
A Relaxed transport

Equation (8) gives the relaxed transport objective as
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Proof of Proposition 4.1. The first order condition for T ⇤ optimizing (8) is
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Hence T ⇤ (if it exists) is a diagonal scaling of K = exp (��M � 1).

Proof of Proposition 4.2. Let u = (h(x)↵ T ⇤1)�a� and v =

�
y ↵ (T ⇤

)

>1
�
�b�, so T ⇤

=

diag(u)Kdiag(v). We have
T ⇤1 = diag(u)Kv
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where we substituted the expression for u. Re-writing T ⇤1,
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A symmetric argument shows that v = y
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�b�+1 � (K>u)�
�b�

�b�+1 .

B Statistical Learning Bounds

We establish the proof of Theorem 5.1 in this section. For simpler notation, for a sequence S =

((x
1

, y
1

), . . . , (x
N

, y
N

)) of i.i.d. training samples, we denote the empirical risk ˆR
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and risk R as
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Lemma B.1. Let h
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✓

⇤ 2 H be the minimizer of the empirical risk ˆR
S

and expected risk R,
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Therefore, to bound the risk for h
ˆ

✓

, we need to establish uniform concentration bounds for the
Wasserstein loss. Towards that goal, we define a space of loss functions induced by the hypothesis
space H as

L =

�
`
✓

: (x, y) 7!W p

p

(h
✓

(·|x), y(·)) : h
✓

2 H (12)
The uniform concentration will depends on the “complexity” of L, which is measured by the empir-
ical Rademacher complexity defined below.
Definition B.2 (Rademacher Complexity [22]). Let G be a family of mapping from Z to R, and
S = (z

1

, . . . , z
N

) a fixed sample from Z . The empirical Rademacher complexity of G with respect
to S is defined as

ˆR
S

(G) = E
�

"
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g2G
1

N
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i=1

�
i

g(z
i

)

#
(13)

where � = (�
1

, . . . ,�
N

), with �
i

’s independent uniform random variables taking values in
{+1,�1}. �

i

’s are called the Rademacher random variables. The Rademacher complexity is de-
fined by taking expectation with respect to the samples S,

R
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(G) = E
S

h
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(G)
i

(14)

Theorem B.3. For any � > 0, with probability at least 1� �, the following holds for all `
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2 L,
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with the constant C
M

= max

,

0 M
,

0 .

By the definition of L, E[`
✓

] = R(h
✓

) and ˆE
S

[`
✓

] =

ˆR
S

[h
✓

]. Therefore, this theorem provides a
uniform control for the deviation of the empirical risk from the risk.
Theorem B.4 (McDiarmid’s Inequality). Let S = {X

1

, . . . , X
N

} ⇢ X be N i.i.d. random vari-
ables. Assume there exists C > 0 such that f : X N ! R satisfies the following stability condition
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1
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)� f(x
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i

, . . . , x
N

)|  C (16)
for all i = 1, . . . , N and any x
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, . . . , x
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2 X . Then for any " > 0, denoting f(X
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, . . . , X
N

)

by f(S), it holds that
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✓
� 2"2
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◆
(17)

Lemma B.5. Let the constant C
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0 M
,

0 , then 0 W p

p

(·, ·)  C
M

.

Proof. For any h(·|x) and y(·), let T ⇤ 2 ⇧(h(x), y) be the optimal transport plan that solves (3),
then

W p

p

(h(x), y) = hT ⇤,Mi  C
M

X

,

0

T
,

0
= C

M

Proof of Theorem B.3. For any `
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2 L, note the empirical expectation is the empirical risk of the
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Similarly, E[`
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). Let
�(S) = sup

`2L
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Let S0 be S with the i-th sample replaced by (x0
i

, y0
i

), by Lemma B.5, it holds that
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Similarly, we can show �(S0
)��(S)  C

M

/N , thus |�(S0
)��(S)|  C

M

/N . By Theorem B.4,
for any � > 0, with probability at least 1� �, it holds that
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r
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log(1/�)

2N
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To bound E[�(S)], by Jensen’s inequality,
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Here S0 is another sequence of i.i.d. samples, usually called ghost samples, that is only used for
analysis. Now we introduce the Rademacher variables �

i

, since the role of S and S0 are completely
symmetric, it follows

E
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"
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i
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The conclusion follows by combing (18) and (19).

To finish the proof of Theorem 5.1, we combine Lemma B.1 and Theorem B.3, and relate R
N

(L)
to R

N

(H) via the following generalized Talagrand’s lemma [26].
Lemma B.6. Let F be a class of real functions, and H ⇢ F = F

1

⇥ . . . ⇥ F
K

be a K-valued
function class. If m : RK ! R is a Lm-Lipschitz function and m(0) = 0, then ˆR

S

(m � H) 
2Lm

P
K

k=1

ˆR
S

(F
k

).
Theorem B.7 (Theorem 6.15 of [15]). Let µ and ⌫ be two probability measures on a Polish space
(K, dK). Let p 2 [1,1) and 

0

2 K. Then

W
p

(µ, ⌫)  2

1/p

0
✓Z

K
dK(0

,)d|µ� ⌫|()
◆

1/p

,
1

p
+

1

p0
= 1 (20)

Corollary B.8. The Wasserstein loss is Lipschitz continuous in the sense that for any h
✓

2 H, and
any (x, y) 2 X ⇥ Y ,

W p

p

(h
✓

(·|x), y)  2

p�1C
M

X

2K
|h

✓

(|x)� y()| (21)

In particular, when p = 1, we have

W 1

1

(h
✓

(·|x), y)  C
M

X

2K
|h

✓

(|x)� y()| (22)

We cannot apply Lemma B.6 directly to the Wasserstein loss class, because the Wasserstein loss is
only defined on probability distributions, so 0 is not a valid input. To get around this problem, we
assume the hypothesis space H used in learning is of the form

H = {s � ho

: ho 2 Ho} (23)

where Ho is a function class that maps into RK , and s is the softmax function defined as s(o) =

(s
1

(o), . . . , s
K

(o)), with

s
k

(o) =
eokP
j

eoj
, k = 1, . . . ,K (24)

The softmax layer produce a valid probability distribution from arbitrary input, and this is consistent
with commonly used models such as Logistic Regression and Neural Networks. By working with
the log of the groundtruth labels, we can also add a softmax layer to the labels.
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Lemma B.9 (Proposition 2 of [27]). The Wasserstein distances W
p

(·, ·) are metrics on the space of
probability distributions of K, for all 1  p  1.
Proposition B.10. The map ◆ : RK ⇥ RK ! R defined by ◆(y, y0) = W 1

1

(s(y), s(y0)) satisfies

|◆(y, y0)� ◆(ȳ, ȳ0)|  4C
M

k(y, y0)� (ȳ, ȳ0)k
2

(25)

for any (y, y0), (ȳ, ȳ0) 2 RK ⇥ RK . And ◆(0, 0) = 0.

Proof. For any (y, y0), (ȳ, ȳ0) 2 RK ⇥ RK , by Lemma B.9, we can use triangle inequality on the
Wasserstein loss,

|◆(y, y0)� ◆(ȳ, ȳ0)| = |◆(y, y0)� ◆(ȳ, y0) + ◆(ȳ, y0)� ◆(ȳ, ȳ0)|  ◆(y, ȳ) + ◆(y0, ȳ0)

Following Corollary B.8, it continues as

|◆(y, y0)� ◆(ȳ, ȳ0)|  C
M

(ks(y)� s(ȳ)k
1

+ ks(y0)� s(ȳ0)k
1

) (26)

Note for each k = 1, . . . ,K, the gradient r
y

s
k
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s
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k
2

=

�����

✓
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◆
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=
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s
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=
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k

KX

j=1
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(1� 2s
k
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By mean value theorem, 9↵ 2 [0, 1], such that for y
✓

= ↵y + (1� ↵)ȳ, it holds that
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1

=

KX
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���hr
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s
k

|
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, y � ȳi
��� 

KX

k=1
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y

s
k

|
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k
2

ky � ȳk
2

 2ky � ȳk
2

because by (27), and the fact that
qP

j

s2
j

 P
j

s
j

= 1 and
p
a+ b  pa +

p
b for a, b � 0, it

holds
KX

k=1
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y

s
k

k
2

=

X

k:sk1/2

kr
y

s
k

k
2

+

X

k:sk>1/2

kr
y

s
k

k
2


X

k:sk1/2

�
s
k

+ s
k

p
1� 2s

k

�
+

X

k:sk>1/2

s
k


KX

k=1

2s
k

= 2

Similarly, we have ks(y0)� s(ȳ0)k
1

 2ky0 � ȳ0k
2

, so from (26), we know

|◆(y, y0)� ◆(ȳ, ȳ0)|  2C
M

(ky � ȳk
2

+ ky0 � ȳ0k
2

)  2

p
2C

M

�ky � ȳk2
2

+ ky0 � ȳ0k2
2

�
1/2

then (25) follows immediately. The second conclusion follows trivially as s maps the zero vector to
a uniform distribution.

Proof of Theorem 5.1. Consider the loss function space preceded with a softmax layer

L = {◆
✓

: (x, y) 7!W 1

1

(s(ho

✓

(x)), s(y)) : ho

✓

2 Ho}
We apply Lemma B.6 to the 4C

M

-Lipschitz continuous function ◆ in Proposition B.10 and the
function space

Ho ⇥ . . .⇥Ho

| {z }
K copies

⇥ I ⇥ . . .⇥ I| {z }
K copies

with I a singleton function space with only the identity map. It holds

ˆR
S

(L)  8C
M

⇣
K ˆR

S

(Ho

) +K ˆR
S

(I)
⌘
= 8KC

M

ˆR
S

(Ho

) (28)

because for the identity map, and a sample S = (y
1

, . . . , y
N

), we can calculate

ˆR
S

(I) = E
�

"
sup

f2I

1

N

NX

i=1

�
i

f(y
i

)

#
= E

�

"
1

N

NX

i=1

�
i

y
i

#
= 0

The conclusion of the theorem follows by combining (28) with Theorem B.3 and Lemma B.1.
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C Connection with multiclass classification

Proof of Proposition 5.2. Given that the label is a “one-hot” vector y =



, the set of transport plans
(4) degenerates. Specifically, the constraint T>1 =



means that only the -th column of T can
be non-zero. Furthermore, the constraint T1 = h

ˆ

✓

(·|x) ensures that the -th column of T actually
equals h

ˆ

✓

(·|x). In other words, the set ⇧(h
ˆ

✓(·|x), 

) contains only one feasible transport plan, so
(3) can be computed directly as

W p

p

(h
ˆ

✓

(·|x),


) =

X



02K
M



0
,

h
ˆ

✓

(0|x) =
X



02K
dpK(

0,)h
ˆ

✓

(0|x)

Now let ̂ = argmax



h
ˆ

✓

(|x) be the prediction, we have

h
ˆ

✓

(̂|x) = 1�
X

 6=̂

h
ˆ

✓

(|x) � 1�
X

 6=̂

h
ˆ

✓

(̂|x) = 1� (K � 1)h
ˆ

✓

(̂|x)

Therefore, h
ˆ

✓

(̂|x) � 1/K, so

W p

p

(h
ˆ

✓

(·|x),


) � dpK(̂,)hˆ

✓

(̂|x) � dpK(̂,)/K

The conclusion follows by applying Theorem 5.1 with p = 1.

D Algorithmic Details of Learning with a Wasserstein Loss

In Section 5, we describe the statistical generalization properties of learning with a Wasserstein loss
function via empirical risk minimization on a general space of classifiers H. In all the empirical
studies presented in the paper, we use the space of linear logistic regression classifiers, defined by

H =

8
<

:h
✓

(x) =

 
exp(✓>

k

x)
P

K

j=1

exp(✓>
j

x)

!
K

k=1

: ✓
k

2 RD, k = 1, ...,K

9
=

;

We use stochastic gradient descent with a mini-batch size of 100 samples to optimize the empirical
risk, with a standard regularizer 0.0005

P
K

k=1

k✓
k

k2
2

on the weights. The algorithm is described
in Algorithm 2, where WASSERSTEIN is a sub-routine that computes the Wasserstein loss and its
subgradient via the dual solution as described in Algorithm 1. We always run the gradient descent
for a fixed number of 100,000 iterations for training.

Algorithm 2 SGD Learning of Linear Logistic Model with Wasserstein Loss

Init ✓1 randomly.
for t = 1, . . . , T do

Sample mini-batch Dt

= (x
1

, y
1

), . . . , (x
n

, y
n

) from the training set.
Compute Wasserstein subgradient @W p

p

/@h
✓

|
✓

t  WASSERSTEIN(Dt, h
✓

t
(·)).

Compute parameter subgradient @W p

p

/@✓|
✓

t
= (@h

✓

/@✓)(@W p

p

/@h
✓

)|
✓

t

Update parameter ✓t+1  ✓t � ⌘
t

@W p

p

/@✓|
✓

t

end for

Note that the same training algorithm can easily be extended from training a linear logistic regres-
sion model to a multi-layer neural network model, by cascading the chain-rule in the subgradient
computation.

E Empirical study

E.1 Noisy label example

We simulate the phenomenon of label noise arising from confusion of semantically similar classes
as follows. Consider a multiclass classification problem, in which the labels correspond to the
vertices on a D ⇥ D lattice on the 2D plane. The Euclidean distance in R2 is used to measure the
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(a) Noise level 0.1 (b) Noise level 0.5

Figure 8: Illustration of training samples on a 3x3 lattice with different noise levels.

semantic similarity between labels. The observations for each category are samples from an isotropic
Gaussian distribution centered at the corresponding vertex. Given a noise level t, we choose with
probability t to flip the label for each training sample to one of the neighboring categories8, chosen
uniformly at random. Figure 8 shows the training set for a 3⇥3 lattice with noise levels t = 0.1 and
t = 0.5, respectively.

Figure 2 is generated as follows. We repeat 10 times for noise levels t = 0.1, 0.2, . . . , 0.9 and
D = 3, 4, . . . , 7. We train a multiclass linear logistic regression classifier (as described in section D
of the Appendix) using either the standard KL-divergence loss9 or the proposed Wasserstein loss10.
The performance is measured by the mean Euclidean distance in the plane between the predicted
class and the true class, on the test set. Figure 2 compares the performance of the two loss functions.

E.2 Full figure for the MNIST example

The full version of Figure 4 from Section 6.1 is shown in Figure 9.

E.3 Details of the Flickr tag prediction experiment

From the tags in the Yahoo Flickr Creative Commons dataset, we filtered out those not occurring
in the WordNet11 database, as well those whose dominant lexical category was ”noun.location” or
”noun.time.” We also filtered out by hand nouns referring to geographical location or nationality,
proper nouns, numbers, photography-specific vocabulary, and several words not generally descrip-
tive of visual content (such as ”annual” and ”demo”). From the remainder, the 1000 most frequently
occurring tags were used.

We list some of the 1000 selected tags here. The 50 most frequently occurring tags: travel, square,
wedding, art, flower, music, nature, party, beach, family, people, food, tree, summer, water, concert,
winter, sky, snow, street, portrait, architecture, car, live, trip, friend, cat, sign, garden, mountain,
bird, sport, light, museum, animal, rock, show, spring, dog, film, blue, green, road, girl, event, red,

8Connected vertices on the lattice are considered neighbors, and the Euclidean distance between neighbors
is set to 1.

9This corresponds to maximum likelihood estimation of the logistic regression model.
10In this special case, this corresponds to weighted maximum likelihood estimation, c.f. Section C.
11
http://wordnet.princeton.edu
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(a) Posterior prediction for images of digit 0.
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(b) Posterior prediction for images of digit 4.

Figure 9: Each curve is the predicted probability for a target digit from models trained with different
p values for the ground metric.

fun, building, new, cloud. . . . and the 50 least frequent tags: arboretum, chick, sightseeing, vineyard,
animalia, burlesque, key, flat, whale, swiss, giraffe, floor, peak, contemporary, scooter, society, actor,
tomb, fabric, gala, coral, sleeping, lizard, performer, album, body, crew, bathroom, bed, cricket,
piano, base, poetry, master, renovation, step, ghost, freight, champion, cartoon, jumping, crochet,
gaming, shooting, animation, carving, rocket, infant, drift, hope.

The complete features and labels can also be downloaded from the project website12. We train a
multiclass linear logistic regression model with a linear combination of the Wasserstein loss and
the KL divergence-based loss. The Wasserstein loss between the prediction and the normalized
groundtruth is computed as described in Algorithm 1, using 10 iterations of the Sinkhorn-Knopp
algorithm. Based on inspection of the ground metric matrix, we use p-norm with p = 13, and set
� = 50. This ensures that the matrix K is reasonably sparse, enforcing semantic smoothness only in
each local neighborhood. Stochastic gradient descent with a mini-batch size of 100, and momentum
0.7 is run for 100,000 iterations to optimize the objective function on the training set. The baseline
is trained under the same setting, using only the KL loss function.

To create the dataset with reduced redundancy, for each image in the training set, we compute the
pairwise semantic distance for the groundtruth tags, and cluster them into “equivalent” tag-sets with
a threshold of semantic distance 1.3. Within each tag-set, one random tag is selected.

Figure 10 shows more test images and predictions randomly picked from the test set.

12
http://cbcl.mit.edu/wasserstein/
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(a) Flickr user tags: zoo, run,
mark; our proposals: running,
summer, fun; baseline proposals:
running, country, lake.

(b) Flickr user tags: travel, ar-
chitecture, tourism; our proposals:
sky, roof, building; baseline pro-
posals: art, sky, beach.

(c) Flickr user tags: spring, race,
training; our proposals: road, bike,
trail; baseline proposals: dog,
surf, bike.

(d) Flickr user tags: family, trip, house; our propos-
als: family, girl, green; baseline proposals: woman,
tree, family.

(e) Flickr user tags: education, weather, cow, agricul-
ture; our proposals: girl, people, animal, play; base-
line proposals: concert, statue, pretty, girl.

(f) Flickr user tags: garden, table, gardening; our
proposals: garden, spring, plant; baseline proposals:
garden, decoration, plant.

(g) Flickr user tags: nature, bird, rescue; our propos-
als: bird, nature, wildlife; baseline proposals: ature,
bird, baby.

Figure 10: Examples of images in the Flickr dataset. We show the groundtruth tags and as well as
tags proposed by our algorithm and baseline.
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