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Abstract— The field of robotics is currently undergoing a 
change toward creation of robots that can naturally interact 
with humans. For achieving this, interactive robots must be 
endowed with natural interfaces that can sense and respond 
in real-time. Vision can provide handy information for this 
purpose by detecting and tracking human limbs to analyze 
gestures, actions and even emotions. However, real-time 
processing of visual information is a challenging bottleneck. 
In this paper, we will introduce a novel method, namely 
"self-organized contours", that can distinctly accelerate 
contour initialization, which is the slowest phase in visual 
tracking. Although the proposed method is general-purpose, 
it allows immediate initialization of active contours due to its 
similarity with snake structure. The proposed method is 
inspired from group behavior in insects and animals, 
particularly fishes.  

Keywords- real-time vision; active contours; multi-agent 
systems; human-robot interaction; self-organization; swarm 
intelligence. 

 

1  INTRODUCTION 
The field of robotics is currently undergoing a change. 

While in the past, robots were dominantly employed in 
industrial applications for purposes such as manufacturing 
and transportation, a new generation of interactive robots 
has recently begun to emerge. For instance, interactive 
robots are being developed to provide the elderly with 
assistance in their home or teaching children in elementary 
schools. Due to the endowment by natural interfaces, 
interactive robots can be easily instructed or be understood 
by people unfamiliar to robotics. Vision can provide handy 
information within natural human-robot interaction 
framework. For instance, people can naturally 
communicate with robot through facial gestures such as yes 
and no. Human's intention and attention can be understood 
visually by analyzing human's pointing gesture [11] or 
estimating gaze direction [2]. Moreover, robot's behavior 
may be reinforced by user's emotional state estimated from 
facial expressions.  

A robot generally sees the environment as a sequence 
of digital images. There exists a high spatio-temporal 
correlation between successive images, which can be used 
to speed up process in images, increase robustness of the 
system and provide motion information. Therefore, most 

robot vision systems rely on visual tracking rather than 
single image analysis. Even when a feature should be 
interpreted statically without considering its motion, 
tracking can still be beneficial for fast localization of that 
feature in the image sequence. This is of special 
importance in interactive robots due to their need for real-
time performance. In summary, for developing a visual 
interface in an interactive robot two issues have to be 
addressed, namely, real-time performance and tracking 
scheme.  

To demonstrate interactive behaviors, the robot must be 
able to work in real-time. Achieving this goal, especially 
within the visual interface context, is not easy. This is 
because a large amount of data captured by vision sensors 
must be processed continually. Particularly, initialization 
phase is among the slowest tasks in visual tracking due to 
the need for an exhaustive search over the entire image for 
finding Region of Interest (ROI). Unfortunately, 
initialization is not limited to time that a limb first appears. 
In fact, the tracking process may have to be reinitialized 
repeatedly, due to the accumulation of tracking error over 
time and causing a dramatic drop of tracking confidence 
[7].  Apparently, any acceleration in initialization can be a 
notable contribution. If achieved, a robot can interactively 
respond to human's actions even though its tracking 
module is reinitialized frequently. 

The other issue to be addressed in visual interface 
design for an interactive robot is the tracking scheme. 
Human limbs are highly deformable and articulated objects 
that can exhibit different postures and motions. Among a 
number of available tracking tools, active contour or snake 
[9] has been very popular and effective for capturing the 
shape of human's limbs as well as tracking their motion. 
For instance, snakes have been successfully applied to the 
analysis of facial features [8, 13, 14, 15] and hand posture 
estimation [16, 6]. A snake is an energy minimizing spline 
represented by a finite set of control points. From a given 
starting point, the snake deforms itself to conform to the 
nearest salient contour.  The initial location of a snake must 
be provided by other processing. 

In this paper, we will introduce a novel method, namely 
"Self-Organized Contours" (SOC), for fast localization of 
ROI. Although the proposed method is general-purpose, it 
allows an immediate initialization of an active contour due 



to its similarity with snake structure. Unlike traditional 
scanning of the whole image for finding and labeling ROI, 
SOC only explores a small fraction of the image. The 
proposed method is inspired from group behavior among 
insects and animals, particularly fishes; simply a swarm of 
agents that attempt to survive by finding food. While local 
search by agents leads to partial exploration of the 
environment, their interaction self-organizes a contour 
about each ROI. 

Applying artificial life and multi-agent ideas to the 
domain of image processing and specifically feature 
extraction is not new. In a similar work, Liu and Tang [10] 
used a different artificial life agent based systems to 
segment and analyze Chinese documents. Their approach 
utilizes evolutionary autonomous agents that can self-
reproduce, diffuse and cease to exist during the course of 
interacting with a digital image environment. The 
evolutionary nature of their proposed agents lies in the way 
in which the generations of autonomous agents are selected 
and replicated. The fitness function measures how long it 
takes the agent to find a feature pixel. 

Their approach produces a dense feature map that has 
two disadvantages for real-time applications. First, it 
requires a large number of agents and consequently 
execution time becomes long. Second, it requires a 
complicated post-processing for shape representation. 
Determining the shape of feature points is difficult in their 
approach because a boundary tracking in pixel level is 
required afterwards and this is time-consuming. Even if 
such a boundary tracking could be performed, it would face 
other problems due to the discontinuities. Another problem 
is thickness of features which makes boundary tracking 
task take a longer time. In contrast to Liu's approach, our 
approach represents contours by a few control points, 
which requires less number of agents and runs faster. 
Moreover, instead of boundary tracking, a fast and simple 
algorithm is proposed for forming contours from their 
potential control points.  

This paper is organized as follows. In section 2 we will 
review self-assembly behavior in fish schools by discussing 
about local rules that emerge schooling. Section 3 proposes 
a mathematical model for the discussed rules within a 
multi-agent framework. These rules are expected to self-
organize groups of agents about food regions. Section 4 
demonstrates the application of the proposed algorithm on 
real images for fast localization of faces, hands and lips. It 
justifies the shorter execution time of the proposed 
algorithm against scanning the whole image. Finally the 
paper ends with a conclusion that summarizes the proposed 
method and its achievements.  

2 BIOLOGICAL INSPIRATION 
The SOC takes inspiration from recent studies in swarm 

intelligence, a novel approach to the design and 
implementation of intelligent systems inspired by the 
effectiveness and robustness observed in social insects and 
in other animal societies [4]. A key role in swarm 
intelligence is played by the phenomenon of self-
organization, whereby global level order emerges in a 
system from the interactions happening among the system's 

lower-level components. Moreover, these interactions are 
based only on local information, without reference to the 
global pattern [5]. Self-organization can be seen in 
different animal societies such as colonies of ants and bees, 
flocks of birds, and schools of fish. A particular form of 
self-organization is observed in some social insects and 
animals, which connect one to the other creating complex 
physical structures. This type of self-organization is 
referred to as self-assembling [1], and is one of the key 
elements of our SOC. 

A good instance of self-assembling behavior in animal 
societies can be seen in fish schools.  Schooling is where a 
group of fish acts as a single organism than a collection of 
individuals. There is a highly coordinated structure, yet no 
leader or external stimulus that prompts the form of this 
polarized configuration. Schooling would appear to obey 
the rules of a distributed model, i.e. each individual applies 
the same set of simple behavioral rules. Each fish takes into 
account all fish that swim in its neighborhood, paying more 
attention to the closest ones and trying to match its velocity 
and direction with that of its neighbors [12]. 

Fish schools do not have a regular geometric form; the 
structure is loose and it results from each fish's applying a 
few simple behavior rules. This is similar to the nature of 
an active contour or snake in image processing where the 
deformable contour changes as a result of local interactions 
happening among its control points internally and with the 
image. However, unlike fish schools where mating 
emerges dynamically, in snakes neighborhood connections 
must be established a priori. This constraint among control 
points dictates a specific order in snake's movement and 
significantly limits its exploration ability. Inspired from 
animal societies, no fixed mates are forced for the agents in 
our model; mating emerges through agents' local 
interactions. 

Real-time performance is a remarkable motivation for 
proposing our method. We want the agents to explore the 
environment (image) with minimal number of steps. 
Similar cost minimization exists in fish schools too. If a 
member of the school finds food, the other members can 
take advantage of the find [3]. Opportunism in fish is 
triggered when they directly observe the successful fish. 
However, we will go one step further and enable our agents 
to communicate with each other from long distances as 
well. Unlike real world where distance is considered a 
communication cost, it is has no effect in the simulated 
world of our agents. By incorporating opportunism 
behavior and communication ability, agents can 
cooperatively find food in a reduced time. 

Allowing agents to communicate and report food 
location may result in parasitic behavior that decreases 
individuals' and consequently swarm's exploration ability. 
In the extreme case, this may cause the swarm to collapse 
over the successful agent. To avoid this situation, another 
intention should be introduced to keep the balance between 
opportunism and individual-based exploration. In fish 
schools, fish maximize the searching area by remaining 
barely in the sight of one another [12]. This can be 
modeled by repulsive forces emitting from agents for 
achieving broad exploration.  



3 COMPUTATIONAL MODEL 
To model the behaviors discussed in pervious section, 

first a swarm of agents should be created. The agents have 
simple sensory motor and communicative capabilities. In 
this paper, we focus on 2D environments, i.e. planar 
images. However, the proposed model can be applied to 
3D images as well, because it entirely relies on vector 
operations. Initially a number of agents are distributed over 
the image plane at random locations. This plane acts as the 
environment where the agents inhabit. Regions that 
correspond to features of interest, e.g. edges, are treated as 
food.  Formally, food is a scalar function of the 
environment that responds in locations where features of 
interest exist. Note that food can be a matter of degree 
because the feature quality may differ from location to 
location, e.g. edge strength.  The behavior of each agent 
depends on three state variables, namely position, velocity 
and energy. 

The energy of an agent keeps it alive and it is supplied 
through nourishing from environmental foods. Once this 
energy reaches zero the agent dies. We wish, after self-
organization of contours, that agents are scattered over 
feature regions only. In our model, death possibility is 
helpful when an agent is trapped in a non-nutritious region. 
If this agent joins the formation process of a contour, it 
corrupts the whole resulted shape; thus, it is better to be 
killed. An agent is trapped when other agents surround it 
such that it cannot move in any direction, due to repulsive 
forces among agents (this force will be introduced later in 
this section). 

Let us denote the energy of the i’th agent by scalar 
Ei(t). In the beginning, this energy is initialized to a non-
zero value. As (1) shows, the energy decreases continually 
over time and it resets when the agent gets in a nutritious 
region. Here, d is a decay constant. 
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Figure 1.  Forces and Agents' FOVs. The agent at the bottom has 
discovered a nourishing region. 

The two other state variables determine the motion of 
agent in the environment. Two-dimensional position and 
velocity vectors for the i’th agent are denoted by Xi and Vi, 
respectively. These state variables are influenced by the 
superposition of attractive and repulsive force fields 
emitted from the environment and other agents. Agent's 
trajectory is evolved over time according to the first order 
differential equation described in (2). 
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The superposition of partial forces, denoted by Fi, is 
comprised of three weighted components standing for 
avoidance, hunting and opportunism force vectors. The 
computed force is filtered before altering velocity vector to 
reduce noise in motion and clearly indicate activity level of 
the agent. The smoothening degree of the filter is equal to 
1-α. For the sake of stability, we bound the velocity of 
agents is by a saturation function. In the rest of this section 
we describe each of the mentioned forces separately in 
more details. When reading the following subsections, you 
may want to refer to Fig. 1. It is a schematic depiction of 
the mentioned forces that may ease their understanding. 

3.1 Hunting 

In order for agents to survive, they must sense the 
environment and look for food. Similar to insects and 
animals, our agents have a limited field of view (FOV) to 
sense the environment. Limited FOV decreases 
computational load of the algorithm. The regions out of 
FOV are all ignored completely. Nevertheless, the inner 
regions are not all the same; the farther a point is, the less 
impact it has on agent's behavior. Given a point within the 
FOV, we formulate the magnitude of hunting force such 
that it is proportional to the quality of food at that location 
and inversely related to its distance. The total hunting force 
in the entire FOV is computed in (3) by integrating all 
force vectors that fall inside the FOV. 
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3.2 Avoidance 

Avoidance behavior makes agents inhabit almost 
uniformly over feature points. Uniform distribution of 
contour points often results in more accurate reconstruction 
of the underlying shape. As shown in (4), each agent finds 
the location of its nearest neighbor through 
communication. The agent then avoids it by the repulsive 
force emitted from the neighbor.  
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3.3 Opportunism 

It may take a long time for an agent to discover food if 
it relies merely on its own exploration capabilities. To 
accelerate food localization and contour formation, 
opportunism behavior is incorporated in agents. An 
opportunistic agent must first target a rich agent. This is 
achieved by communicating with other agents to know 
about their locations and their food qualities. Furthermore, 
agents in less inhabited regions are favored for approaching 
a uniform distribution and prevent from collapsing of the 
swarm (totally or partially) onto the target. This 
combination is formulated in (5) where k is the target agent 
of agent i. The contribution of the two criteria to the final 
decision is determined using a weight factor W. 
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Once the target agent is found, the measured value that 
causes its selection can be directly used as the magnitude 
of opportunism force. However, reminding that food 
quality may vary in different locations, opportunism can 
still cause parasitic behavior. This may happen by pushing 
agents to leave their own food and land about the region 
discovered with the highest quality. To prevent this trend, 
opportunism is triggered only when an agent itself does not 

have access to food. In other words, opportunism occurs 
when the food quality for an agent is below a threshold like 
F0. 

⎪⎩

⎪
⎨
⎧ <+−

−
−

= ≠

otherwise;0

)Food(;)]Food(Min[
)( 0FW ik

jp
jP

ik

ik

i
XXXX

XX
XX

XO  (6) 

3.4 Contour Formation 
The discussed behaviors self-organize the swarm from 

random initialization toward a specific order, which is 
settling about feature points, .e.g. image edges. Once the 
swarm reaches equilibrium, agents are ready to explicitly 
define the contours that they represent. This is achieved by 
connecting neighbor agents to each other in the right order. 
Equilibrium state is perceived by continually measuring the 
activity of the swarm until it drops below a threshold. At 
that time contours are formed and simulation is terminated. 
The activity, denoted by A, is estimated from the average 
magnitude of motion as shown in (7), where N is the 
number of survived agents at time t. 
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Figure 2.  Self-Organization of Contours about Face and Hand Shown in Three Iteration Steps (Left to Right): 1, 175, and 250. 

 

           
Figure 3.  Self-Organization of Contours about Lips Shown in Three Iteration Steps (Left to Right): 1, 175, and 250. 



Since we only are only interested in simple and closed 
contours, each agent must exactly have two neighbors. An 
agent selects its neighbors based on two factors, namely 
distance and angle. For distance, closer agents and for 
angle those that form flatter connections are proffered for 
becoming neighbor candidates because they form smoother 
contours. Formally, given an agent with index i; it first 
adds its nearest agent j to its neighbor set as its first 
neighbor. 

Next, any agent whose connection to agent i does not 
form a sharp angle with the line segment created between i 
and j is potentially considered as second neighbor. We will 
denote this set by Si,j. From these candidates, the agent with 
the minimal distance to agent i is selected as the second 
neighbor and is added to i's neighbor set. Note that the 
distance from neighbors should not exceed a certain 
threshold TD. Similarly, a threshold TA is used for the 
cosine of the angle formed between two connections. The 
neighbor selection procedure is mathematically described 
in (8). 
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Occasionally it may happen that neighborhood 
connections become asymmetric. This happens when agent 
i chooses agent j as its neighbor while j is not chosen as the 
neighbor of i. Asymmetry may result in nodes with more 
than two neighbors while only two neighbors per agent are 
allowed for forming a simple closed contour. Therefore, a 
mechanism is required to detect asymmetries and eliminate 
them. The answer is formally shown in the equation (9), 
where Na denotes the set of neighbors chosen by agent a. 
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Briefly explaining the equation, any connection is 
checked for asymmetry and once detected, the connection 
is removed and a new neighbor is selected for that agent. 
Note that the agent is prohibited to reselect previously 
removed neighbors. This process is repeated until no more 
asymmetry remains in the swarm.  

4 EXPERIMENTAL RESULTS 
To evaluate the competence of our proposed method 

against exhaustive scan of image, we carried out some 
experiments on real images for localizing faces, hands and 
lips. We used color images taken by BenQ 2300 digital 
camera with different resolutions. Feature maps were 
obtained by a simple color-based filter followed by 
gradient computation. Color classes were modeled using 
Gaussian distributions in RBG space, e.g. skin or lip color. 
Feature map computation was treated as a preprocessing 
phase on the whole image for exhaustive scan. However, in 
our method the features were computed locally once an 
agent meets that point of the environment.  

TABLE 1.  SWARM PARAMETERS 

Parameter Value 
α 0.1 
D 0.0003 
E0 1 
Ka 0.8 
Kh 0.4 
Ko 0.8 
TF 10 
TD 45 
TA 0.7 
F0 10 
W 0.1 

FOV 1 
 

For testing our proposed method, initially 35 agents 
were distributed over the image at random locations. The 
time-evolution of agents on two test images are shown in 
Fig. 2 and Fig. 3.  Although it was not necessary to create 
connections before reaching equilibrium, we did it during 
intermediate steps merely to visualize gradual formation of 
the contours. It can be seen that contours could self-
organize about ROIs in at most 250 iterations. Obviously, 
contours could not capture the underlying shapes perfectly. 
However, this is not a problem because the self-organized 
contours are just initial contours that are supposed to be 
refined by other tools. This can be achieved, for instance, 
through evolution of a snake [9] when minimizing first 
order derivative of the obtained contour. 

The temporal behavior of force magnitudes as well as 
their superposition is shown in Fig. 4. It is apparent that 
after 250 iterations the forces exhibit almost a monotone 
behavior and the activity remains very low. We did not 
spend much time on tuning agents' parameters. Therefore, 
even less number of iterations might be possible. Parameter 
values used in our experiments are listed in Table 1. Some 
parameters had to be changed for different resolutions. The 
shown table corresponds only to the parameter set used in 
256x256 images. Note that the unit of TF and F0 is intensity 
and of TD and FOV is pixel.  

In traditional pixel by pixel scan, the total number of 
scanned pixels is equal to the resolution of the image. 
However, in self-organized contours, multiplying number 
of agents by iteration steps gives the number of hits that the 
image is scanned. Computing the ratio of hits in the two 
methods indicates that self-organized contours method 
scans only 13% of image pixels. This is a remarkable 
achievement in image scanning, comparing with 
exhaustive search of the image. Since the limited FOV of 
agents and their communication ability keeps the 
computation cost of each iteration light-weight, self-
organized contours outperform exhaustive scan in with 
respect to execution time too. This was justified by 
counting clock ticks for complete execution of both 
algorithms. 

We measured the number of clock cycles taken by each 
method in different image resolutions. Our experimental 
platform an Intel Pentium 4 ™ processor with Linux 
Operating System (Redhat 9.0). Fortunately, Intel has 
introduced a specific instruction for reading clock cycles in 
the Pentium, namely Read Time-Stamp Counter (RDTSC).  



TABLE 2.  CLOCK CYCLES TAKEN BY EACH METHOD 

Clock Cycles 
Resolution 

Self-Organized Contours Exhaustive Scan 

256x256 1428502 93506 

640x480 1417473 4811850 

800x600 1433933 7593329 

1024x1024 1437637 16837443 

 

  
Figure 4.  Behavior of Forces over Time 

The value of this counter is easily accessible through 
Machine Specific Register (MSR) macros in Linux. The 
measured clock cycles for the same algorithm with the 
same configuration differed a bit on each run. Therefore, 
we executed the algorithm 10 times for each case and used 
the average value for comparison. Results are shown in 
Table 2. 

It can be seen that the time taken by self-organized 
contours is not dependent on image resolution. Although 
self-organized contours are slower than exhaustive image 
scan for low resolution images (256x256), they are faster in 
high resolution. This progress is particularly useful in HRI 
applications like facial expressions analysis, where high 
resolution images are required.  

5 CONCLUSION AND FUTURE WORKS 
We proposed a novel method for contour initialization 

with real-time performance. As justified by experiments, it 
outperforms traditional exhaustive image scan. Therefore, 
it can effectively be applied to visual interfaces of 
interactive systems where contour initialization must 
happen as quickly as possible. Our approach was based on 
a multi-agent framework where agents had simple sensory 
motor and communication capabilities. 

Inspired from behaviors observed in fish schools, we 
developed a mathematical model for our agents so that they 
could quickly self-organize themselves about feature points 
in image. We discussed the how contours are explicitly 
created from agents at the equilibrium. Our experiments on 
real images demonstrated that self-organized contours 
could capture the underlying shapes, guided through food 
definition, with a good accuracy. Analysis of the execution 

time also showed that the proposed method works faster 
than exhaustive image scan in high-resolution images. 

The proposed method has several parameters that must 
be set manually before its execution. Tuning these 
parameters is possibly time-consuming. Therefore, one 
important path for future work on this method is 
automating parameter adjustment. This may be achieved by 
incorporating learning into the architecture of the agents. 
Using a few manually marked contours in training images, 
agents can learn in supervised manner that what parameters 
takes them to food in the shortest time. 
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