
Temporal Resolution in Coevolution
Towards Creating the Molecules of Life in Silico

Hossein Mobahi, Caro Lucas
Department of Electrical and Computer Engineering, University of Tehran

Tehran, Iran
hmobahi@acm.org , lucas@ipm.ir

Abstract— In order to have an artificial life system with high
evolvability, we should not only look for life-like organisms,
but also the molecules that are able to create them. From this
point of view, a new trend has appeared that coevolves
machine instruction set and programs together, hoping to
reach a more complex life and a higher diversity. However,
we argue that simple coevolution of programs and
instruction set can become problematic. We suggest using
different temporal resolutions between the two evolutions to
alleviate the problem. Our simulation results indicate that
this approach and improve coevolution's performance.

Keywords- Assembler Automata, Coevolution, Tierra,
Artificial Life.

1 INTRODUCTION
Our understanding of the evolution of living organisms,

and attempts to derive general theories of evolution, are
hampered by the fact that we only have one example of life
to study, life on the Earth. Therefore, there are many
situations where we are uncertain whether a particular
feature of life general to any comparable system of
evolving self-replicators, or whether it is specific to the
biological organisms on our planet.

Recently, a number of researchers have started
investigating the idea of creating alternative examples of
evolution, in software, to assist in the formulation of
generalized theories. Such work involves the creation of a
computer environment in which large numbers of programs
compete for the resources (i.e. CPU time and memory)
required to make copies of themselves. The pioneer of this
type of research is Tom Ray, who designed the Tierra
system [13].

 In the development of an Artificial Life (Alife) system,
it is important that the system be designed so that it is
evolvable, i.e. sustain a spontaneous and apparently open-
ended growth of complexity. Therefore, it is necessary for
us to prepare a good artificial environment during system
construction, since the possibility of evolution happening
in the system usually depends on the quality of the
environment prepared by the designer

 The actual biological system provides a good example
for deciding what is needed in an Alife system. Today, it is
widely accepted that an appropriate state of ancient earth
permitted life to emerge and a variety of complex life
forms to evolve. If we could identify the conditions

necessary for this evolution [14], it would greatly assist in
designing of a "good' Alife system.

In order to have an artificial life system with high
evolvability, we should not only look for life-like
organisms, but also the molecules that are able to create
them. From this point of view, a new trend in has appeared
that coevolves machine instruction set and programs
together hoping to reach more complex life and higher
diversity. The first steps of this approach have already been
taken by Matsuzaki et. al [7, 8, 9]. However, they could not
find any change in the instruction set; despite the fact that
such capacity of instruction evolution was provided.

We argue that one obstacle could be the nature of
coevolution itself. In fact, it is not fair to evaluate an
instruction set before it is sufficiently explored by the
program space. We believe that providing different
temporal resolutions between these two populations can
improve the performance of evolution. This is the problem
that we will explore in this article.

This paper is organized as follows. In section 2 we will
review early works on evolution of life using assembler
automata and their recent extension. Section 3 discusses
about the main issue, coevolutionary of molecules and
organisms together. In its subsections, first cooperative
coevolution will be reviewed. Next, we will introduce
temporal resolution approach in coevolution. Eventually,
we will discuss about credit assignment method for
evaluating species. Section 4 is about simulations. In its
first subsection we will review the architecture of our
simulator. Next, we will show simulations results and
obtained improvements. Finally in 5, we will have a
conclusion and state future topics of this work.

2 RELATED WORKS
This work follows a line of research initiated by

Dewdney in 1984 [4], who suggested an assembler
automaton as a world of "Core War" where assembler
programs can compete and may fight for computer
resources. The system is in fact a multi-processor, shared-
memory system. All processors operate on the same linear
and cyclic memory called core. The machine code (called
redcode) consists of only 10 instructions with one or two
arguments. Memory cells can be addressed only direct-
relative or indirect relative. Thus, the execution of a
program is independent from its absolute position in the
memory.

Rasmussen et al. have used Core Wars to build
Coreworld [11,12]. They introduced random fluctuations in
two different ways: random start of new processes with
randomly initialized program counters and possibility of
mutation when copying data using MOV instruction. Ray
has designed Tierra to model the origin of diversity of life
(e.g., the Cambrian explosion) not its origin [13]. Tierra is
similar to Core War with some modifications and
extensions: small instruction set without numeric operands,
addressing by templates, memory allocation and protection,
and artificial fitness pressure.

Later, these ideas were extended by other researchers
for achieving a higher diversity. An extension was
introducing a two-dimensional lattice space where lattice
sites hold whole (linear) organisms. For instance Adami's
work on Avida [1] and Dittrich's CoreSys [5] are in this
path. These systems allow the study of pattern formation
on population level and have showed a higher diversity.

In the original experiment of Tierra [13], the instruction
set, a set of machine codes that species the operation was
pre-programmed and thus could not able to be modified. If
we were able to equip creatures with different instruction
sets, the evolution of the instruction set in addition to the
usual evolution of Tierra might take place. Therefore,
another and a newer extension has appeared with a focus
on coevolution of molecules and organisms of life together.
So instead of designing ad-hoc machine instructions,
suitable instructions for life formation can spontaneously
emerge throughout the coevolution.

The first steps on this path was taken by Matsuzaki et
al. [7, 8, 9] by following von Neumann's self-reproducing
machine. Their proposed structure is divided into two parts:
"Machine" and "Description". In the machine, there is a
control memory and a set of registers. All operations are
propelled by the interpretation and execution of "micro-
codes" in the control memory. In the process of self-
replication, the codes are initially written in the core
memory as a part of the description tape.

3 COEVOLUTIONARY APPROACH

3.1 Cooperative Coevolution
Evolution is termed to the situation where a single

population of species is evolved based on the fitness of
species. The fitness is solely determined from individual
species, regardless of the progress in others. On the other
hand, in coevolution a set of populations interact with each
other (directly or indirectly) throughout the evolution. This
interaction may couple fitness of populations such that the
fitness of individuals in one population depends on the
evolutionary progress of the others. In fact, change in one
individual will change the fitness landscape in others [3];
this has been referred to as "coupled fitness landscapes"
[2].

3.2 Temporal Resuoltion
In the context of "Life in Silico", machine instructions

are molecules in the environment that construct organisms.
These molecules play an important role in emergence of
the life in silico and they have been the focus of attention

and a factor of extension of previous works. Inappropriate
definition of these molecules can result in very brittle life.
This life may vanish throughout generations due to
mutations, or it may have a limited diversity. In fact, this
was the reason that Ray changed Red Code to Tierra Code.

Nevertheless, there is no promise that Ray's ad-hoc
instruction set is the optimum for emergence of life.
Actually, current life on the earth exists thanks to the right
origin for its emergence. Therefore, to recreate life, we
should not only seek for the right organization of
molecules, but also the molecules themselves which are
capable of constructing life. Adapting instruction set as
well as programs for achieving digital life has recently
attracted attention of researchers. Matsuzaki et al.
employed a coevolutionary approach to this problem [9].
Despite of adding mutability of instruction set, only
programs evolved in their experiment and no mutation
happened to instruction set.

We argue that one obstacle could be the nature of
coevolution itself. In fact, it is not fair to evaluate an
instruction set before it is sufficiently explored by the
program space. This is because mutations of instructions
have a broader effect (all occurrences of that instruction in
the program code). Moreover, coevolution reduces the ratio
of solutions to the search space and makes searching
process harder. When only the program is evolved, the
concern is just the right order of instructions, but when
instructions are evolved too, we need the right instructions
in the right arrangement.

Perhaps considering different time scales in generations
of the two populations helps. This can delay selection of
instructions so that programs have enough time for
evolution and exploring the capacities of the mutated
instruction. To assess this presumption, we designed a
coevolutionary system with adjustable temporal resolution
(Fig. 1).

At the beginning populations are initialized with
manually designed instructions and programs. Evolution
steps (evaluation, selection and mutation) occur faster in
programs population, through the tight loop shown in the
figure. Fitness is computed according to the success of
programs in the population. The time resolution in
instruction side is lower, i.e. it takes an evolutionary step
after passing several generations in programs side. Fitness
of programs is transmitted to instruction population for
evaluation and selection purpose. The fitter instruction sets
are then copied (possibly with mutation) to the next
generation. These molecules are again used for evolving
programs.

Figure 1 Cooperative Interaction between populations

Figure 2 Tree-Like Fitness Propagation

3.3 Credit Assignment
A well-known issue associated with the fitness

evaluation of multi-agent systems is credit assignment.
When the system performs well or poorly which of the
individual agents gets the credit or blame. For competitive
coevolution systems with only two agents, this is not a
problem since one can use a complement. However, when
multiple agents are cooperating to achieve a solution, this
is a more serious issue.

In general cooperative coevolution problems, there is
no hierarchy among populations and no constraint on
fitness transmission flow [10]. However, in our problem,
there is a fitness tree where fitness values propagate in a
bottom-up fashion (Fig. 2). Each node contains certain
information.

 The universe, which is the root of the tree, provides the
molecules of programs, i.e. a table of machine instruction
set. In the middle level there are programs. We generally
need more than one program to evaluate the instruction set
accurately; otherwise the instructions may be biased toward
a single program and become too specific. For instance, if
we want to evolve self-replicating programs, the programs
should all contain the self-replication code, but possibly
with different algorithms that can be used for this purpose.

Program nodes contain the information of its expected
behavior (e.g. competing for CPU time and memory or
doing a simple calculation). Instances are at the bottom of
the tree and they hold different codes that realize the parent
program. Initially all instances are the same (the code that
is manually prepared by designer), but evolution may
diversify them later. This is needed in order for the
program population to explore newly created instructions
(by mutation in instruction level).

Fitness evaluation is feasible only in instance level, by
simulating the code and examining its behavior. Given a
program, its winning instance indicates that that program
with that instruction set can reach such a fitness (the code
of the winning instance shows how to do this). In other
words, even a good instance can label the population as
good (it can be instance1 or instance2 or … instancen). This

is similar to the logical OR operation. When instead of
binary variables, continuous ones are used, other
equivalents of binary OR operation can be used. Our choice
was MAX operator which is a popular equivalent for binary
OR in Fuzzy Logic domain [15].

In Universe level, the story is reversed; we need all
programs to work fine because they do different tasks
(though may have similar behaviors). Even if one of the
programs cannot work correctly, we should consider a low
fitness for that universe (which contains instruction set).
This is because we have given enough time for programs to
evolve before evaluating instruction set. Therefore, the
instruction set probably lacks required instructions for one
of the program with low fitness, and the instruction set
must be label as low fitness too. When we need all
programs to work (program1, and program2 and …
programm), we can use logical AND. Complementarily, we
use MIN operation as our variables are not binary but
continuous.

This structure is completely different from Matsuzaki's
work [9] where each program self-contained its instruction
set. Since the universe holds only one instruction set, for
efficiently evolving instructions, we consider a population
of universes, each of which contains its own program
instances.

4 EXPERMENTS

4.1 Simulator
Although our ultimate goal is studying coevolution for

emergence of digital life, this paper has focused on the
general problem of coevolvability of instruction set and
programs. As the first step, we used a simple computational
framework, where programs were supposed to do certain
calculations. In the future, we are to examine the same
concept with self-replicating programs, which are
obviously more complex than our current experimental
case.

In computer architecture, each machine instruction
should be mapped to a sequence of very low-level micro-
operations that the actual hardware can execute. These
micro-operations are generally simple operations on
registers. A popular method for realizing this translation is
called micro-programming [6], which is also the way we
used for evolving instruction set.

In micro-programming technique, there is a memory
called "control memory" that holds the information of
micro-operations sequence. Each machine instruction is
mapped to an address in control memory. Then control unit
executes corresponding micro-operations and then this
process is repeated for the next instruction.

Instruction codes, in our experiment, are represented by
4 bits that allow 16 instructions. We also assumed that each
instruction at most requires 8 micro-operations. Therefore,
the control memory has 128 cells. Obviously, instruction
code is mapped to control memory address by multiplying
the code by 8. In our simulated architecture, the core
memory is 256 byte long and there are five 8-bit registers
namely X, Y, Z, PC and SP. The first three registers are

general purpose, but the last two ones correspond to
Program Counter and Stack Pointer. There are 22 micro-
operations that operate on these registers and each of them
can be conditional or non-conditional as shown in Table 1.
Conditional micro-operations execute depending on the
zero or non-zero status of register X.

For evaluating a program instance, it is executed by the
simulator. If it does not show the desired behavior (e.g.
producing wrong answers for a computational problem), a
high value will be assigned to its cost, otherwise its costs
becomes equal to the number of micro-operations that it
has executed. Counting the number of micro-operations
instead of number instructions encourages programs to use
light-weight instructions (which generally execute faster).

The execution of incorrect programs may trap the
simulator in an infinite loop. Infinite loops are detected
when the simulator does not reach HALT instruction after
executing a certain number of instructions (100 in our
case). If an infinite loop is detected, the simulator will
automatically stops and assigns a high value to the cost of
that program instance.

Eventually, cost values are converted to fitness so that a
roulette wheel scheme can be used for selection. This
conversion is achieved by finding the maximum cost in the
population of that program, and subtracting it from all costs
of that population.

Table 1 Available Micro-Operations
Micro

Operation
Code

Micro Operation
Symbol

0 fetch
1 halt
2 X X + 1
3 X X – 1
4 X X + Y
5 X X – Y
6 X Y
7 Y X
8 Y Z
9 Z X
10 PC X
11 X PC
12 Z PC
13 Z SP
14 PC PC + 1
15 SP SP + 1
16 SP SP – 1
17 X MEM[Z]
18 MEM[Z] X
19 Shift_left X
20 Shift_right X
21 X 0

4.2 Simulation Results
Initially we manually designed 15 instructions based on

the available micro-operations. These instructions are
shown in Table 2. Two programs were used to compute the
following algebraic expressions:

i) x := 4x+3

ii) x := 8x+1

Correctness of programs is checked by some test
input/output pairs. We used three test cases for each of the
programs: (0,1), (1,9), and (3,25) for expression (i) and
(0,3), (1,7), and (3,15) for expression (ii). The cost of each
instance is the sum of costs obtained by its execution with
all test cases.

Ancestor programs were manually written. Since there
was no multiplication instruction in ancestor universe,
iterative addition was used in these programs. The initial
code of the first program (that computes the first
expression) is shown below. For better understanding, the
micro-operations that compose each instruction are written
as comments in its right hand side.

EXCH X,Y ; Z X, X Y, Y Z
MOV X,1 ; Z PC, PC PC+1, X MEM[Z]
ADD X,Y ; X X+Y
ADD X,Y ; X X+Y
ADD X,Y ; X X+Y
ADD X,Y ; X X+Y
HLT ; halt

Table 2 Initial Instructions
Instruction

Code Assembly Symbol

0 ADD X,Y
1 SUB X,Y
2 HLT
3 NOP
4 JMP ADDR
5 CLR X
6 JNZ ADDR
7 INC X
8 DEC X
9 EXCH X,Y

10 MOV X,VAL
11 MOV [ADR],X
12 PUSH X
13 POP X
14 CALL ADDR
15 RET

Figure 3 Cost versus Generation

In all simulations the instance population of each
program contained 20 species. The universe population
also had 20 universes. When copying bytes of codes from
one generation to another, each byte was subject to
mutation with the probability of 0.005. Similarly, the
probability of universe mutations, which changes
instructions, was considered to be 0.005. However, note
that there are different time scales between universe and
program evolution. Although program instances evolve
continually, evolution of instruction set (evaluation,
selection and finally mutation) occurs with a certain
probability.

To study the effect of the probability for evolution of
universe, we repeated the simulation with different values
of this probability. Figure 3 shows the cost values versus
program generation steps. It can be seen that when the
temporal resolutions of universe and programs are not, i.e.
probability of universe evolution differ, coevolution
proceeds better. However, increasing the difference
between these temporal resolutions too much degrades
coevolution performance again. According to our
simulation results, the best result is obtained when
evolution of universe occurs half time slower than
evolution of programs. Below is shown the code of the first
program with the university probability of 0.5.

MOVNZ Y,X ; (x==TRUE) Y X
MOVC X,3 ; Z PC, (x==T)PC PC+1,
 ; X MEM[Z]
HLT ; halt
ADD X,Y ; X X+Y
ADD X,Y ; X X+Y
ADD X,Y ; X X+Y
ADD X,Y ; X X+Y
HLT ; halt

Coevolution has invented two new instructions. From
the effect of their micro-operations, we chose two assembly
symbols for these instructions namely MONZ and MOVC.
In addition, in the original instruction set that is shown in
Table 2, HLT instruction’s code is 2. However, coevolution
found a better code for this instruction, it used 3. This
means that instead of 8th cell of control memory, 16th cell
contains the code of “halt” micro-operation now.

Now let’s investigate what is the improvement. The
changes are very intellectual and elegant. The main
optimization occurs when X is equal to zero. In this case,
micro-operations of MONZ are not executed. MOVC reads
the next byte and puts it into X. Since X is zero, program
counter is not increased, so the next byte will be executed
as well. As the next byte contains HALT instruction whose
code is 3, X becomes equal to 3 and when MOVC is
finished, the next instruction is executed, that is HALT and
X contain the correct result, which is 3. It did not enter to
the repetitive additions part, it also optimized EXCH to
MOVNZ for faster execution.

When X is not zero, the program acts similar to the
original code. This is because MOVZ becomes equivalent
to MOV. Note that MOV Y,X did not exist in original
instruction set (Table 2). This is itself a novel instruction
appeared during coevolution. Next, MOVC X,3 acts as
MOV X,3 because X is non-zero and HLT is threatened as
data, increment of PC bypasses execution of HLT. The rest
of program is executed normally. So the gain in non zero
cases is only creating the novel instruction MOV Y,X
instead of EXCH X,Y.

Perhaps you think zero X is a special case that rarely
happens and most of times the code is executed for non-
zero values of X. By this view point, it seems the
coevolution has achieved insignificant improvement.
However, this is not true in algorithm’s viewpoint, because
it had used only three test cases, one of which was zero
input. So considering what was given to the algorithm, its
achievement is considerable. Perhaps if more test cases
were given to the program, a different optimization would
arise.

5 CONCLUSION AND FUTURE WORKS
A new trend in artificial life research has emerged

which focuses on coevolutionary approach for creating life
in silico. This is a new method comparing with previous
works where programs had to be evolved within a fixed
and ad-hoc machine instruction set. Ad-hoc instructions
sets are brittle; they reduce the complexity of arisen digital
life.

In this paper we postulated that naive coevolution of
programs and instruction set can become problematic too.
However, by considering different temporal resolutions for
the two evolutionary processes, we showed that the
performance of coevolution is improved. Our experiments
indicate that choosing the rate of instruction set evolution
half of the rate of programs evolution gives the best
performance.

An important work that we want to pursue in the future
is returning to the main motivation of this work, creating
digital life. We plan to examine the effect of temporal
resolution on the complexity and diversity of the emerged
life in silico. We expect to achieve more evolvable system
using this approach comparing with simple coevolution or
bare evolution.

6 REFERENCES

[1] Adami, C. and Brown, C.T, "Evolutionary learning in the 2D

artificial life system avida", In Brooks, R.A. and Maes, P., editors,
Artificial Life IV, pp. 377-381, Cambridge, MA, MIT Press, 1994.

[2] Kauffman, S.A. and Johnsen, "Coevolution to the edge of chaos:
Coupled fitness, landscapes, poised states, and co-evolutionary
avalanches", In C.G. Langton, C. Taylor, J.D. Farmer, and S.
Rasmussen (Eds.), Artificial Life II, SFI Studies in the Sciences of
Complexity, 10: 325-369. Addison-Wesley, 1991.

[3] DeJong, K. and Spears, W., "On The State of Evolutionary
Computation", In Proceedings of the Fifth International Conference
on Genetic Algorithms Mining, pp. 618-623, San Mateo, CA:
Morgan Kaufmann, 1993.

[4] Dewdney, A. K., "In the game called core war hostile programs
engage in a battle of bits", Scientific American, 250: 14-22, 1984.

[5] P.Dittrich, M. Wulf, and W. Banzhaf, "A vital two-dimensional
assembler automaton", In C. C. Maley and E. Boudreau, eds.,
Artificial Life VII Workshop Proceedings, 2000.

[6] Mano, M.M., "Digital logic and computer design", Prentice-Hall,
Inc., NJ, 1979.

[7] Matsuzaki, S., Suzuki, H., Osano, M. "Universal constructor to
build a Tierran machine structure" In: Sugisaka, M., Tanaka, H.
(eds.): Proceedings of the Eighth International Symposium on
Artificial Life and Robotics (AROB 8th '03) Vol. 1 (2003) 259-262.

[8] Matsuzaki, S., Suzuki, H., Osano, M. "Digital creatures in a core
replicated with microoperations" In: Proceedings of the Sixth

International Conference on Humans and Computers (HC-2003)
(2003) 188-193l

[9] Matsuzaki, S., Suzuki, H., Osano, M. "An approach to describe the
Tierra instruction set using microoperations: the first result" In:
Banzhaf, W., Christaller, T., Dittrich, P., Kim, J.T., Ziegler, J.
(eds.): Advances in Artificial Life (7th European Conference on
Artificial Life Proceedings), Springer-Verlag, Berlin (2003) 357-
366.

[10] Potter, M.A. and DeJong, K, "Cooperative Coevolution: An
Architecture for Evolving Coadapted Subcomponents",
Evolutionary Computation 8(1): pp. 1-29, 2000.

[11] Rasmussen, S., Knudsen, C., Feldberg, R., and Hindsholm, M.,
"The coreworld: Emergence and evolution of cooperative structures
in a computational chemistery", Physica D, 42: 111-134, , 1984.

[12] S. Rasmussen, C. Knudsen, and R. Feldberg, "Dynamics of
programmable matter", In C. G. Langton, C. Taylor, J. Doyne
Farmer, and S. Rasmussen, eds. , Artificial Life II, pp. 211-291,
Redwood City, CA, 1992, Addison-Wesley.

[13] Ray, T. S. "An approach to the synthesis of life", In C. G. Langton,
C. Taylor, J. D. Farmer, and S. Rasmussen, Eds., Artificial Life II:
proceedings of the second arifiticial life workshop, pp. 371-408,
Redwood City, CA, Addison-Wesley.

[14] Suzuki, H., Ono, N., and Yuta, K., "Several necessary conditions
for the evolution of complex forms of life in an artificial
environment", Artificial Life V.9, N.2, pp. 537-558, 2003.

[15] Zadeh, L.A., "Fuzzy sets. Information and Control", Vol. 8, pp.
338-353, 1965.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

