bottom left: hunting only; bottom middle: avoidance only; and bottom Right: opportunism only.

46 C O M P L E X I T Y © 2006 Wiley Periodicals, Inc.
DOI 10.1002/cplx



hunting. This is because the number of agents is relatively
insignificant against the number of pixels in a digital image.

Agents in less inhabited regions are favored for being a
target so that a uniform distribution of agents is attained.
This latter constraint prevents the swarm to collapse over
the richest agent. Constrained opportunism is formulated in
(7), where agent k is targeted by agent i. The equation
combines looking at others’ food and the preference of
isolated agents through a weight factor W:

k � Arg Max
j�i

�Food(Xj) �
W
R

Min�XP
p�j

� Xj��. (7)

Once the target agent has been specified, its selection cri-
terion is directly used as the magnitude of the opportunism
force. However, variation of food quality in different loca-
tions might alter opportunism to a parasitic behavior. This
happens when agents leave their own food and drift toward
the agent recognized as possessing the highest food. To
avert this trend, opportunism is triggered only when an
agent starves. More precisely, opportunism occurs when the
food quality for an agent is below a threshold F0. The final
opportunism force is formulated in (8):

O�Xi� � � R
Xk � Xi

�Xk � Xi�

� �W
R

Min�XP
p�j

� Xj� � Food(Xk)�; Food(Xi) � F0

0 ; otherwise.
(8)

5.2. Self-Assembly
The discussed behaviors self-organize the swarm from a
random initial condition to a specific order at equilibrium,
which is settling about feature points, e.g., image edges.
Reaching the equilibrium is tested by continually measuring
the activity of the swarm until it drops off a threshold. The
swarm activity, denoted by A, is estimated from the average
magnitude of the agents’ motion as shown in (9), where N is
the number of survived agents at time t:

A�t� �
¥ i�1

N �Ẋi�t��
N

. (9)

Once the swarm reaches equilibrium, the agents become
ready for shaping up contours. This is achieved by connect-
ing adjacent agents to each other in a specific order. Be-
cause we are only interested in simple and closed contours,
each agent must exactly choose two neighbors. An agent
selects its neighbors based on two factors, distance and
angle. For distance, closer agents and for angle, those that

form flatter connections are preferred. These criteria result
in smooth and natural contours.

Formally, given an agent with index i; it first adds its
nearest agent j to its neighbors set as its first neighbor. Next,
any agent whose connection to agent i does not form a
sharp angle with the line segment created between i and j is
potentially considered as the second neighbor. We denote
this set by Si,j. From these candidates, the agent with the
minimal distance to agent i is selected as the second neigh-
bor and is added to i’s neighbors set. Note that the distance
from neighbors should not exceed a certain threshold TD.
Similarly, a threshold TA is used for the cosine of angle
between two connections. The neighbor selection proce-
dure is formally described in the following:

j � Arg Min
p�i

�Xi � Xp�

Si,j � �p 	p � i � j ∧ (�Xp � Xi�

� RTD) ∧ �(Xj � Xi)
T(Xp � Xi)

�Xj � Xi� �Xp � Xi�
� TA�


Si,j � � � 3 k � Arg Min
p�Si,j

�Xi � Xp�. (10)

Occasionally it may happen that neighborhood connections
become asymmetric. This happens when agent i chooses
agent j as its neighbor, whereas i is not chosen as the
neighbor of j. Asymmetry may result in nodes with more
than two neighbors, whereas only two neighbors per agent
are allowed for forming a simple closed contour. Therefore,
a mechanism is required to detect asymmetries and elimi-
nate them.

Our suggested mechanisms is formally shown in Equa-
tion (11), where Na denotes the set of neighbors chosen by
agent a. Briefly explaining the equation, any connection is
checked for asymmetry and once detected, the connection
is removed and a new neighbor is selected for that agent.
Note that the agent is prohibited to reselect previously
removed neighbors. This process is repeated until no more
asymmetry remains in the swarm:

i�Nj ∧ j � Ni 3 Ni � �Ni � �j�� � Arg Min
p�Si,Ni��j�

�Xi � Xp�.

(11)

6. EXPERIMENTAL RESULTS
To evaluate the competence of our proposed method
against exhaustive search, we carried out experiments on
real images for localizing faces, hands, and lips and some
objects that could be distinguished by color. We used 20
color images taken by BenQ 2300 camera in very high res-
olution. These images were down-sampled to different res-

© 2006 Wiley Periodicals, Inc. C O M P L E X I T Y 47
DOI 10.1002/cplx



olutions for the experiment. Feature maps were computed
by a simple color-based filter, followed by gradient compu-
tation. Color classes were modeled by Gaussian distribu-
tions in RBG space as shown in Equation (12):

Food�X� � Food�x, y� � �	x,yexp���f�x, y� � ��T��1

� �f�x, y� � ����
f�x, y� � R 	 G 	 B. (12)

We applied our algorithm to detect faces, hands, and lips.
These parts can be effectively identified by their color
[29,30]. The parameters of these Gaussians were estimated
by maximum-likelihood technique similar to [30]. This is
done as a training phase and prior to execution of the actual
swarm algorithm. For exhaustive search, feature map com-
putation was treated as a preprocessing phase on the whole

image. However, in our method a feature point is only

computed when an agent enters to that point.

For testing our proposed method, initially 35 agents were

distributed over each image at random locations. The time-

evolution of agents on two test images are shown in Figures

3 and 4. Although it was not necessary to create connections

before reaching equilibrium, we did it during the self-orga-

nization process merely to visualize gradual formation of

the contours. In all experiments, the contours could ade-

quately self-organize about regions of interest in at most 250

iterations. The average activity of the swarm computed from

five different images and its threshold value are shown in

Figure 5.

Although the final contours have not perfectly captured

the underlying shapes in Figures 3 and 4, they are more than

what a snake needs for initialization. In fact, these contours

FIGURE 3

Self-organization of contours about face and hand shown in three iteration steps. Left to Right: 1, 175, and 250. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

FIGURE 4

Self-organization of contours about lips shown in three iteration steps. Left to right: 1, 175, and 250. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

48 C O M P L E X I T Y © 2006 Wiley Periodicals, Inc.
DOI 10.1002/cplx



are superior to simple shapes commonly used in computer
vision such as a bounding box, circle, or oval, for snake
initialization [1,2]. Further refinement is achieved by the
snake algorithm itself [3] through minimizing the first-order
derivative of the obtained contour. Figure 6 (left) shows
another face localization example with agents sensitive to
gradient of skin color and the refined contour by snake
algorithm in Figure 6 (right).

The temporal behavior of force magnitudes as well as
their superposition is shown in Figure 7. It is apparent that

after 250 iterations the forces exhibit almost a monotone
behavior, and the swarm activity remains very low after
that. By spending more time on tuning swarm parameters,
even fewer iterations might be possible. Parameter values
used in our experiments are listed in Table 1.

In traditional pixel-by-pixel search, the total number of
scanned pixels is equal to the resolution of the image. How-
ever, in self-organized contours, multiplying number of
agents by iteration steps gives the number of hits that the
image is scanned. Computing the ratio of hits in the two

FIGURE 5

Average activity of the swarm computed from five different test images.

FIGURE 6

Evolution of the skin swarm (left) and the eventual contour (right). Face contour is modified by snake. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

© 2006 Wiley Periodicals, Inc. C O M P L E X I T Y 49
DOI 10.1002/cplx



methods indicates that the self-organized contour method
with the tuned parameters can reduce scanned pixels to
about 13% of the image pixels. This is a remarkable achieve-
ment in image scanning, comparing with exhaustive search
of the image. Because the limited FOV of agents keeps the
computation cost of each iteration light-weight, self-orga-
nized contours outperform exhaustive scan with respect to
the execution time too. This was justified by counting clock
ticks for complete execution of both algorithms.

We measured the number of clock cycles taken by each
method in different image resolutions. Our experimental
platform was an Intel Pentium 4 processor with Linux Op-
erating System (Redhat 9.0). Fortunately, Intel has intro-
duced a specific instruction for reading clock cycles in the
Pentium, namely Read Time-Stamp Counter (RDTSC). The
value of this counter is easily accessible through Machine
Specific Register (MSR) macros in Linux. The measured
clock cycles for the same algorithm with the same configu-

ration differed a bit on each run. Therefore, we executed the
algorithm 10 times for each case and used the average value
for comparison. Results are shown in Table 2.

It can be seen that the time taken by self-organized
contours does not depend on image size. Although self-
organized contours are slower than exhaustive image scan
for low-resolution images (256 � 256), they go faster in high
resolution. This improvement is particularly notable in appli-
cations that require high-resolution images. Note that the
choice of color based filters, gradient filter or normal distribu-
tion for modeling color are application dependent and must
be chosen by user. We utilized these particular features, be-
cause they are effective enough for finding a hand, face, or lip
contour. Figure 8 shows the emergence of the contour in a
completely different test image. Because this is a gray-scale
image, we used intensity instead of color and defined brighter
areas as food. In general, the choice of suitable features is a big
challenge in computer vision. However, given proper features,
our method extracts the shape contour of the desired items
more efficiently than exhaustive search.

7. CONCLUSION
We proposed a novel method for contour initialization in
digital images. Our approach was based on a swarm intel-
ligence framework with agents possessing simple sensory
motor capabilities. The swarm algorithm was inspired from
animals’ behavior, particularly fish schools and ant colo-
nies. Based on some real images, self-organized and
emerged contours were illustrated. The results indicated a
quite good approximation of the underlying shapes in the
image. Experiments revealed that this method outperforms
exhaustive image search in high-resolution images. There-
fore, it can effectively be applied in real-time applications
that deal with large images and where fast processing is
demanded. The key to this fast performance is taking ad-
vantage of the group behavior of the agents, each of which
is a very simple and light-weight local filter.

Similar to other swarm techniques such as PSO [16,17],
our proposed method has several parameters to be set man-
ually before its execution. However, we normalized certain

FIGURE 7

Behavior of forces over time.

TABLE 1

Swarm Parameters

Parameter Value

� 0.1
D 0.0003
E0 1
Ka 0.8
Kh 0.0016
Ko 0.0031
TF 10
TD 0.176
TA 0.7
F0 10
W 2.56
FOV 1

TABLE 2

Clock Cycles Taken by Each Method

Resolution

Clock Cycles

Self-Organized Contours Exhaustive Scan

256 � 256 1428502 93506
640 � 480 1417473 4811850
800 � 600 1433933 7593329
1024 � 1024 1437637 16837443

50 C O M P L E X I T Y © 2006 Wiley Periodicals, Inc.
DOI 10.1002/cplx



equations so that the parameters become as invariant as
possible. Therefore, the same parameter set listed in Table
1, except for TF and F0, can lead to satisfactory results for
different images. For instance, by introducing variable R in
definition of the forces, the overall speed of each agent
becomes proportional to the scale of the image. This results
in the same behavior in different scales. A similar normal-
ization is used in self-assembly phase to measure the rela-
tive distance of the agents. The fact that the proposed values
lead to a convergence in a relatively fixed amount of itera-
tion suggests that the temporal parameters, E0 and D, need
no or little change in different images as well.

The parameters TF and F0 , which adjust the sensitivity of
the feature detector, are the only ones that really need a
deeper tuning. In our particular way for defining food, these
parameters determine the threshold in the image gradient
for extracting edges. Of course, this factor is application
dependent in all computer vision tasks and has to be ob-
tained empirically.

Because of the local nature of the food definition, any
local filter in image processing domain that is suitable for
detection of desired item can be used to represent the food
source. This will not require touching the architecture of the
agents or significantly changing the parameters of our sys-
tem (excluding TF and F0). Such simple filters have success-
fully been used in important applications of computer vi-
sion tasks such as face detection [29,30]. Nevertheless, there
are items that are too complex to be detected by local filters
and require global information that the current model can-
not support.

Therefore, endowing this work with top-down abilities
can be a promising path for the future. This information

may bias contour emergence toward specific shapes (e.g.,

oval, circular, or rectangular) or orientation. Moreover,

communication of agents in macro (contour) level may add

additional constraints by coordinating their relative posi-

tion, scale, and orientation. The latter extension, for in-

stance, can be useful in a facial feature tracking scenario,

where a set of contours may cooperate to localize them.

Nevertheless, in order to avoid even this slight search

over the proposed parameter values and to achieve a fully

autonomous system, these parameters could be learned by

the agents themselves. Therefore, adding a learning com-

ponent to the architecture of these agents is a major path for

the future of this work. There have been attempts for learn-

ing these parameters by artificial life community [31–33] for

achieving natural aggregation behavior such as flocking,

herding, or schooling. The difficulty in these works is prob-

lem is quantifying the quality of the aggregation [33]. For-

tunately, in our domain there exists quantitative perfor-

mance measure that can guide parameter learning. For

instance, using a few manually marked contours in training

images, agents can learn in supervised manner that what

parameters takes them to food in the shortest time.

Finally, uniform distribution of agents is the best guess

that currently our method can make. Although this distri-

bution is more likely to happen, it is not always the case. For

instance, it is generally more desired to have dense popu-

lation in areas with high curvature. Other heuristics can be

also added to get more accurate distributions when needed.

An easy way to increase population density is reproduction

of agents. Therefore, such guided reproduction can improve

accuracy of contour representation.

FIGURE 8

The evolution of the contour around the splash in three iteration steps. Left to right: 1, 175, and 250. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

© 2006 Wiley Periodicals, Inc. C O M P L E X I T Y 51
DOI 10.1002/cplx



REFERENCES
1. Bodor, R.; Jackson, B.; Papanikolopoulos, N. Vision-Based Human Tracking and Activity Recognition; Proceedings of the 11th Mediterranean Conference on Control

and Automation, 2003.
2. Yuille, A.L.; Cohen , D.S.; Hallinan, PW. Feature Extraction from Faces Using Deformable Templates; Proceedings of CVPR’89, 1989; pp 104–109.
3. Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int J Comput Vision, 1987, 1(4), 321–331.
4. Vermaak, J.; Godsill, S.; Pérez, P. Monte Carlo filtering for multi-target tracking and data association. IEEE Trans Aerospace Electronic Systems 2004, 41(1),

309–332.
5. Colmenarez, A.; Frey, B.J.; Huang, T.S. Detection and Tracking of Faces and Facial Features; International Conference on Image Processing, Kobe, Japan, 1999,

pp 657–661.
6. Darrell, T.; Gordon, G.; Woodfill J.; Harville, M, A VirtualMirror Interface using Real-time Robust Face Tracking, Proceedings of the Third International Conference

on Face and Gesture Recognition, Nara, Japan, 1998.
7. Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems; Oxford University Press: New York, 1999.
8. Di Caro, G.; Dorigo, M. AntNet: Distributed stigmergetic control for communications networks. J Artif Intell Res 1998, 9, 317–365.
9. Gambardella, L.M.; Taillard, E.; Agazzi, G. MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In: New Ideas in

Optimization; Corne, D.; Dorigo, M.; Hlover, F., Eds.; McGraw-Hill: London, 1999; pp 63–76.
10. Matsuyama, T.; Hwang, V. SIGMA: A Knowledge-Based Aerial Image Understanding System; Plenum Press: New York, 1990.
11. Broggi, A.; Cellario, M.; Lombardi, P.; Porta, M. An evolutionary approach to visual sensing for vehicle navigation, IEEE Trans Indust Electron 2003, 50(1), pp 18–29.
12. Bovenkamp, E.G.P.; Dijkstra, J.; Bosch, J.G.; Reiber, J.H.C. Multi-agent segmentation of IVUS images. Pattern Recognition 2004, 37, 647–663.
13. Hamarneh, G.; McInerney, T.; Terzopoulos, D. Intelligent agents for medical image processing. In: Medical Image Computing and Computer-Assisted Intervention;

Niesen, W., Viergever, M., Eds.; Springer: Utrecht, The Netherlands, 2001; pp 66–76.
14. Yanai, K.; Deguchi, K. An Architecture of Object Recognition System for Various Images Based on Multi-Agent; Proceedings of the International Conference on Pattern

Recognition, 1998; Vol. I, pp 643–646.
15. Zhou, Q.; Parrott, D.; Gillen, M.; Chelberg, D.M.; Welch, L.R. Agent-based computer vision in a dynamic, real-time environment. Pattern Recognition 2004, 37(4),

691–705.
16. Mirzayans, T.; Parimi, N.; Pilarski, P.; Backhouse, C.; Wyard-Scott, L.; Musilek, P. A swarm-based system for object recognition, Neural Network World 2005, 15(3),

243–255.
17. Omran, M.G.; Engelbrecht, A.P.; Salman A.A. Particle swarm optimization method for image clustering. Int J Pattern Recog Artif Intell 2005, 19(3), 297–321.
18. Rodin, V.; Benzinou, A.; Guillaud, A.; Ballet, P.; Harrouet, F.; Tisseau, J.; Le Bihan, J. An immune oriented multi-agent system for biological image processing, Pattern

Recognition 2004, 37(4), 631–645.
19. Germond, L.; Dojat, M.; Taylor, C.; Garbay, C. A cooperative framework for segmentation of MRI brain scans. Artif Intell Med 2000, 20(1), 77–93.
20. Spinu, C.; Garbay, C.; Chassery, J.A Cooperative and adaptive approach to medical image segmentation. In: Lecture Notes in Artificial Intelligence; Barahona, P.,

Stefanelli, M., Wyatt, J., Eds.; Proceedings of the 5th European Conference on Artificial Intelligence in Medicine; Springer-Verlag, 1995; pp 379–390.
21. Liu, J.; Tang, Y.Y. Adaptive image segmentation with distributed behavior based agents. IEEE Trans Pattern Analysis Machine Intell 1999, 6, 544–551.
22. Camazine, S.; Deneubourg, J.-L.; Franks, N.; Sneyd, J.; Theraulaz, G.; Bonabeau, E. Self-Organization in Biological Systems. PrincetonUniversity Press, Princeton,

2001.
23. Detrain, C. Field study on foraging by the polymorphic ant speciespheidole pallidula. Insectes Sociaux 1990, 37(4), 315–332.
24. Saffre, F.; Furey, R.; Kraft, B.; Deneubourg, J.L. Collective decision-making in social spyders: Dragline-mediated amplification process actsas a recruiting

mechanism. J Theor Biol 1999, 198, 507–517.
25. Partridge, B.L. The structure and function of fish schools. Sci Am 1982, 246, 90–99.
26. Anderson, C.; Theraulaz, G.; Deneubourg, J.L. Self-assemblages in insect societies. Insectes Sociaux 2002, 49, 99–110.
27. Lioni, A.; Sauwens, C.; Theraulaz, G.; Deneubourg, J.L. Chain formation in Oecophylla longinoda. J Insect Behav 2001, 15, 679–696.
28. Hölldobler, B.; Wilson, E.O. The Ants; Harvard University Press: Cambridge, MA, 1990.
29. Reveret, L.; Benoit, C. A new 3D lip model for anal-ysis and synthesis of lip motion in speech production. In: Proceedings of the Second ESCA Workshop on

Audio-Visual Speech Processing, Terrigal, Australia, 1998.
30. Yang, J.; Lu, W.; Waibel, A. Skin color modeling andadaptation. In: Proceedings of the 3rd Asian Conference on Computer Vision, Vol. 2, 1998; pp 687–694.
31. Reynolds, C.W. An Evolved, Vision-Based Behavioral Model of Coordinated Group Motion. From Animals to Animats 2; Proceedings of the Second International

Conference on Simulation of Adaptive Behavior (SAB92), Meyer, J.A., Roitblat, H.L., Wilson, S.W., Eds.; MIT Press: Cambridge, MA, 1992; pp 384–392.
32. Werner, G.M.; Dyer, M.G. Evolution of Herding Behavior in Artificial Animals. From Animals to Animats 2; Proceedings of the Second International Conference on

Simulation of Adaptive Behavior (SAB92), Meyer, J.A., Roitblat, H.L., Wilson, S.W., Eds.; MIT Press, Cambridge, MA, 1992, pp. 393–399.
33. Zaera, N.; Cliff, C.; Bruten, J.; (Not) Evolving Collective Behaviours in Synthetic Fish. From Animals to Animats 4; Proceedings of the Fourth International Conference

on Simulation of Adaptive Behaviour, MIT Press: Cambridge, MA, 1996; 635–636.

52 C O M P L E X I T Y © 2006 Wiley Periodicals, Inc.
DOI 10.1002/cplx


