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Humanoid Standing Control: Learning from 
Human Demonstration  
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Abstract— A three-dimensional numerical model of human 

standing is presented that reproduces the dynamics of simple 
swaying motions while in double-support. The human model is 
structurally realistic, having both trunk and two legs with 
segment lengths and mass distributions defined using human 
morphological data from the literature. In this investigation, 
model stability in standing is achieved through the application 
of a high-level, reduced-order control system where stabilizing 
forces are applied to the model’s trunk by virtual spring-
damper elements. To achieve biologically realistic model 
dynamics, torso position and ground reaction force data 
measured on human subjects are used as demonstration data 
in a supervised learning strategy. Using Powell’s method, the 
error between simulation data and measured human data is 
minimized by varying the virtual high-level force field. Once 
optimized, the model is shown to track torso position and 
ground reaction force data from human demonstrations. With 
only these limited demonstration data, the humanoid model 
sways in a biologically realistic manner. The model also 
reproduces the center-of-pressure trajectory beneath the foot, 
even though no error term for this is included in the 
optimization algorithm.  This indicates that the error terms 
used (the ones for torso position and ground reaction force) 
are sufficient to compute the correct joint torques such that 
independent metrics, like center-of-pressure trajectory, are 
correct. 
 

Index Terms—  
 

I. INTRODUCTION 
N the context of humanoid robots and prosthetic human-
machine systems, an important metric for system control 
is whether the resulting machine dynamics are 

biologically realistic. The scientific investigation into the 
development of anthropomorphic devices and biologically 
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realistic movement strategies largely began in 1962 when 
Tomović and Boni developed the Belgrade hand, a device 
that resembles a human hand in both structure and 
movement [1]. Following their seminal work, investigators 
advanced biomimetic devices in many fields of study, 
including arm and leg robots and prosthetic devices for 
upper and lower extremity amputees [2-15]. Although 
important strides have been made in the advancement of 
humanoid robots and human-machine systems, complete 
restoration of natural movement is difficult even today and 
is quite often not achieved due to limitations in actuator 
design and control technique [17-18].  
 
To develop biomimetic control schemes for legged robots, 
one is often interested in the appropriate virtual forces that 
must be applied on the various elements of the robot in 
order for the system to closely follow stable as well as 
natural trajectories in position space.  However, there are 
typically a large number of solutions, or different sets of 
time-dependent virtual forces that result in motions that 
neither resemble realistic human locomotion nor are 
particularly stable. In the development of humanoid legged 
robots, researchers have succeeded in fulfilling the stability 
condition, but have often failed to restore a high level of 
biological realism. At the forefront of humanoid 
development is the Honda Robot, an autonomous bipedal 
machine that walks across level surfaces and ascends and 
descends stairs [11-12]. The stability of the robot is 
obtained mainly from the requirement that the vertical 
projection of the center of mass closely follows the center 
of the pressure on the ground [19-20]. Unfortunately this 
type of humanoid control does not lead to biologically 
realistic walking. For example, the robot’s center-of-
pressure trajectory beneath the foot does not resemble the 
trajectory measured in human walking [21].  
 
To achieve biological realism in anthropomorphic devices, 
investigators have recently employed machine learning by 
demonstration techniques [22-26] where a robot learns how 
to control machine movements using human motion data. In 
1997, Schaal and Atkeson, for example, demonstrated that 
an anthropomorphic robot arm, guided by human 
demonstration data, can learn how to balance a pole in just 
a single trial, and the task of a “pendulum swing-up” in 
only three to four trials [24-25]. In this paper, we ask 
whether a simulated humanoid robot can learn how to move 
naturally using human demonstration data. We apply 
learning by demonstration techniques to achieve 
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biologically realistic dynamics for simple standing and 
swaying motions while in double-support. Position and 
force trajectories are obtained from a human test subject 
using a high-performance, highly-accurate, motion capture 
system and force plate.   By modulating a virtual, high-level 
force field that acts on the model’s trunk, model dynamics 
are synchronized with these human data, resulting in 
trajectories that accurately reproduce biological movement 
for human standing.   
 

II. METHODS  
A. Simple Motions 
The analysis methods used here are applicable to a large 
variety of motion types including relatively complex 
motions such as walking or running.  However, before 
studying such complex motions, it is useful to first consider 
simple swaying and balancing motions while in double-
support (both feet touching the ground).  Such simple 
motions are required for basic balancing while standing, 
and for stability in the presence of disturbances.  
Additionally, these types of lateral, side-to-side motions are 
used during the double-support phase in walking, and thus 
can be viewed as “building blocks” in an overall walking 
system.  Finally, the general topic of postural movement in 
double support, including relation of muscle synergies to 
body forces, has been studied extensively, [16, 40, 41] and 
is therefore better understood than more complex 
movements. 
 
B. Human Motion Capture and Force Plate Data 
A 104 Kg, male test subject was used to collect position 
and force data for simple side-to-side lateral swaying while 
in double support. Trajectory data were collected using a 
Vicon motion capture system [27]. Infrared-reflecting 
markers were attached to appropriate points on the legs, 
pelvis, and torso of the test subject.  The Vicon system then 
combined the inputs from 12 separate infrared cameras to 
generate three-dimensional motion trajectories for the 
markers.  The error of this system is typically less than one 
millimeter.  The Vicon system, using Bodybuilder software 
[28], then automatically computed joint center positions 
based on marker position and morphological measurements 
taken on the test subject. In addition to the motion 
trajectories, two force plates [42] (one for each foot) were 
used to measure ground-reaction force. The error of this 
system is typically less than one tenth of a Newton. 
Sampling frequencies for motion and force data collection 
were 120 Hz and 1080 Hz, respectively. Matlab 
interpolation functions [29] were used to filter the force 
data to make time intervals between data points consistent 
with the motion data time intervals.  The time interval used 
for both human and simulation data was 0.0012 seconds.  
This particular time interval was chosen based on accuracy 
requirements for the simulation. 
 
C. Model Structure 

The analysis method presented here 
requires a model that captures the 
essential morphological features of 
humans while in a standing, upright 
posture. The model, shown in Figure 1, 
is three-dimensional with 12 internal 
(controlled) and 6 external (un-
controlled) degrees of freedom. The 12 
internal degrees of freedom correspond 
to joints that can exert torques.  The 6 
external degrees of freedom correspond 
to the position and orientation of the 
trunk of the body.  Each leg was 
modeled with a ball-and socket hip joint, 
a pin knee joint, and a saddle-type ankle 
joint. Here the saddle joint architecture 
allows for ankle plantar/dorsiflexion 
motions and ankle inversion/eversion.  

 

The upper body (head, arms and torso), 
upper leg and lower leg were modeled 
with cylindrical shapes, and the feet 
were modeled with rectangular blocks. 
The total mass was divided among the 
segments according to morphological data from the 
literature [30-31].  The overall mass of the model was set 
equal to the mass of the test subject (104 Kg). Mass 
proportions are listed in Table I.  

Fig. 1. The humanoid model is 
shown having the basic structural 
features necessary to simulate 
human standing in three 
dimensions, including legs with 
hip, knee and ankle.  

 
TABLE I 

MODEL SEGMENT MASSES AND PERCENTAGES OF TOTAL BODY MASS  
(104 KG) ARE LISTED FOR THE FOOT, LEG AND BODY OF THE MODEL 

Body Segment % of total mass Total mass [kg] 

Foot 1.5 1.56  

Lower leg 4.3 4.48  
Upper leg 10.3 10.73  

Upper body 67.8 70.65  
 
The dimensions of each model segment were obtained by 
considering morphological data that describe average 
human proportions [32-33], along with motion capture data 
used to derive segment lengths, and finally direct 
measurements on the test subject. Length parameters are 
listed in Table II. 
 

TABLE II 
MODEL SEGMENT LENGTHS 

Upper body length 0.636 m 

Upper body radius 0.183 m 
Upper leg length 0.465 m 
Upper leg radius 0.083 m 
Lower leg length 0.480 m 
Lower leg radius 0.053 m 
Hip spacing 0.25 m 

 
The ground was modeled using a linear spring-damper 
system at four points per stance leg, located at each corner 
of the rectangular foot. Spring and damper coefficients 
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were defined for x, y, and z directions (x and y are lateral 
directions, z is vertical).  Coefficients are listed in Table III.  
 

TABLE III 
LISTED ARE GROUND STIFFNESS AND DAMPING VALUES 

IN X, Y AND Z DIRECTIONS 
 

 
Ground stiffness was first set so that the feet only 
penetrated the ground by a small amount in standing 
(~1mm). Increasing damping from zero then minimized 
oscillations between the ground and foot. The position of 
the contact points with respect to the ground were 
computed from the state variables. Thus, the application of 
the spring and damper constants to produce ground reaction 
forces on the contact points was a relatively straightforward 
calculation. 
 
 
D. Trajectory Tracking System Architecture 
The overall architecture of the trajectory tracking system is 
shown in Figure 2. The major components of the trajectory 
tracking system architecture are the motion capture/force 
plate data, a dynamic simulation of a humanoid robot, an 
optimization algorithm, and a cost function.  The basic goal 
of this architecture is to obtain the dynamic simulation that 
tracks the human torso position and ground reaction force.  
This objective is achieved by minimizing the error between 
the simulation motion and force values, and the motion 
capture/force plate biological data. The optimization 
algorithm performs this minimization by utilizing a cost 
function that incorporates terms comprising the position 
and force errors. 
 
E. Optimization Algorithm 
The simulation is initialized so that its state, , matches 
the state of the human subject biological data, , at time 
t(0)=0, or 

Ps
Pb

 
( ) ( ) (1)           00 PbPs =  

 
The state of the simulation at the next time increment is a 
function of the current state and the applied joint torques 

( )iτ , or 
 

( ) ( ) ( )( ) (2)     ,1 iiPsfiPs τ=+ . 
 
The optimization algorithm does not choose the joint 
torques directly. Rather, it first randomly chooses virtual 
forces that act on the upper body, and then it computes the 
appropriate joint torques for the legs using the virtual 
model control language (Read below for virtual model 
control description). Given the state and joint torques at 
time t(i) the possible state at time t(i+1) may be 
subsequently derived. The random choice for a virtual force 

at a new time is made once again and the whole procedure 
is repeated. This procedure may be extended over many 
subsequent times. The choice for the best virtual forces (or 
joint torques) at time t(i), i.e. simulation state at time t(i+1), 
is finally made after optimizing possible simulation paths 
over a future horizon characterized by some fixed number, 
h, of iteration steps (here we used h=5). The logic behind 
this approach is to have simulations that resemble human 
motion not just at a particular discrete time t(i+1) but also 
over a look-ahead future time interval, t(i+1) to t(i+h). In 
this way the simulation makes a “wise final choice” and it 
is unlikely to leave the “safe region” around global minima 
at subsequent times.  
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Fig. 2. The overall architecture of the trajectory tracking system is 
shown. The basic goal of the architecture is to obtain the dynamic 
simulation that tracks the human torso position and ground reaction 
force.  This objective is achieved by minimizing a cost function 
comprising the error between the simulation motion and force values, 
and the motion capture/force plate biological data. 

The possible simulation paths were optimized using 
Powell’s method [34]. A nice feature of this method is that 
it does not require a function that computes partial 
derivatives of the cost function with respect to the 
parameters being optimized. The optimization parameters 
here were virtual forces on the torso (over a horizon of h 
time increments) while the cost function consisted of the 
lateral torso trajectory and ground reaction force (over the 
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same time horizon). Although Powell’s method is an un-
constrained method, the boundaries in the parameter space 
can be asserted by putting high violation penalties into the 
cost function. 
 
F. Cost Function 
The cost function contains an error term for the torso 
tracking error, and for the ground reaction force tracking 
error. Specifically, the cost function is of the form 
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where  is the lateral position of the torso origin 
from the motion capture data at increment j, 

( )jPObio
( )jPOsim  is 

the corresponding value from the simulation, ( )jGFbio  is 
the lateral ground reaction force from the force plate data, 
and  is the corresponding value from the 
simulation.  When a person stands erect with the torso 
vertically aligned, the torso origin was defined as a fixed 
body point located 2 cm vertically above the hip joints and 
equal distant from both joints. The weighting factors were 

and . The second weighting factor was 
given a larger value because the error in force was typically 
on the order of a Newton while the error in torso position 
was on the order of a millimeter. The optimization cost 
function also included a penalty term for large rapid 
changes in the applied virtual force on the torso.  This 
damping term diminished high frequency force transients to 
ensure that the resulting force field was smooth. 

( )jGFsim

12
1 10=w 6

2 10=w

 
G. Virtual Model Control 
The Virtual Model Control 
(VMC) block in Figure 2 
computes the joint torques 
needed to realize the desired 
virtual forces specified by the 
optimizer.  This computation 
is based on the Jacobians 
method for the model’s legs 
[35-36].  Consider first, for 
example, the simplified, 3 
degree-of-freedom leg shown 
in Figure 3. The three joints 
for this leg are hip pitch (hp), 
knee (k), and ankle pitch 
(ap).  To simplify the 
problem even further, we 
will assume that the upper 
body (torso) is kept upright 
(i.e. hp=k-ap). The kinematic 
transform for this leg is then 
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where s and c abbreviate the sin and cos functions and 
where ( ) is the shin (thigh) segment length.   shinl thighl
 
Essentially the kinematic transform gives the position of the 
hip in terms of a coordinate frame at the foot. The position 
of the hip may then be related to the position of the center 
of mass of the upright torso. The transform Jacobian relates 
incremental changes in body position and orientation to 
incremental changes in the joint angles. The transform 
Jacobian in this case is: 
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where θ  is the vector of joint angles (ap,k,hp). 
 
  In the case of the three-dimensional 6 d.o.f. legs of 
Figure 1, the kinematic transform (for a single leg) has 6 
elements and the transform Jacobian is represented by a 
quadratic 6 by 6 matrix. The formalism in this case may be 
applied in a straightforward manner. Using a virtual work 
derivation [37] (using the fact that the total work is the 
same), we have 
 

)6(dqF T
des

T
des τ=∆  

 
where  is a 6-element virtual force vector on the body, desF

des∆  is a 6-element incremental displacement vector of the 
body, τ is a 6-element vector of joint torques and  is a 
6-element vector of incremental joint displacements. It may 
be shown that the transform Jacobian relates the 6 virtual 
forces (3 forces and 3 torques) on the torso directly with the 
6 torques applied to the leg joints, or   

dq

 

( ) (7)      1 τ
T

des JF −=  
 
For this study, the virtual model control method was 
generalized to the case of the 12 d.o.f., two-legged system 
shown in Figure 1. The left side of equation (7) was known 
by simply defining a vector of desired virtual forces. For 
the double-support case, equation (7) had 6 linear equations 
with 12 unknowns, and therefore, was a non-square, under-
constrained, linear equation problem. In this study, we 
solved this under constrained problem by using the matrix 
pseudo-inverse method [38].  This approach resulted in 
torques that satisfied the above equations but that were also 
minimized in the least-squares sense. Since this is a least-

Fig. 3.  A planar leg showing
body, thigh and shin is shown
with 3 degrees-of-freedom. The
three joints for the leg are hip
(hp), knee (k), and ankle pitch
(ap). 
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squares optimization, large internally conflicting forces 
were avoided, and the problem of the feet slipping and 
rolling due to such forces was solved. 
 
Lateral swaying motion were studied in this investigation, 
with the torso upright at all times, and maintaining constant 
vertical position.  The swaying was lateral only; there was 
no fore-aft motion.  Use of the virtual model control 
method made it easy to incorporate these constraints by 
setting the corresponding desired virtual forces according to 
simple PD control laws.  The proportional (spring), 
derivative (damping), and set points for the control laws for 
each desired virtual force are shown in Table IV. Thus, of 
the 6 elements in the desired virtual force vector (left side 
of equation 7), 5 were set according to PD control laws.  
This left only one desired virtual force (lateral force) for the 
optimizer to decide, resulting in a drastic reduction in 
dimensionality that greatly simplified the optimization task.  
 

TABLE IV 
Listed are stiffness and damping values of torso virtual model 
Desired Virtual Force Proportional 

[N/m] 
Derivative 
[N/m/s] 

Set point 
 

Vertical 60000 8000 1.04 
Fore-aft 10000 1000 0 
Roll (about fore-aft axis) 2000 200 0 
Pitch (about lateral axis) 2000 400 0 
Yaw (about vertical axis) 2000 200 0 

 
 
H. Simulation Methods 
The equations of motion were generated automatically from 
a description of the humanoid model using a commercially 
available product called SD/FAST [39].  SD/FAST used the 
morphological parameters from the bipedal model (segment 
dimensions and inertias, joint orientations) and produced 
dynamics equations where joint accelerations were 
computed from joint torques and external forces. A 4th 
order, fixed step-size Runge-Kutta integrator was used for 
all dynamic simulations with an integration step size of 

0.0012 seconds.  

III. RESULTS 
In Figure 4, we show the comparison between simulation 
results and tracked biological data as a function of percent 
time for cyclic, side-to-side lateral swaying motions in 
double-support. The upper plot corresponds to the lateral 
component of the torso origin position and the lower plot to 
the lateral component of the ground reaction force.  For 
both plots, dashed lines denote biological data and solid 
lines simulation results. Note that the biological ground 
reaction force data is just the sum of the lateral force 
components measured from each force plate.  To simplify 
the computation, the complete swaying cycle is divided into 
four segments. Here a representative quarter cycle is 
shown. At zero percent cycle, the simulation begins at the 
maximum lateral displacement of the torso origin. The 
model accurately tracks the torso origin human data (upper 

plot) and qualitatively tracks ground reaction force (lower 
plot) throughout the quarter cycle. 

Fig. 4. The simulation data and tracked biological data are shown. The 
upper plot is the lateral component of the torso origin position while the 
lower plot is the lateral component of the ground reaction force.  For 
both plots, dashed lines are biological data and solid lines simulation 
results. Data are plotted versus percent cycle time with only a quarter of 
the total swaying period represented. 

 
The lateral component of the center of pressure trajectory is 
plotted in Figure 5 versus percent time for lateral, side-to-
side swaying motions in double-support. As in Figure 4, 
only a representative quarter cycle is shown where zero 
percent cycle corresponds to the maximum lateral 
displacement of the torso origin. Dashed lines are 
biological data and solid lines simulation results. Model 
results of lateral center-of-pressure trajectory show 

Fig. 5. The lateral component of the center of the pressure
trajectory is plotted versus percent time for lateral, side-to-side 
swaying motions in double-support. Dashed lines are biological
data and solid lines simulation results. 
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reasonable agreement with the measured trajectory from the 
human test subject. 
 

IV. CONCLUSIONS 
In this study we investigate side-to-side lateral swaying 
motions of a simulated humanoid robot in standing double-
support. By using a high level optimization procedure, we 
attempt to reproduce, in terms of foot-ground interactions 
and torso dynamics, the recorded activity of a human 
subject. By advancing a humanoid simulation that tracks 
human motion and force trajectories, we extract and 
subsequently analyze a class of solutions that resemble the 
biological process of standing equilibrium. The model 
predicts how the lateral center-of-pressure (COP) position 
advances beneath the human foot for side-to-side swaying 
motions in standing double-support. 
 
A. Joint torque versus virtual force field optimization  
Researchers have recently employed machine learning by 
demonstration techniques where a robot learns how to 
control machine movements using human motion data [22-
26]. These experiments are characterized by an emphasis 
on trajectories and control laws in joint space.  In this 
paper, an alterative approach is used. We compactly 
parameterize the obtained solutions in terms of a virtual 
force field that acts on the model’s torso. We find the force 
field representation useful not only because it offers an 
efficient parameterization of the balancing control problem, 
but also because it makes the physical picture of the process 
of equilibration more readily available.  For example, it is 
intuitively obvious that lateral side-to-side swaying motions 
of the torso require a virtual restoring force in the lateral 
direction; graphs that show this behavior are easier for 
humans to understand than low-level, individual joint 
representations.  The virtual force framework also 
simplifies the process of adjusting cost functions used by 
optimization algorithms; it is easier to adjust the cost 
function weightings (priorities) in terms of high-level goals 
such as movement of the torso or ground reaction force, 
than in terms of lower level goals such as movement of an 
ankle joint.  Also, by applying high-level, virtual force 
fields, the dimensionality of the optimization space can be 
drastically reduced compared to the dimensionality 
associated with a joint space optimization. 
 
B. Future work 
In future investigations, we hope to apply the approach 
used here to more complex motions such as walking and 
running.  However, a number of problems must first be 
solved.  As presented in the results, the humanoid model 
accurately tracked torso position.  Lateral ground reaction 
force, while achieving qualitative agreement, was not 
accurately tracked by the model.  There are two reasons for 
this discrepancy.  First, the humanoid model is only a 
simplified approximation of the test subject.  In future 
work, we wish to develop more realistic models, where, for 
example, the cylindrical segment shapes are replaced with 

more realistic conical shapes, i.e. different diameters for the 
lower and upper bases.  Also, possibly for walking, and 
certainly for running, some modeling of arm dynamics will 
have to be included.  Therefore, the upper body might 
consist of three elements, torso and two arms, instead of 
just one segment as in this study. 
The discrepancy in force tracking may also have been the 
result of limitations in the optimization algorithm. A 
significant limitation was that the optimization algorithm 
considered only a very limited forward time horizon when 
making its decisions.  This limitation made the system 
susceptible to transients that “fooled” the cost function, 
causing the algorithm to make incorrect decisions.  Thus, 
increasing the time horizon to a larger number of 
simulation increments would be a resolution of this 
difficulty.  However, this modification must be done 
without greatly increasing the number of parameters being 
optimized.  Since the current algorithm requires a force 
parameter for each simulation increment, this could become 
a problem if there were a large number of increments.  The 
solution to this problem is to parameterize virtual force 
fields using high-level, reduced-order biomechanical 
models, and have the optimization algorithm adjust the 
parameters of such models. 
In this study, we advance a humanoid model that tracks 
biological ground reaction force and torso movement for 
simple standing and swaying motions. The model exhibits 
realistic foot-ground interactions, predicting the lateral 
center-of-pressure pathway beneath the foot. In the 
advancement of biomimetic control methods for humanoid 
robots and prosthetic human-machine systems, we feel the 
optimization of reduce-order force fields using human 
demonstrations is an important strategy.  
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