
Fast Initialization of Active Contours
Towards Practical Visual Interfaces for Human-Robot Interaction

Hossein Mobahi, Majid Nili Ahmadabadi, Babak N. Araabi
Control and Intelligent Processing Centre of Excellence, Robotics and AI Lab,

Department of Electrical and Computer Engineering, University of Tehran
and

School of Cognitive Sciences, IPM
Tehran, Iran

hmobahi@acm.org , mnili@ut.ac.ir , araabi@ut.ac.ir

Abstract— The field of robotics is currently undergoing a
change toward creation of robots that can naturally interact
with humans. For achieving this, interactive robots must be
endowed with natural interfaces that can sense and respond
in real-time. Vision can provide handy information for this
purpose by detecting and tracking human limbs to analyze
gestures, actions and even emotions. However, real-time
processing of visual information is a challenging bottleneck.
In this paper, we will introduce a novel method, namely
"self-organized contours", that can distinctly accelerate
contour initialization, which is the slowest phase in visual
tracking. Although the proposed method is general-purpose,
it allows immediate initialization of active contours due to its
similarity with snake structure. The proposed method is
inspired from group behavior in insects and animals,
particularly fishes.

Keywords- real-time vision; active contours; multi-agent
systems; human-robot interaction; self-organization; swarm
intelligence.

1 INTRODUCTION
The field of robotics is currently undergoing a change.

While in the past, robots were dominantly employed in
industrial applications for purposes such as manufacturing
and transportation, a new generation of interactive robots
has recently begun to emerge. For instance, interactive
robots are being developed to provide the elderly with
assistance in their home or teaching children in elementary
schools. Due to the endowment by natural interfaces,
interactive robots can be easily instructed or be understood
by people unfamiliar to robotics. Vision can provide handy
information within natural human-robot interaction
framework. For instance, people can naturally
communicate with robot through facial gestures such as yes
and no. Human's intention and attention can be understood
visually by analyzing human's pointing gesture [11] or
estimating gaze direction [2]. Moreover, robot's behavior
may be reinforced by user's emotional state estimated from
facial expressions.

A robot generally sees the environment as a sequence
of digital images. There exists a high spatio-temporal
correlation between successive images, which can be used
to speed up process in images, increase robustness of the
system and provide motion information. Therefore, most

robot vision systems rely on visual tracking rather than
single image analysis. Even when a feature should be
interpreted statically without considering its motion,
tracking can still be beneficial for fast localization of that
feature in the image sequence. This is of special
importance in interactive robots due to their need for real-
time performance. In summary, for developing a visual
interface in an interactive robot two issues have to be
addressed, namely, real-time performance and tracking
scheme.

To demonstrate interactive behaviors, the robot must be
able to work in real-time. Achieving this goal, especially
within the visual interface context, is not easy. This is
because a large amount of data captured by vision sensors
must be processed continually. Particularly, initialization
phase is among the slowest tasks in visual tracking due to
the need for an exhaustive search over the entire image for
finding Region of Interest (ROI). Unfortunately,
initialization is not limited to time that a limb first appears.
In fact, the tracking process may have to be reinitialized
repeatedly, due to the accumulation of tracking error over
time and causing a dramatic drop of tracking confidence
[7]. Apparently, any acceleration in initialization can be a
notable contribution. If achieved, a robot can interactively
respond to human's actions even though its tracking
module is reinitialized frequently.

The other issue to be addressed in visual interface
design for an interactive robot is the tracking scheme.
Human limbs are highly deformable and articulated objects
that can exhibit different postures and motions. Among a
number of available tracking tools, active contour or snake
[9] has been very popular and effective for capturing the
shape of human's limbs as well as tracking their motion.
For instance, snakes have been successfully applied to the
analysis of facial features [8, 13, 14, 15] and hand posture
estimation [16, 6]. A snake is an energy minimizing spline
represented by a finite set of control points. From a given
starting point, the snake deforms itself to conform to the
nearest salient contour. The initial location of a snake must
be provided by other processing.

In this paper, we will introduce a novel method, namely
"Self-Organized Contours" (SOC), for fast localization of
ROI. Although the proposed method is general-purpose, it
allows an immediate initialization of an active contour due

to its similarity with snake structure. Unlike traditional
scanning of the whole image for finding and labeling ROI,
SOC only explores a small fraction of the image. The
proposed method is inspired from group behavior among
insects and animals, particularly fishes; simply a swarm of
agents that attempt to survive by finding food. While local
search by agents leads to partial exploration of the
environment, their interaction self-organizes a contour
about each ROI.

Applying artificial life and multi-agent ideas to the
domain of image processing and specifically feature
extraction is not new. In a similar work, Liu and Tang [10]
used a different artificial life agent based systems to
segment and analyze Chinese documents. Their approach
utilizes evolutionary autonomous agents that can self-
reproduce, diffuse and cease to exist during the course of
interacting with a digital image environment. The
evolutionary nature of their proposed agents lies in the way
in which the generations of autonomous agents are selected
and replicated. The fitness function measures how long it
takes the agent to find a feature pixel.

Their approach produces a dense feature map that has
two disadvantages for real-time applications. First, it
requires a large number of agents and consequently
execution time becomes long. Second, it requires a
complicated post-processing for shape representation.
Determining the shape of feature points is difficult in their
approach because a boundary tracking in pixel level is
required afterwards and this is time-consuming. Even if
such a boundary tracking could be performed, it would face
other problems due to the discontinuities. Another problem
is thickness of features which makes boundary tracking
task take a longer time. In contrast to Liu's approach, our
approach represents contours by a few control points,
which requires less number of agents and runs faster.
Moreover, instead of boundary tracking, a fast and simple
algorithm is proposed for forming contours from their
potential control points.

This paper is organized as follows. In section 2 we will
review self-assembly behavior in fish schools by discussing
about local rules that emerge schooling. Section 3 proposes
a mathematical model for the discussed rules within a
multi-agent framework. These rules are expected to self-
organize groups of agents about food regions. Section 4
demonstrates the application of the proposed algorithm on
real images for fast localization of faces, hands and lips. It
justifies the shorter execution time of the proposed
algorithm against scanning the whole image. Finally the
paper ends with a conclusion that summarizes the proposed
method and its achievements.

2 BIOLOGICAL INSPIRATION
The SOC takes inspiration from recent studies in swarm

intelligence, a novel approach to the design and
implementation of intelligent systems inspired by the
effectiveness and robustness observed in social insects and
in other animal societies [4]. A key role in swarm
intelligence is played by the phenomenon of self-
organization, whereby global level order emerges in a
system from the interactions happening among the system's

lower-level components. Moreover, these interactions are
based only on local information, without reference to the
global pattern [5]. Self-organization can be seen in
different animal societies such as colonies of ants and bees,
flocks of birds, and schools of fish. A particular form of
self-organization is observed in some social insects and
animals, which connect one to the other creating complex
physical structures. This type of self-organization is
referred to as self-assembling [1], and is one of the key
elements of our SOC.

A good instance of self-assembling behavior in animal
societies can be seen in fish schools. Schooling is where a
group of fish acts as a single organism than a collection of
individuals. There is a highly coordinated structure, yet no
leader or external stimulus that prompts the form of this
polarized configuration. Schooling would appear to obey
the rules of a distributed model, i.e. each individual applies
the same set of simple behavioral rules. Each fish takes into
account all fish that swim in its neighborhood, paying more
attention to the closest ones and trying to match its velocity
and direction with that of its neighbors [12].

Fish schools do not have a regular geometric form; the
structure is loose and it results from each fish's applying a
few simple behavior rules. This is similar to the nature of
an active contour or snake in image processing where the
deformable contour changes as a result of local interactions
happening among its control points internally and with the
image. However, unlike fish schools where mating
emerges dynamically, in snakes neighborhood connections
must be established a priori. This constraint among control
points dictates a specific order in snake's movement and
significantly limits its exploration ability. Inspired from
animal societies, no fixed mates are forced for the agents in
our model; mating emerges through agents' local
interactions.

Real-time performance is a remarkable motivation for
proposing our method. We want the agents to explore the
environment (image) with minimal number of steps.
Similar cost minimization exists in fish schools too. If a
member of the school finds food, the other members can
take advantage of the find [3]. Opportunism in fish is
triggered when they directly observe the successful fish.
However, we will go one step further and enable our agents
to communicate with each other from long distances as
well. Unlike real world where distance is considered a
communication cost, it is has no effect in the simulated
world of our agents. By incorporating opportunism
behavior and communication ability, agents can
cooperatively find food in a reduced time.

Allowing agents to communicate and report food
location may result in parasitic behavior that decreases
individuals' and consequently swarm's exploration ability.
In the extreme case, this may cause the swarm to collapse
over the successful agent. To avoid this situation, another
intention should be introduced to keep the balance between
opportunism and individual-based exploration. In fish
schools, fish maximize the searching area by remaining
barely in the sight of one another [12]. This can be
modeled by repulsive forces emitting from agents for
achieving broad exploration.

3 COMPUTATIONAL MODEL
To model the behaviors discussed in pervious section,

first a swarm of agents should be created. The agents have
simple sensory motor and communicative capabilities. In
this paper, we focus on 2D environments, i.e. planar
images. However, the proposed model can be applied to
3D images as well, because it entirely relies on vector
operations. Initially a number of agents are distributed over
the image plane at random locations. This plane acts as the
environment where the agents inhabit. Regions that
correspond to features of interest, e.g. edges, are treated as
food. Formally, food is a scalar function of the
environment that responds in locations where features of
interest exist. Note that food can be a matter of degree
because the feature quality may differ from location to
location, e.g. edge strength. The behavior of each agent
depends on three state variables, namely position, velocity
and energy.

The energy of an agent keeps it alive and it is supplied
through nourishing from environmental foods. Once this
energy reaches zero the agent dies. We wish, after self-
organization of contours, that agents are scattered over
feature regions only. In our model, death possibility is
helpful when an agent is trapped in a non-nutritious region.
If this agent joins the formation process of a contour, it
corrupts the whole resulted shape; thus, it is better to be
killed. An agent is trapped when other agents surround it
such that it cannot move in any direction, due to repulsive
forces among agents (this force will be introduced later in
this section).

Let us denote the energy of the i’th agent by scalar
Ei(t). In the beginning, this energy is initialized to a non-
zero value. As (1) shows, the energy decreases continually
over time and it resets when the agent gets in a nutritious
region. Here, d is a decay constant.

⎩
⎨
⎧ >−

=

>==

otherwise
tEd

dt
tdE

TFoodtifEtE

ii

Fii

;0
0)(;)(

)(or 0)(0 X

 (1)

Figure 1. Forces and Agents' FOVs. The agent at the bottom has
discovered a nourishing region.

The two other state variables determine the motion of
agent in the environment. Two-dimensional position and
velocity vectors for the i’th agent are denoted by Xi and Vi,
respectively. These state variables are influenced by the
superposition of attractive and repulsive force fields
emitted from the environment and other agents. Agent's
trajectory is evolved over time according to the first order
differential equation described in (2).

ii

iii

ioihiai KKK

VX

VFV

XOXHXAF

=

−=

++=

&

&))(sat(

)()()(

α (2)

The superposition of partial forces, denoted by Fi, is
comprised of three weighted components standing for
avoidance, hunting and opportunism force vectors. The
computed force is filtered before altering velocity vector to
reduce noise in motion and clearly indicate activity level of
the agent. The smoothening degree of the filter is equal to
1-α. For the sake of stability, we bound the velocity of
agents is by a saturation function. In the rest of this section
we describe each of the mentioned forces separately in
more details. When reading the following subsections, you
may want to refer to Fig. 1. It is a schematic depiction of
the mentioned forces that may ease their understanding.

3.1 Hunting

In order for agents to survive, they must sense the
environment and look for food. Similar to insects and
animals, our agents have a limited field of view (FOV) to
sense the environment. Limited FOV decreases
computational load of the algorithm. The regions out of
FOV are all ignored completely. Nevertheless, the inner
regions are not all the same; the farther a point is, the less
impact it has on agent's behavior. Given a point within the
FOV, we formulate the magnitude of hunting force such
that it is proportional to the quality of food at that location
and inversely related to its distance. The total hunting force
in the entire FOV is computed in (3) by integrating all
force vectors that fall inside the FOV.

∫
∈

+=
FOV

i
i d

s

s
s

sX
s
sXH)Food()((3)

3.2 Avoidance

Avoidance behavior makes agents inhabit almost
uniformly over feature points. Uniform distribution of
contour points often results in more accurate reconstruction
of the underlying shape. As shown in (4), each agent finds
the location of its nearest neighbor through
communication. The agent then avoids it by the repulsive
force emitted from the neighbor.

2)(

MinArg

ki

ki
i

jiij
k

XX
XXXA

XX

−
−=

−=
≠

 (4)

3.3 Opportunism

It may take a long time for an agent to discover food if
it relies merely on its own exploration capabilities. To
accelerate food localization and contour formation,
opportunism behavior is incorporated in agents. An
opportunistic agent must first target a rich agent. This is
achieved by communicating with other agents to know
about their locations and their food qualities. Furthermore,
agents in less inhabited regions are favored for approaching
a uniform distribution and prevent from collapsing of the
swarm (totally or partially) onto the target. This
combination is formulated in (5) where k is the target agent
of agent i. The contribution of the two criteria to the final
decision is determined using a weight factor W.

)XXMin)X(Food(MaxArg
jp

jPjij
Wk

≠
≠

−+= (5)

Once the target agent is found, the measured value that
causes its selection can be directly used as the magnitude
of opportunism force. However, reminding that food
quality may vary in different locations, opportunism can
still cause parasitic behavior. This may happen by pushing
agents to leave their own food and land about the region
discovered with the highest quality. To prevent this trend,
opportunism is triggered only when an agent itself does not

have access to food. In other words, opportunism occurs
when the food quality for an agent is below a threshold like
F0.

⎪⎩

⎪
⎨
⎧ <+−

−
−

= ≠

otherwise;0

)Food(;)]Food(Min[
)(0FW ik

jp
jP

ik

ik

i
XXXX

XX
XX

XO (6)

3.4 Contour Formation
The discussed behaviors self-organize the swarm from

random initialization toward a specific order, which is
settling about feature points, .e.g. image edges. Once the
swarm reaches equilibrium, agents are ready to explicitly
define the contours that they represent. This is achieved by
connecting neighbor agents to each other in the right order.
Equilibrium state is perceived by continually measuring the
activity of the swarm until it drops below a threshold. At
that time contours are formed and simulation is terminated.
The activity, denoted by A, is estimated from the average
magnitude of motion as shown in (7), where N is the
number of survived agents at time t.

N

t
tA

N

i i∑ == 1
)(

)(
X& (7)

Figure 2. Self-Organization of Contours about Face and Hand Shown in Three Iteration Steps (Left to Right): 1, 175, and 250.

Figure 3. Self-Organization of Contours about Lips Shown in Three Iteration Steps (Left to Right): 1, 175, and 250.

Since we only are only interested in simple and closed
contours, each agent must exactly have two neighbors. An
agent selects its neighbors based on two factors, namely
distance and angle. For distance, closer agents and for
angle those that form flatter connections are proffered for
becoming neighbor candidates because they form smoother
contours. Formally, given an agent with index i; it first
adds its nearest agent j to its neighbor set as its first
neighbor.

Next, any agent whose connection to agent i does not
form a sharp angle with the line segment created between i
and j is potentially considered as second neighbor. We will
denote this set by Si,j. From these candidates, the agent with
the minimal distance to agent i is selected as the second
neighbor and is added to i's neighbor set. Note that the
distance from neighbors should not exceed a certain
threshold TD. Similarly, a threshold TA is used for the
cosine of the angle formed between two connections. The
neighbor selection procedure is mathematically described
in (8).

piSpji

A
ipij

ip
T

ij
Dipji

piip

ji

kS

TTjippS

j

XX

XXXX
XXXX

XX

XX

−=→≠

<
−−
−−

∧<−∧≠≠=

−=

∈

≠

,

MinArg{}

)}

)()(
()(|{

MinArg

,

, (8)

Occasionally it may happen that neighborhood
connections become asymmetric. This happens when agent
i chooses agent j as its neighbor while j is not chosen as the
neighbor of i. Asymmetry may result in nodes with more
than two neighbors while only two neighbors per agent are
allowed for forming a simple closed contour. Therefore, a
mechanism is required to detect asymmetries and eliminate
them. The answer is formally shown in the equation (9),
where Na denotes the set of neighbors chosen by agent a.

piSpiiij
jiNi

jNNNjNi XX −∪−=→∈∧∉
−∈ }{,

MinArg}){((9)

Briefly explaining the equation, any connection is
checked for asymmetry and once detected, the connection
is removed and a new neighbor is selected for that agent.
Note that the agent is prohibited to reselect previously
removed neighbors. This process is repeated until no more
asymmetry remains in the swarm.

4 EXPERIMENTAL RESULTS
To evaluate the competence of our proposed method

against exhaustive scan of image, we carried out some
experiments on real images for localizing faces, hands and
lips. We used color images taken by BenQ 2300 digital
camera with different resolutions. Feature maps were
obtained by a simple color-based filter followed by
gradient computation. Color classes were modeled using
Gaussian distributions in RBG space, e.g. skin or lip color.
Feature map computation was treated as a preprocessing
phase on the whole image for exhaustive scan. However, in
our method the features were computed locally once an
agent meets that point of the environment.

TABLE 1. SWARM PARAMETERS

Parameter Value
α 0.1
D 0.0003
E0 1
Ka 0.8
Kh 0.4
Ko 0.8
TF 10
TD 45
TA 0.7
F0 10
W 0.1

FOV 1

For testing our proposed method, initially 35 agents
were distributed over the image at random locations. The
time-evolution of agents on two test images are shown in
Fig. 2 and Fig. 3. Although it was not necessary to create
connections before reaching equilibrium, we did it during
intermediate steps merely to visualize gradual formation of
the contours. It can be seen that contours could self-
organize about ROIs in at most 250 iterations. Obviously,
contours could not capture the underlying shapes perfectly.
However, this is not a problem because the self-organized
contours are just initial contours that are supposed to be
refined by other tools. This can be achieved, for instance,
through evolution of a snake [9] when minimizing first
order derivative of the obtained contour.

The temporal behavior of force magnitudes as well as
their superposition is shown in Fig. 4. It is apparent that
after 250 iterations the forces exhibit almost a monotone
behavior and the activity remains very low. We did not
spend much time on tuning agents' parameters. Therefore,
even less number of iterations might be possible. Parameter
values used in our experiments are listed in Table 1. Some
parameters had to be changed for different resolutions. The
shown table corresponds only to the parameter set used in
256x256 images. Note that the unit of TF and F0 is intensity
and of TD and FOV is pixel.

In traditional pixel by pixel scan, the total number of
scanned pixels is equal to the resolution of the image.
However, in self-organized contours, multiplying number
of agents by iteration steps gives the number of hits that the
image is scanned. Computing the ratio of hits in the two
methods indicates that self-organized contours method
scans only 13% of image pixels. This is a remarkable
achievement in image scanning, comparing with
exhaustive search of the image. Since the limited FOV of
agents and their communication ability keeps the
computation cost of each iteration light-weight, self-
organized contours outperform exhaustive scan in with
respect to execution time too. This was justified by
counting clock ticks for complete execution of both
algorithms.

We measured the number of clock cycles taken by each
method in different image resolutions. Our experimental
platform an Intel Pentium 4 ™ processor with Linux
Operating System (Redhat 9.0). Fortunately, Intel has
introduced a specific instruction for reading clock cycles in
the Pentium, namely Read Time-Stamp Counter (RDTSC).

TABLE 2. CLOCK CYCLES TAKEN BY EACH METHOD

Clock Cycles
Resolution

Self-Organized Contours Exhaustive Scan

256x256 1428502 93506

640x480 1417473 4811850

800x600 1433933 7593329

1024x1024 1437637 16837443

Figure 4. Behavior of Forces over Time

The value of this counter is easily accessible through
Machine Specific Register (MSR) macros in Linux. The
measured clock cycles for the same algorithm with the
same configuration differed a bit on each run. Therefore,
we executed the algorithm 10 times for each case and used
the average value for comparison. Results are shown in
Table 2.

It can be seen that the time taken by self-organized
contours is not dependent on image resolution. Although
self-organized contours are slower than exhaustive image
scan for low resolution images (256x256), they are faster in
high resolution. This progress is particularly useful in HRI
applications like facial expressions analysis, where high
resolution images are required.

5 CONCLUSION AND FUTURE WORKS
We proposed a novel method for contour initialization

with real-time performance. As justified by experiments, it
outperforms traditional exhaustive image scan. Therefore,
it can effectively be applied to visual interfaces of
interactive systems where contour initialization must
happen as quickly as possible. Our approach was based on
a multi-agent framework where agents had simple sensory
motor and communication capabilities.

Inspired from behaviors observed in fish schools, we
developed a mathematical model for our agents so that they
could quickly self-organize themselves about feature points
in image. We discussed the how contours are explicitly
created from agents at the equilibrium. Our experiments on
real images demonstrated that self-organized contours
could capture the underlying shapes, guided through food
definition, with a good accuracy. Analysis of the execution

time also showed that the proposed method works faster
than exhaustive image scan in high-resolution images.

The proposed method has several parameters that must
be set manually before its execution. Tuning these
parameters is possibly time-consuming. Therefore, one
important path for future work on this method is
automating parameter adjustment. This may be achieved by
incorporating learning into the architecture of the agents.
Using a few manually marked contours in training images,
agents can learn in supervised manner that what parameters
takes them to food in the shortest time.

6 REFERENCES

[1] C. Anderson, G. Theraulaz, and J.L. Deneubourg, "Self-
assemblages in insect societies", Insectes Sociaux, 49:99, 110,
2002.

[2] R. Atienza, A. Zelinsky, "Intuitive Human-Robot Interaction
through Active 3D Gaze Tracking" , 11th Int. Symposium of
Robotics Research, Siena, Italy, Oct 2003.

[3] R.G. Bill and W.F. Hermkind, "Drag reduction by formation in
spiny lobsters", Science, 193, pp. 1146-1148, 1976.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz, "Swarm Intelligence:
From Natural to Artificial Systems", Oxford University Press, New
York, NY, 1999.

[5] S. Camazine, J.L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz,
and E. Bonabeau, "Self-Organization in Biological Systems",
Princeton University Press, Princeton, NJ, 2001.

[6] R. Cipolla, P.A. Hadfield, and N.J. Hollinghurst, "Uncalibrated
Stereo Vision with Pointing for a Man-Machine Interface, IAPR
Workshop on Machine Vision Applications, Yokohama, Japan,
December 1994.

[7] A. Colmenarez, B.J. Frey, T.S. Huang, "Detection and Tracking of
Faces and Facial Features", International Conference on Image
Processing, 1999: pp. 657-661, Kobe, Japan, 1999.

[8] C. Fan, M. Johnson, C.H. Messom, A. Sarrafzadeh, "Machine
Vision for an Intelligent Tutor", Proceedings of IEEE International
Conference on Computational Robotics and Autonomous Systems,
ISSN 0219-6131, 2003.

[9] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes - Active Contour
Models'', International Journal of Computer Vision, 1(4): 321-331,
1987.

[10] J. Liu, Y.Y. Tang, "An evolutionary autonomous agents approach
to image feature extraction", IEEE Transactions on Evolutionary
Computation, Vol.1, No. 2, pp. 141.158, June 1982.

[11] K. Nickel, R. Stiefelhagen, "Recognition of 3D-Pointing Gestures
for Human-Robot-Interaction", Proceedings of Humanoids 2003,
Karlsruhe, Germany, 2003.

[12] B.L. Partridge, "The structure and Function of Fish Schools",
Scientific American, pp. 114-123, June 1982.

[13] S. Ramadan, W. Abd-Almageed, and C. Smith, “Eye Tracking
using Active Deformable Models”, Proceedings of the III Indian
Conference on Computer Vision, Graphics and Image Processing,
India, 2002.

[14] D. Terzopoulus and K. Waters, "Analysis and Synthesis of Facial
Image Sequences using Physical and Anatomical models, IEEE
Trans. Pattern Analysis and Machine Intelligence, 15(6):569–579,
June 1993.

[15] B. Tiddeman, G. Rabey and N. Duffy," Synthesis and
Transformation of Three-dimensional Facial Images", IEEE
Engineering in Medicine and Biology, pp. 64-69, Vol. 18, No. 6,
Nov./Dec. 1999.

[16] Z. Wu, P. S. Aleksic, and A. Katsaggelos, "Lip Tracking for
MPEG-4 Facial Animation", International Conference on
Multimodal Interfaces (ICMI), pp. 293-298, Pittsburgh, October
2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

