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Abstract
We introduce a new approach to reconstructing accu-

rate camera geometry and 3D models for urban structures
in a holistic fashion, i.e., without relying on extraction or
matching of traditional local features such as points and
edges. Instead, we use semi-global or global features based
on transform invariant low-rank textures, which are ubiqui-
tous in urban scenes. Modern high-dimensional optimiza-
tion techniques enable us to accurately and robustly recover
precise and consistent camera calibration and scene geom-
etry from single or multiple images of the scene. We demon-
strate how to construct 3D models of large-scale buildings
from sequences of multiple large-baseline uncalibrated im-
ages that conventional SFM systems do not apply.

1. Introduction
Recently, there has been tremendous interest in building

large-scale 3D models for urban areas, which are largely
driven by industrial applications such as Google Earth,
Street View, and Microsoft’s Bing Maps. To meet the de-
mands of such applications, significant progress about the
structure-from-motion (SFM) techniques has been made in
terms of the scalability and reliability [1, 21, 16, 6].

The conventional SFM approach to build a 3D model of
a scene typically relies on detecting, matching, and triangu-
lating a set of feature points (and edges) in multiple camera
views, which has been extensively studied in the past two to
three decades. One great advantage of working with point
features is that the system can be somewhat oblivious to the
scene: the scene could be of any shape or texture as long
as the shape is rigid and texture is rich of distinguishable
feature points.1

In practice, researchers have observed that urban scenes
often have very special types of shapes and textures, which
may not be ideal for generic SFM techniques. On one hand,

1Of course, there have been multiple parallel lines of work in studying
3D shape reconstruction for scenes that lack rich textures, using cues such
as shape from shading and contours, etc.

the shape of man-made objects (e.g., buildings, houses, and
cars) normally has very regular global structures, rich of all
types of symmetry and self-similarity. If a reconstruction
algorithm can take advantage of such global information,
it is natural to expect the algorithm to obtain more accu-
rate estimates for both the 3D shape and camera locations
from man-made objects than from generic 3D scenes. On
the other hand, due to the same reason that urban scenes are
full of symmetry, repetitive features pose significant chal-
lenges for matching them across different views. The latter
problem gets more drastic when the views are sparse and
the baseline between views is large as in Figure 1.

In order to handle wide-baseline images for SFM, which
represent a large portion of images captured in popular ap-
plications [21, 6], more sophisticated techniques have been
proposed to extract and match richer image features beyond
points and edges. Examples include affine-invariant fea-
tures (SIFT) [12, 14, 15, 2], superpixels [16], and object
part-based regions [26, 7], to name just a few. In addition to
improving local-feature detection, it has long been noticed
that 3D reconstruction of urban structures can be more ac-
curate and simple if one can detect in advance certain salient
symmetric patterns (see [11] for a review on this topic) or
global structures such as vanishing points [17]. However,
symmetry and vanishing points are global or semi-global
properties of the scene structures. They cannot be easily
extracted from any individual image features. Instead, they
must be inferred from the relations among a group of related
feature points or edges.

Despite numerous attempts [18, 11], it remains a chal-
lenging problem to reliably detect and extract large, sym-
metric patterns. The reason is twofold: First, it is difficult
to properly detect all the features that represent a symmet-
ric pattern (say the four corners and four edges of a win-
dow). Second, the task becomes more daunting in the pres-
ence of outliers and partial occlusion in the extracted feature
set, which obscure the dominant global structures. This is
the main reason robust statistical techniques such as Hough
transform or RANSAC have been widely used for such pur-
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Figure 1. Left Pair: Example of matched facades of a building. Right Pair: Automatically reconstructed 3D model from only four
uncalibrated images around the building by our method. Each image covers a pair of facades. The pyramids show the estimated location
of cameras.

poses. Finally, even when local features are reliably ex-
tracted, it is not trivial to verify which ones satisfy what
symmetric and/or vanishing point relations under camera
perspective projection [9]. To address these problems, there
has been increasing amount of work trying to infer approx-
imate 3D geometry of image patches of urban scenes using
supervised machine learning methods [10, 8, 20]. In con-
trast, in this paper, we investigate a novel approach to infer
accurate 3D geometry from either single or multiple images
of an urban scene in a mainly unsupervised fashion.

To avoid the aforementioned difficulties while inferring
3D geometry, we exploit a new class of “building blocks”
for modeling urban objects. These new tools complement
local features such as points, edges, SIFT features, and
generic local patches. The new building blocks shall have
the following good properties:

1. Holistic: They need to encode accurate, global geo-
metric information such as structural symmetry, van-
ishing points, and camera positions;

2. Invariant: Their representation should be invariant to
camera viewpoint and perspective distortion, so that
they can be matched reliably across multiple images;

3. Robust: The extraction of such new features should be
numerically stable and robust (say, to partial occlusion
or random image noise and error).

Contributions. Motivated by a new type of image fea-
ture called transform invariant low-rank texture (TILT) [25],
in this paper, we study how such low-rank textures can be
used as new building blocks for modeling urban scenes.
The proposed new approach suggests that we can obtain ac-
curate 3D models for urban objects such as buildings and
houses, without relying on extraction of any traditional lo-
cal features such as points and edges. The new approach re-
lies directly and exclusively on semi-global or global image
patches and regions built from TILT features. For this very
reason, the approach is called “holistic.” We show how to
obtain accurate information about camera calibration, ori-
entation and position from each image, correspondence be-
tween two images, and ultimately a consistent 3D structure
from multiple images, as the example shown in Figure 1.

Admittedly, the proposed basic scheme cannot yet han-
dle all comprehensive urban scenes, especially where low-
rank texture is not abundant. Therefore, it should not be

Figure 2. Geometry from a low-rank patch on a building facade.
Left: The red box represents the selected candidate region I , and
the green box corresponds to the recovered low-rank texture using
TILT. Right: The rectified building facade I0 = I ◦ τ using the
homography τ estimated from the low-rank texture.

treated as a replacement or competitor to the existing SFM
systems. Rather, the new tools introduced in this paper
are more tailored to regular urban objects, and they should
be considered complementary to existing general-purpose
point-feature based SFM methods.

2. Geometry from One Facade of a Building
For completeness, we first give a brief review of work on

low-rank textures [25] and then show how to use them for
3D modeling. It has been observed by the authors of [25]
that the image of repetitive or symmetric patterns, when
viewed as a matrix, is low-rank. For example, if I0 is a
rectified frontal view of a planar patch on the facade of a
typical office building (see Figure 2 right), then as a matrix,
I0 has a rank much lower than its dimension. The authors
call such an image patch as a low-rank texture. In some
other (perspective) view of the building (see Figure 2 left)
the corresponding patch I deforms by a homography trans-
form: I = I0 ◦ τ−1, where τ belongs to the homography
group GL(3) and deforms the image domain.

One intriguing observation of the work [25] is that as
long as the patch is large enough and contains sufficient
texture, both the deformation τ and the view-invariant low-
rank texture I0 can be accurately recovered from the ob-
served I , up to scaling in each of the image coordinates.
The basic idea is to solve for a transformation τ of I so that
I0 = I ◦ τ has the lowest possible rank. Furthermore, the
image patch I is often corrupted by noise and occlusion. As
a result, a more realistic model between the low-rank tex-
ture I0 and its image I has been proposed by [25] as:

I ◦ τ = I0 + E, (1)

where E represents some sparse error that corrupts the im-
age, say due to partial occlusion. As shown in the work [25]



and Robust PCA literature [4], the transformation τ and the
low-rank texture I0 can be recovered by solving the follow-
ing optimization problem:

min
A,E,τ

‖A‖∗ + λ‖E‖1 subject to I ◦ τ = A+ E, (2)

where ‖ · ‖∗ and ‖ · ‖1 represent the nuclear norm and `1-
norm of a matrix, respectively 2.

The recovered low-rank texture A only differs from the
original low-rank texture I0 by a scaling in the x and y co-
ordinates. The recovered τ encodes the homography from
the default image plane z = 0 to the low-rank planar patch
in 3D: τ−1 .

= [t1, t2, t3] = K[n1,n2, T ], where R =
[n1,n2,n3] ∈ R3×3 is the rotation, T ∈ R3 the translation,
andK ∈ R3×3 the intrinsic parameters of the camera. If the
horizontal and vertical directions of the low-rank patch are
parallel to two vanishing directions in 3D, then the first and
second columns of τ−1 as a 3 × 3 matrix give the coordi-
nates of the two vanishing points v1 = t1,v2 = t2 ∈ R3

in the image coordinates, respectively [13]. If the camera is
calibrated, the two vanishing points should be orthogonal to
each other. So from a low-rank texture region in an uncali-
brated image, we obtain one linear constraint on the camera
intrinsic parameters K ∈ R3×3: vT1 K

−TK−1v2 = 0. If
the image(s) consist of a sufficient number (≥ 5) of low-
rank patches with independent orientations in 3D, one can
fully recover the camera intrinsic parametersK without any
special calibration apparatus.

3. Geometry from Intersecting Facades
Although the TILT method allows us to extract geom-

etry from each individual low-rank patch, an urban scene
typically consists of numerous low-rank regions. A repre-
sentative image of a building may contain two or more of
its facades, as shown in Figure 3(a). The homographies re-
covered from individual patches on each of the facades may
not be consistent in their scales.

Normally the low-rank textures on two intersecting fa-
cades of a building give three sets of parallel lines, two
horizontal and one vertical. These three sets of parallel
lines define three vanishing points in the image, denoted as
v1,v2,v3 ∈ R3, respectively. Notice that the pairs (v1,v3)
and (v2,v3) can be obtained from the homography of an in-
dividual low-rank patch on each of the facades.

In order to determine the relative scale of the two fa-
cades in 3D, we need to find their intersection line l in
the image. It belongs to the one-parameter family of lines
that go through the vanishing point v3 in the image. As it
turns out, we can use the joint low-rank structure of both
facades to determine the precise location of this line regard-
less whether there is a visible edge along this line or not.

2The nuclear norm of A is defined as the sum of its singular values:
‖A‖∗ =

∑
i σi. The `1-norm of E is defined as ‖E‖1 =

∑
i,j |eij |.

(a) (b) (c)
Figure 3. Identifying the intersection line l of two facades. (a)
Three different intersection hypotheses for the two adjacent 4-
sided polygons. (b) The unfolded joint textures: each corresponds
to one of the hypotheses shown in (b), as indicated by the color
of its boundary. (c) The value of (3) as a function of the location
of the intersection line. It is minimized precisely at the correct
location (the blue line).

To see this, let us fix one point in each facade, say,
the upper-left corner of a low-rank patch on the first fa-
cade and the lower-right corner of a patch on the second
facade, labeled as points A and B respectively, as shown
in Figure 3(a). As one can see, since the vanishing points
v1,v2,v3 are known, any intersection line l between A and
B will uniquely determine a special structure with two ad-
jacent 4-sided polygons in the image, each corresponds to
a facade of the building. That is, the homographies τ1 and
τ2 of the two facades are parametrized by the same one-
parameter family lines l passing through v3. Figure 3(a)
shows examples of the special structure with three different
intersection lines (labeled as 1, 2 and 3).

Given the corresponding homography τi(l), we may rec-
tify each polygon and then concatenate them into a joint
rectangular texture, as shown in the Figure 3(b). Then the
joint texture, as a matrix, should also have the lowest rank
when the intersection line is the correct one (Figure 3(c)).

Mathematically, let I1 and I2 be the two low-rank tex-
ture windows subject to transformations τ1 and τ2, which
depend only on l. We find the true position of the intersec-
tion line l∗ by solving the following optimization problem:

l∗ = arg min
l
‖[A1 A2]‖∗ + λ‖[E1 E2]‖1

s.t. Ii ◦ τi(l) = Ai + Ei, i = 1, 2. (3)

This problem can be solved very effectively using a line
search technique along the unknown parameter l. Figure
3(c) shows a typical plot of values of the objective function.
Once the intersection line l∗ is determined, the relative scale
of the two facades and camera geometry are uniquely deter-
mined. Figure 4 shows more representative results. As one
can see, the proposed scheme accurately identifies the cor-
rect intersection lines even when local edge features around
the intersection, on which most traditional methods rely, are
almost invisible in the image (e.g., in Figure 4(b)) or even
suggest an incorrect line (e.g., in Figure 4(c))!

If the camera is calibrated, from the assumption we know
v3 should be orthogonal to both v1 and v2 as v3 ∼ v1 ×
v2. Very often, the two facades of the building are also



(a) (b) (c) (d)
Figure 4. (a)–(c): Additional representative results of identifying the intersection line of two adjacent facades. Red windows are the
initialization. (d): Accurate 3D “pop-up” from the single image in Figure 3. Camera position is recovered, shown as a small pyramid.

orthogonal to each other, i.e., v1 ⊥ v2.3 If the camera
is not calibrated, the three vanishing points impose three
independent constraints on the camera intrinsic parameters:

vT
1K
−TK−1v2 = 0,vT

1K
−TK−1v3 = 0,vT

2K
−TK−1v3 = 0.

This allows us to fully calibrate the camera from just a pair
of intersecting facades, if only the focus length f and prin-
cipal point (ox, oy) are not known in K. An example of
such reconstruction from single image is shown in Figure 4
(d).

4. Segmenting Building Facades
Patches of low-rank textures allow us to extract from a

single image accurate information about the camera loca-
tion, calibration, and 2D textures and 3D structures. But
in order to obtain a complete 3D model from multiple im-
ages around a large building, we need to establish correct,
precise point-wise correspondence between different views.

Repetitive features and patterns in an urban scene make
finding the correct correspondence between images much
more challenging than that for a generic non-urban scene.
The reason is obvious: Matching local features or even local
patches are inherently ambiguous – there are many other
points and patches in the other image(s) that have exactly
the same local appearance. Most SFM methods then rely on
having images taken with relatively small baselines, either
from a video sequence or from a very dense set of photos.

When the baseline between images is large or images are
sparse, any effort to eliminate such ambiguity has to rely on
certain global spatial relationships among multiple points,
lines, or patches. The approach we propose here relies on a
very simple observation: the larger the patch or region we
match, the less the ambiguity [24, 23]. To the extreme, if
we can detect the entire facades, then the matching would
have minimal ambiguity. Hence, a necessary step to estab-
lish globally consistent correspondence between views is to
segment out each building facade.

As different facades of the same building often have the
same local color and textural appearance (see Figure 4),
global geometry and texture become the only cues to tell

3This may not always be the case. For instance, the facades in Figure 9
(a) and (b) are not orthogonal.

them apart. Our approach relies on another simple ob-
servation: if two adjacent patches, say I1, I2, belong to
the same facade, then after we merge them into a larger
patch I = [I1, I2], the joint texture should remain low-
rank (after rectification by a homography found by TILT:
I ◦ τ = A + E). Such a patch I can be represented very
compactly by the triplet (A,E, τ): the homography τ , the
low-rank componentA, and the sparse componentE. Thus,
by comparing the compactness of the representation before
and after the merging, we can tell whether the two patches
belong to the same facade or not.

In the rest of the section, we first derive a purely objec-
tive measure for the compactness of a patch I based on its
coding length4, and then we show how to use this measure
to effectively cluster patches to form facades.

4.1. Compact Coding for Low-rank Textures
A naive way to encode the patch I would be entropy-

coding of the quantized sequence of pixel values in I , as
conventional image compression schemes do. However,
when rank(A) is small andE sparse, encoding I in terms of
the triplet (A,E, τ) is far more efficient as both sparse and
low-rank matrices allow efficient coding. In order to get a
finite coding length, the components of the triplet must be
quantized. Denote the number of bits required to represent
a quantized real number by f .5 For controlling overall re-
construction quality of the patch, we define a distortion pa-
rameter ε. No matter how we encode the patch, the decoded
triplet (Â, Ê, τ̂) must satisfy a distortion tolerance:

‖(Â+ Ê) ◦ τ̂−1 − I‖2F ≤ ε2size(I), (4)

where size(I) is the number of pixels of I , say m× n.

Encoding the Sparse Matrix E. The sparsity in Ê im-
plies that it has a very low-entropy – many entries are zero.
It has long been observed empirically in signal processing

4There is a theoretical connection between rank and the coding length
of a matrix [19]. However, rank is very sensitive to noise and outliers. We
have conducted experiments using the aggregated rank, and the segmenta-
tion results are unstable. The proposed coding length is essentially a robust
measure of rank based on Robust PCA of the image region.

5 We have empirically observed that for any real number, 16 bits are
more than sufficient to ensure a good precision. For example, the homog-
raphy τ is a 3 × 3 matrix. Thus, it is sufficient for us to assign 9f bits to
it, i.e. L(τ̂) = 9f , where τ̂ is the quantized τ .



Figure 5. Left: The residual matrix Ê of the original (left) and
transformed (right) images in Figure 6 approximated by top three
singular values/vectors. Right: Empirical probability distributions
of the errors for the left (green) and right (blue) residual maps.
The empirical distribution (blue) of the right residual map can be
fit closely by a Laplace distribution (red).

that most sparse signals obey a Laplace distribution [3]:
p(x) = 1

2λ exp
(
− |x−µ|

λ

)
, where we typically assume

µ = 0 in our setting. Since we here are working with a
set of discrete samples: X = {x1, . . . , xN}6, we can work
with a discrete Laplace distribution pk = 1

ZΛ exp
(
− |xk|

Λ

)
,

over some support interval [−B,B]. Here Z is the nor-
malization constant and xk is a sampling point. We simply
choose B = maxi |xi| over the sample set X . The maxi-
mum likelihood estimate of Λ based on X is given by the
following expression: Λ = 1

N

∑N
i=1 |xi|.

Figure (5) shows a typical example of empirical distribu-
tion of Ê (blue), from one of the building images, against
the estimated distribution {pk} (red). The distribution {pk}
has two parameters, namely (B,Λ). Thus, by merely trans-
mitting B and Λ, which takes 2f bits, the receiver can con-
struct {pk} and use it to infer the optimal codebook for X .
With such a (Laplace) encoder, the expected coding length
for Ê would be:

L(Ê) = 2f +mn(
∑
k

−pk log2 pk). (5)

Encoding the Low-rank Matrix A. Naive entry-wise en-
coding of the m × n quantized low-rank matrix Â would
take mnf bits. However, since A is low-rank, the singu-
lar value decomposition A = UΣV T leads to a more ef-
fective encoding. Let r = rank(A). Then, we only need
to encode (m + n + 1)rf bits associated with (quantized)
non-zero singular values and their corresponding singular
vectors: Â =

∑r
i=1 σ̂iûiv̂

T
i , where the non-quantized vari-

ables are ui ∈ Rm, vi ∈ Rn and σi ∈ R+. Obviously, for
r � min{m,n}, this encoding uses much fewer bits than
the naive encoding (m+ n+ 1)rf � mnf .

For noisy real images, A may not be a perfectly low-
rank matrix. So we only need to encode its leading rank-q
approximation: Aq =

∑q
i=1 σiuiv

T
i subject to the allowed

distortion ε. The coding length of Âq is thus given by:

L(Âq) = (m+ n+ 1)qf. (6)

We can further compress the vectors {ûi, v̂i} based on
additional structures in them. As each ûi or v̂i is often a

6Each xi ∈ X is an element of the matrix Ê, thus |X | = N = mn.

Figure 6. Approximation of a facade image with the top three sin-
gular components

∑3
i=1 σiuiv

T
i . Top: SVD of the original im-

age. Bottom: SVD of the rectified image by TILT.

smooth signal except at the image edges, (see Figure 6), we
can encode each vector by a difference code7 plus the head
element. This way, the difference of each vector is a sparse
sequence and can be encoded again by the Laplace code.

4.2. Compression-Based Facade Segmentation
To summarize, the coding length required to encode a

supposedly low-rank patch I subject to the distortion toler-
ance ε is given by:

min
q
L(Âq)+L(Ê)+L(τ̂) s.t. ‖(Âq+Ê)◦ τ̂−1−I‖2F ≤ mnε2,

where (Â, Ê, τ̂) is the decoded quantized version of
(A,E, τ).

For an image that contains multiple facades, we seg-
ment the image I into a set of subregions S = {Ik} whose
union covers all the valid TILT features in I . The goal is
to choose S such that, when each Ik is encoded by the pro-
posed scheme, the total coding length becomes minimal:

minS,{qk}
∑
k L(Âk,qk) + L(Êk) + L(τ̂k)

s.t. ‖(Âk,qk + Êk) ◦ τ̂−1
k − Ik‖2F ≤ mnε2, ∀k. (7)

We solve this problem in a greedy and agglomerative fash-
ion, similar to that in [19]. The algorithm starts from a sim-
ple grid on I , where each Ik is a tile of the grid. At each
subsequent iteration, a pair of adjacent regions are chosen
to be merged into a larger region, which leads to maximal
reduction in the total coding length (7). The process stops
when the number of bits can no longer be reduced given the
distortion. Figure 7 shows some representative results.

Comparison with Symmetry Detection. Conceptually,
one could also utilize the work of [18] to parse the build-
ing facades, which can effectively detect and segment re-
gions tiled by a repetitive 2D pattern. We have tested their
method on our data and found that the method is not suitable
for our purposes due to several reasons: it often breaks one
facade into multiple disconnected small lattices; the sym-
metry groups/lattices detected from different images (of the
same facade) can be very different, and it cannot handle
large perspective distortion. These problems make the re-
sults hard to use for subsequent matching.

7The code subtracts from each element in the sequence the value of the
previous element.



(a) (b) (c) (d) (e) (f)
Figure 7. (a): Initial grid. (b): Initial TILT. (c): Final segmented regions. (d): Recovered intersection line. (e)-(f): The homography
estimated from cyan and magenta regions applied to the entire I to get the transformed images I ′ (corresponding regions are rectified).

5. Point-wise Matching of Building Facades
The segmentation provides a good estimate for the rel-

ative location of the facades and their rectified texture (see
Figure 7 (e) and (f)). Using such rectified textural regions,
solving wide-baseline correspondence between two images
I1 and I2 becomes better conditioned (say by a similarity
match). However, each segmented region may not share the
same location and scale in different images. Therefore, we
need to refine their location and scale in order to obtain pre-
cise point-wise matching between images.

Denote A1 as a low-rank texture from one facade in the
first image I1. If we assume the triplet (A2, E2, τ2) in the
second image I2 best matches A1 among all obtained seg-
ments in I2, then the entire image I2 can be rectified by the
homography τ2, and the sparse error E2 be removed before
matching. Thus, the problem is reduced to matching A1 to
a cleaned image: I ′2 = I2 ◦ τ2 − E2 (see Figure 7).

The goal now is to find a region R∗ in I ′2 which, after
translation and scaling, best matchesA1 point-wise. We use
normalized cross correlation (NCC) to measure the similar-
ity between the two regions, which is ideal for our task as
the regions are already distortion-free. Therefore, the best
region is given by the following optimization:

R∗ = arg max
φ=(x,y,u,v)

vec(A1)T vec(R ◦ φ)

‖ vec(A1)‖2‖ vec(R ◦ φ)‖2
, (8)

where φ is parameterized by the center location (x, y) of R
and scales (u, v) in x and y directions, respectively.

We solve the optimization task iteratively. Initially, we
start from a guess (x0, y0, u0, v0), which is a box among the
candidate regions in I2 (such as those in Figure 7) that has
the highest NCC with A1. We then maximize the objective
function in a gradient ascent fashion. The iteration termi-
nates when no more improvement can be made. Due to the
greedy nature of this procedure, theoretically we can only
guarantee a local optimal matching region R̂. However,
since we are working with very large segmented regions, we
have observed in practice that the above procedure typically
finds the globally optimal matching. Again, since there is
no geometric distortion left in the rectified low-rank tex-
tures, the refinement converges to a very precise point-wise
matching. If the two images each has multiple (segmented)
facades, we run the above matching procedure on each can-
didate pair and choose the one that has the best matching
score. As the number of segments is typically very small (2
or 3 per image in most cases), this process is very efficient.

Comparison with Feature Matching. An example of fi-
nal matching results between two images are given in Fig-
ure 8. As a comparison, in Figure 8 (e), we illustrate the
difficulty of applying the classical SIFT matching technique
[12] to the same urban scenes with repetitive or symmetric
patterns. Point-wise matching of low-rank regions outper-
forms SIFT in this scenario because the texture segmen-
tation results enable us to perform accurate region-based
matching rather than using local points or edges.

6. Full 3D Reconstruction of Buildings
In this section, we demonstrate how the techniques from

the earlier sections can be assembled together for 3D recon-
struction of a large octagonal building.8 We use only eight
uncalibrated and widely separated images for the full re-
construction of the building. Each of the images covers a
pair of adjacent facades as shown in Figure 9. This building
has a few interesting properties. First, the large number of
facades and intersections will magnify the accumulation of
(geometry or calibration) error if any. Second, occlusion by
trees and reflections on the glass are two major problems
that challenge conventional SFM methods, but can testify
the robustness of our scheme against such errors.

We do not use any prior information about the geometric
model of the building except that all the facades share the
same vertical vanishing point. We use the vanishing point
constraints to partially determine the calibration matrices of
the eight images. Since two facades in each image impose
two independent constraints on the calibration matrix, we
use them to recover the focal length f and the x-coordinate
ox of the principal point, assuming the y-coordinate oy is
fixed at one half of the image height. Once the calibration
matrix is obtained, we can compute the relative orientation
and position of the camera with respect to the scene.

To segment the facades, we assume the rough location of
the building within the images is provided.9 A 5× 5 grid of
initial windows is then placed around this location. Some of
the identified facades for the octagonal building are shown
in Figure 9(a) and (b). We further arrange the sequence of
images so that matching of common facades is only per-
formed between consecutive images. See Figure 9(c) and
(d) for an example of the matched facades.

8For 3D reconstruction of a typical rectangular building, see Figure 1.
9Either by the user or by a simple detection scheme.



(a) (b) (c) (d) (e)
Figure 8. (a) Segmented and unwarped facade. (b),(c), Segmented and unwarped region of the same facade in a different image. In (c),
the segmentation result is further refined to the orange box by matching. (d) Point-wise match between two regions of the facades. (e)
Feature-point matching result of the two rectified regions by SIFT [12], with red lines indicate mismatches.

(a) (b) (c) (d) (e) (f)
Figure 9. (a) and (b): Segmentation (green) and intersection detection (blue) on two images of an octagonal building. (c) and (d): A pair
of matched regions from the same facade with different partial occlusion. (e): A top view of the reconstructed structures of the octagonal
building showing the accumulated geometry error when assembling the views one by one. (f): The parameterized 3D model of the building.

Now we can obtain a full 3D reconstruction by assem-
bling the building one view at a time using consecutively
matched facades. However, errors in both camera parame-
ters and the 3D model, when estimated from real images,
are inevitable. For example, the camera calibration may not
be precise enough because of simplifying assumptions on
the parameters (i.e., f, ox, oy). Thus, if we assemble the
views one by one, geometric error accumulates as the num-
ber of images increases. For example, the start and the end
of the model do not meet each other in Figure 9(e).

Enforcing Global Consistency. For global consistency,
we propose a global objective, which uses the current cam-
era parameters and 3D model as the input, and tries to refine
them simultaneously. Conceptually, this is similar to “bun-
dle adjustment” in conventional SFM.

We randomly select two adjacent facades, say the pair in
Figure 9(a), and choose the origin of the world frame to be a
point at the intersection of the two facades. In addition, we
let the x and y axes of the world frame to be parallel to the
left facade in that image. Once the world frame is chosen,
a building with n facades can be described using a set of
n points X = {Xi}ni=1, where each Xi = (xi, 0, zi)

T is
(1) on the plane y = 0 and (2) at the intersection line of
two adjacent facades. These points form a n-sided polygon
on the y = 0 plane. For example, the 3D model of the
octagonal building (n = 8) is shown in Figure 9(f).

For the cameras, we use the same set of parameters
{Ki, Ri, Ti}ni=1 as before. Here we assume both the focal
length fi and the principal point (oxi , oyi) of each camera
are unknown. Now we formulate the global optimization as
follows. First, from each image Ii, we can extract two recti-
fied facades (Aji , E

j
i ), 1 ≤ j ≤ 2: Ii ◦ τ ji (Ki, Ri, Ti, X) =

Aji + Eji . Second, we ask the i-th pair of matching facades
to be the same, up to some sparse error ei:

Ii ◦ τ2i (Ki, Ri, Ti, X) = Ii′ ◦ τ1i′(Ki′ , Ri′ , Ti′ , X) + ei, (9)

where i′ = mod (i+ 1, n). Combining these two criteria,
we propose to solve the following problem:

min

n∑
i=1

2∑
j=1

{
‖Aj

i‖∗ + λ‖Ej
i ‖1
}
+

n∑
i=1

γ‖ei‖1,

s.t. Ii ◦ τ ji (Ki, Ri, Ti, X) = Aj
i + Ej

i ,

Ii ◦ τ2i (Ki, Ri, Ti, X) = Ii′ ◦ τ1i′(Ki′ , Ri′ , Ti′ , X) + ei, (10)

where λ and γ are the weights of the respective term. To
deal with the nonlinear constraints in (10), we use an itera-
tive scheme, which repeatedly solves the linearized version
of (10) w.r.t the current estimates of all unknown parame-
ters (Ki, Ri, Ti, Xi)

n
i=1. To reduce the effect of change in

illumination and contrast, we normalize each Ii ◦ τ ji to zero
mean and unit Frobenius norm. With the initialization ob-
tained from assembling the views one by one, the iterative
scheme usually converges in 15 to 20 iterations.

Figure 10 shows the reconstructed full 3D model as well
as the recovered camera poses. The readers should note the
improvement in the top view of the 3D model, compared to
Figure 9(e). We also calculated the average error in the eight
angles between the building facades. It is 3.1 degree and 1.5
degree before and after global adjustment, respectively. As
one can see, despite unknown calibration, partial occlusion,
large baselines, our method is able to recover a very precise
and complete 3D model of the building.

Comparison with other SFM Systems. It is difficult to
make a fair comparison between the proposed approach and
other SFM methods, since the large baselines and rich sym-
metry makes other methods fail. In fact, we tested our
sequences on almost all publicly available SFM packages
such as Bundler [21], SFM-SIFT 10 (which combines Torr’s
SFM toolbox [22] with SIFT feature detector [12]), FIT3D

10http://homepages.inf.ed.ac.uk/s0346435/
projects/sfm/sfm_sift.html

http://homepages.inf.ed.ac.uk/s0346435/projects/sfm/sfm_sift.html
http://homepages.inf.ed.ac.uk/s0346435/projects/sfm/sfm_sift.html


Figure 10. Frontal (left & middle) and top (right) views of the recovered building. Each pyramid shows the estimated location of a camera.

[5], and Voodoo Camera Tracker 11. All these packages
report errors related to their inability of establishing mean-
ingful correspondence across the views.
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