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In this paper, we seek control strategies for legged robots that produce resulting kinetics and kinematics 
that are both stable and biologically realistic. Recent biomechanical investigations have found that spin 
angular momentum is highly regulated in human standing, walking and running. Motivated by these 
biomechanical findings, we argue that biomimetic control schemes should explicitly control spin angular 
momentum, minimizing spin and CM torque contributions not only local in time but throughout 
movement tasks. Assuming a constant and zero spin angular momentum, we define the Zero Spin Center 
of Pressure (ZSCP) point. For human standing control, we show experimentally and by way of numerical 
simulation that as the ZSCP point moves across the edge of the foot support polygon, spin angular 
momentum control changes from regulation to non-regulation. However, even when the ZSCP moves 
beyond the foot support polygon, stability can be achieved through the generation of restoring CM forces 
that reestablish the CM position over the foot support polygon. These results are interesting because they 
suggest that different control strategies are utilized depending on the location of the ZSCP point relative 
to the foot support polygon.  
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1. Introduction 
 
The control of balance and postural stability in legged systems has been studied 
extensively by both roboticists and biomechanicists. Recently, the control of whole body 
rotational dynamics through the explicit control of angular momentum has been 
discussed in the literature.1-10 In this paper, we further discuss the high level control 
objective of spin angular momentum regulation and the Zero Spin Model discussed 
previously.1-5  We contrast our model to the recently proposed “rate of change of angular 
momentum model” that suggest that the minimization of CM torque should serve as a 
simple measure for capturing system stability.6 We argue that torque information is 
insufficient for addressing postural stability. Based on our biomechanical findings we 
anticipate that minimization of both spin angular momentum and torque is more 
appropriate for stable and biomimetic controllers. Using biomechanical and numerical 
simulation studies of human standing movements, we test different control regions based 
on the degree of spin angular momentum regulation. 
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2. Zero Spin Control and the ZSCP Point 
 
Biomechanical investigations have determined that a large class of human movements,1-5 
including standing, walking and running, support conservation of total angular 
momentum about the body’s center-of-mass (CM), ( )CMrLS

rrr
= , or  

 ( ) 0=CMrL rr
.  (1) 

Angular momentum is a conserved physical quantity for isolated systems where no 
external moments act on a body’s CM. However, in the case of legged locomotion, where 
the body interacts with the environment (ground reaction forces), there is no a priori 
reason for this relationship to hold. It is asserted here that spin angular momentum is 
highly regulated ( 0≈S

r
) by the central nervous system throughout a movement cycle.   

Since spin angular momentum is highly regulated for many human movement tasks 
the net moment (torque) about the CM point is negligible, suggesting a coupling between 
the resulting ground reaction force, the location of the CM and center of the pressure 
(CP), i.e. ZMP,11 or  

rkF
rr

δ=  ,     (2) 
where CMZZ zFzFk // −== δ  is a global body stiffness and CMCP rrr

rrr
−=δ  .  

       Critical to advancing humanoid control systems that reproduce human like 
movements, a humanoid control system must minimize the spin angular momentum. We 
therefore propose the Zero Spin Control strategy representing any control framework that 
tries to minimize global spin angular momentum, i.e. whole body angular momentum 
about the CM point. If the whole body state is such that spin is not zero then the zero spin 
controller will apply corrective torques to minimize the spin quantity. A necessary but not 
sufficient condition for the minimization of global spin angular momentum throughout a 
movement cycle is that the physical CP tracks the Zero Spin Center of Pressure ZSCP 
defined using Eq. (2), or 

k
Frr CMZSCP

r
rr

+=     (3) 

      Using space-time optimization techniques12 and a morphologically realistic human 
model, Popovic et al. predicted biologically realistic joint angle trajectories when 1) 
global spin angular momentum was minimized, 2) the physical CP tracked the ZSCP 
trajectory and in addition 3) the sum of joint torque-squared were minimized.4 
       Goswami and Kallem recently proposed a similar, but distinct, control strategy where 
CM torque is minimized instead of spin angular momentum.6 It is well known that the 
rate of change of angular momentum is equal to the net torque about the CM. Therefore 
this control strategy also tries to keep spin angular momentum constant but without 
preference for the actual value of that constant. However, the human body is not a wheel 
that can rotate at constant non-zero angular momentum. Therefore, if rotational stability 
is in advance restricted to one constant value of the angular momentum in horizontal 
plane than this value oaths to be zero. Obviously a constant and non-zero value of spin 
angular momentum would eventually lead to instabilities in postural balance. Hence, we 
state here that for legged systems, it is not sufficient for the controller to only minimize 
CM torque, but rather the system must also minimize the global spin angular 
momentum.1-5 
 
 
3. Zero-Spin Control: Region of Applicability 
 
Stability in bipedal systems does not always require that spin angular momentum remains 
small. Clearly, there exist many bipedal movements for which large variations in spin 
angular momentum occur without loss of system stability. Examples of unsteady 
movements when spin angular momentum is non-zero are locomotory turning maneuvers 
and double support swiveling actions. In this section we present biomechanical evidence 
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in support of the idea that bipedal stability does not always require spin angular 
momentum minimization by a control system. In addition, our experimental data supports 
the hypothesis that two distinct postural balance strategies are active during human 
balance. In a first strategy, the physical CP tracks closely the ZSCP point, keeping the 
CM moments small and the spin angular momentum near zero. In a second strategy, the 
ZSCP falls outside the foot support polygon, forcing the body to counteract destabilizing 
CM moments through a re-distribution of body segment orientations. Finally, we discuss 
a simple thought experiment related to the dynamics of balance beam balancing and show 
that there are situations when system instability may arise even when spin angular 
momentum is regulated.   
 
3.1. Biomechanical Investigation: Hula-Hoop Twirling Movements   
 
As explained in the previous section, the actual CP, in biological or robotic systems, will 
differ from the ZSCP if spin angular momentum is not precisely regulated. In this context 
non-regulation means that spin torque is different from zero. As discussed in Popovic et 
al. significant separation distances between the ZSCP and the actual CP are expected for 
at least two distinct physical situations:4  
 
(i) When the ground reaction force is so large that the ZTCP point moves outside 

the foot-support polygon.  
(ii) When sudden and large turning motions occur (non-zero vertical torque) rotating 

the ZTCP point away from the actual CP location. 
 
In the first case, the switching of control strategy from regulation to non-regulation was 
recently observed for hula-hoop twirling movements. For these rotational movements, 
ground reaction forces, CP trajectory, and kinematic data were obtained in the Gait 
Laboratory of Spaulding Rehabilitation Hospital, Harvard Medical School. For the 
standing task of interest, a healthy normal subject rotated his hips (similar to how one 
twirls a hula hoop) at an increasing and then decreasing speed for about ten seconds. The 
ground reaction forces were measured using two AMTI forceplates (model OR6-5-1, 
AMTI, Newton, MA) at the frequency of 1080 Hz. The forceplates had a precision of 
approximately 0.1 Newton. The limb trajectories were acquired using an infrared VICON 
Motion Capture system (VICON 512, Oxford Metrics, Oxford, England). Thirty-three 
markers were placed on the subject’s body: sixteen lower body markers, five trunk 
markers, eight upper limb markers and four head markers. Motion data were gathered at a 
frequency of 120 Hz. Depending on the position and movements of the subject, the VMC 
could detect marker positions with a precision of a few millimeters. 
      The human model,4 used for analysis consisted of 16 links: right and left feet, shanks, 
thighs, hands, forearms, upper arms, the pelvis-abdomen region, the thorax, the neck and 
the head. The feet and hands were modeled as rectangular boxes. The shanks, thighs, 
forearms and upper arms were modeled as truncated cones. The pelvis-abdomen link and 
the thoracic link were modeled as elliptical slabs. The neck was modeled as a cylinder and 
the head was modeled as a sphere. This model is shown in Fig. 1. About twenty physical 
measurements of the subject’s links dimensions were taken to accurately model the 
subject. Based on the links’ dimensions the link’s masses and densities were modeled to 
closely match the experimental values.13-14 The human model had a total of 38 degrees of 
freedom; 32 internal degrees of freedom (12 for the legs, 14 for the arms and 6 for the rest) 
and 6 external degrees of freedom. 
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Fig. 1. Morphologically realistic human model. 
 
 
      When the rotational movements first began, while joint speeds were still small, the 
ZSCP was found to be inside the foot support polygon. However, when overall speed 
became substantial, the ZSCP left the foot support polygon. It was observed that while 
the ZSCP was confined within the foot-support polygon, the actual CP was found to track 
the ZSCP with reasonable precision. However, immediately after the ZSCP left the foot-
support polygon, the actual CP returned to the proximity of the center of the foot-support 
polygon as the ZSCP continued to operate outside the foot support polygon. 

   ZTCP

ZMP/CP

 

 
Fig. 2. When the ZSCP left the foot support polygon, the CP returned to the center of the foot support polygon. 
 
 
      The observation that the CP tracked ZSCP, while inside the foot support polygon, 
was expected. As stated earlier, the same phenomenon was observed for normal human 
walking and motivated the biomimetic zero spin control strategy.1-5 By definition, the CP 
cannot leave the foot support polygon and hence, the CP cannot possibly track the ZSCP 
after the ZSCP has left the foot support polygon. The instant when the ZSCP point left the 
foot support polygon, therefore, indicated the instant when non-zero CM torques were 
necessarily present in the system. However, it was not anticipated that the CP would 
return to the center of the foot support polygon after the ZSCP left the foot support 
polygon. If the control strategy only tries to minimize the spin and the torque as 
suggested with Zero Spin Control,4 one would expect the CP trajectory to be very close 
to the edge of the foot support polygon – but that was not supported by our experimental 
findings. 
      We dub this interesting phenomenon, coinciding with the moment when ZSCP 
crosses the edge of the foot support polygon, as a “phase transition” or “switching 
mechanism” in between two distinct postural balance strategies. 
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Fig. 3. The experimental data (thin line) and zero-spin model (thick line) dimensionless ground reaction forces 
for the hula-hoop twirling like motion. Plotted vertically is a dimensionless force equal to the medial-lateral 
ground reaction force divided by the global body stiffness (defined in Eq. (2)) and the maximum radius of the 
foot support polygon. Significant CM torques occurred when the dimensionless horizontal force were greater 
than one. 
 
 
      We showed previously that zero torque condition is equivalent to the non-linear 
coupling between CP, CM and ground reaction force.1-5 This coupling may be tested by 
comparison of zero spin model force with experimental force data. In Fig. 3, we show 
model and experimental forces for hula-hoop twirling body motions. Note that a large 
difference between the two curves means a large CM torque present in the system. 
Immediately after the ZSCP left the foot support polygon at 4≈t s, the agreement 
between model and measured force became significantly poorer. 
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Fig. 4. The balance “phase transition” illustrated with crosses and stars for anterior-posterior and medial-lateral 
directions, respectively. Solid line corresponds to the theoretical prediction based purely on the zero spin 
control strategy.  
 
 
For each half-period of hula-hoop cyclic motion, we found the peak force difference (i.e. 
max-min) for both experimental and model forces, i.e. expFδ  and elFmodδ , 
respectively. In Fig. 4, we use these quantities to further illustrate the “phase transition” 
behavior between two control strategies. Dimensionless elFF modexp δδ  versus 

)(max modexp elFF δδ   is shown for both anterior-posterior and medial-lateral 

directions. Here )(max mod elF
r

δ  is defined as ( )r
Z
F

CM

Z
RG r

max
|| ..  with ( )r

r
max  equal to the 

maximum radius of the foot support polygon (i.e. with direction defined by the actual 
( )horizontalCPCM rr

rr
−  direction). If the control strategy is designed to minimize the spin 

as suggested in [1-5] all the points should be grouped about the solid line. While this is 
closely satisfied for 1)(max modexp ≤elFF δδ  it is clearly not true for 

1)(max modexp >elFF δδ  when ZSCP point is outside the foot support polygon. 
      One possible rationale for this observation is that with large force and torques the 
error in CP is likely to be large. Therefore in the interplay between several control targets 
one might prefer to minimize the possibility of CP being at the edge of the foot support 
polygon or alternatively in the single support phase the Foot Rotation Indicator (FRI)15 

point being beyond this enclosed area. Clearly the best way to do so is to position the CP 
in the center of foot support polygon.    
      In the next subsection we present a thought experiment clearly illustrating that there 
are situations when system instability may arise even when spin angular momentum is 
regulated. 
 
 
3.2. Thought Experiment: Balance Beam Balancing   
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Consider the problem of postural balance in the coronal plane for the situation when a 
gymnast is attempting to remain upright on a balance beam. As a simplification, imagine 
that the beam has infinitesimal thickness and that the CP trajectory is confined to a single 
point. We set the CP to be located at origin of the reference frame, or 0=CPx . Clearly, 
the body posture is statically unstable and the control goal for static equilibrium is to 
have the CM positioned just above the CP location, or 0=CMx .  

      Now consider a small perturbation such that 0>CMx , 0=CMv , ( ) 0=CM
y rL
r

(i.e. 

zero spin) and ( ) 0=CM
y r
r

τ (i.e. zero spin torque implying ZSCP=CP). If the Zero Spin 
control strategy is to be satisfied then torque should remain zero. However, this situation 
requires that the ground (beam) reaction force vector is parallel to CPCM rr

rr
− . Therefore, 

the horizontal force is positive, further destabilizing the gymnast’s posture.    

x 

ZSCP=CP 

τ=0 

 
 
 
 
 

X  CM
 
FG.R. 

 
Figure 5. The Zero Spin Control strategy acting alone would further destabilize an unstable posture. 
 
 
Clearly, in this situation the right way to balance is to have a negative restoring force that 
will counteract the destabilizing gravitational force to bring the CM point just above the 
CP point. However, this action requires that the ZSCP point moves in the positive x 
direction, to the right of the CM point, and away from the CP point and the foot support 
polygon. Of course when the gymnast’s posture is finally stabilized, the ZSCP point will 
coincide with the CP point; however, in terms of the postural control, it is the 
intermediate ZSCP trajectory that matters. 



 8

x 

CP 

τ≠0 

ZSCP

 
 
 
 
 

X  CM

 
Figure 6. The ZSCP point should move to the right of the CM point in order to stabilize the unstable posture. 
 
 
Control issues are much subtler when the CP point is confined to a very small area. From 
a knowledge of system state, the CM location can be computed. With both the CP and 
CM positions defined, there is then a unique one-to-one relationship between the global 
dynamical variables, or the CM torque and the total ground reaction force. If during 
particular physical situation, the control of the translational CM degree of freedom is 
more important for stability than the control of the global rotational degree of freedom, 
then the CM torque may be nonzero and spin non-regulated (in terms of emergent 
behavior). 
      In the next section we introduce the simple toy model and numerically estimate its 
regions of spin regulation, non-regulation and instability. 
 
 
4. Balancing Toy Model 
 
We now describe a simple model that illustrates the previously discussed concepts.  The 
model’s simplicity allows for use of a relatively simple, direct control law, and allows for 
comprehensive analysis of stability in the presence of significant disturbances.  Although 
the model has many simplifying assumptions, it still illustrates key aspects of balance 
behavior.  For example, this model shows clearly when and why the ZSCP has to leave 
the foot support polygon. 
      The controller described here is related, conceptually, to the much more complex 
controller described previously.16 The latter is a controller for a much more complex 
plant, and it uses a feedback linearization approach, combined with a quadratic 
programming algorithm to solve an optimal multivariable control problem.  Although this 
approach is elegant in its formulation, it is computationally intensive, and it is difficult to 
make assertions about stability because the control actions are taken as a result of the 
complex optimization algorithm machinery, rather than by more conventional, direct 
control laws.  Thus, the reason for investigating the simplified model presented here is to 
see whether simpler, more direct control laws could be used, and to compute stability 
bounds. 

 

4.1 Model Definitions 
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Consider the simplified two-link 2-D model shown in Fig. 7. 
 

Zero mass

Limited support
polygon

COM

Z

X
τ

θ

 
 
Fig. 7. The Simplified Toy Model.. 
 
 
      The model consists of three links:  a body link representing the upper body, head, 
arms and swing leg, lumped together, a stance link representing the stance leg, which is 
assumed to have zero mass, and a foot link (base of support), which is aligned with the 
ground and which has limited extent.  The joint between the foot link and the stance leg is 
the “ankle” joint, and the joint between the stance leg and the body is the “hip” joint.  
Both of these joints are actuated.  The body link is symmetric about the hip joint, so the 
CM of the system is always located at this joint.   
      The torque balance equation for this model is  
 ( ) )(0 CMorbitalankle xττττ +==      (4) 
where, ankleτ  is the “stance ankle” torque in Fig. 7, given by 
 ( )gzMx CMFRIankle += &&1τ      (5) 

and FRIx  is the location of the FRI point.15  orbitalτ  is the torque of the COM about the 
stance ankle joint (origin), and is given by 
 ( ) CMCMCMCMorbital zxMgzxM &&&& 11 −+=τ     (6) 

where 1M  is the mass of the body link .  This is also the rate of change of orbital angular 
momentum of the system. ( )CMxτ  is the torque about the CM, i.e. spin torque, given by 

 ( ) θτ &&IxCM −=        (7) 
where I  is the inertia of the body link.  This is the rate of change of the spin angular 
momentum about the CM.    
      Eq. (4) is equivalent to defining FRI equation,15 and Eq. (5 – 7) represent a 
specialization of this equation for the simplified model.  Eq. (4) clearly shows the 
tradeoff between orbital and spin terms.  Note that if there is no actuation at the stance 
ankle, then orbital and spin components must balance, as would be expected from 
conservation of angular momentum. 
      Now, suppose that the support polygon extends from the origin in both directions 
along the x axis by an amount supp_boundx .  To prevent the foot from rolling, the stance 
ankle torque must stay within the following limit: 
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 ( ) ( ) max1supp_bound0 ττ =+≤ gzMx CM&&     (8) 

Note that this corresponds to the FRI point staying within the support polygon,15 

 supp_boundxxFRI ≤       (9) 
 

4.2. Balance Control  
 
Let’s suppose that the primary (most important) control output is CMx .  Suppose that 

CMx&&  is computed based on a simple PD control law.  Then, assuming appropriate 
feedback linearization of the system, the trajectory for CMx  is known analytically for all 
time given any initial condition (it is the solution of a simple linear second-order system).  
Since CMz  is directly related to CMx  via simple trigonometric functions, orbitalτ  can be 
computed using Eq. (6), so its trajectory is also known. 
      Specifically, assuming a simple PD control law with position gain pk  and damping 

gain dk , the general solution for CMx  is 

( ) ( )( ) set
t

COM xtiKtKex ++= ββα sincos 21     (10) 

( ) ( )( ) ( ) ( )( )( )tiKtKtiKtKex t
COM ββαβββα sincoscossin 2121 +++−=&  

where 
 

( ) setCM xxK −= 01  , ( )( ) βα /012 CMxKiK &−=  

2
dk−

=α  , 
2

42
pd kki −−

=β      (11) 

 
The acceleration trajectory is computed using Eqs. (10-11), along with the PD control 
law 
 CMpCMdCM xkxkx −−= &&&      (12) 
Vertical center of mass position is computed using 

 22
CMCM xlz −=       (13) 

Taking the second derivative yields CMz&& .  Values for CMx , CMx&& , CMz , and CMz&&  can 

be substituted into Eq. (6) to compute orbitalτ . 
      Following the approach of using slack variables in the previous optimal controller 
implementation,16 it is useful to separate ( )CMxτ  into two parts: 
 ( ) slackspindesspinCMx __ τττ +=      (14) 

where desspin _τ  is computed by a PD control law.  Eq. (4) then can be written as 

 ( ) slackspindesspinorbital __ 0 ττττ −=+     (15) 
The left-hand side can be computed analytically for any initial condition in the manner 
described in the previous section.  The values on the right-hand side need to be 
determined, subject to the restriction on maximum ankle torque, and Eq. (15).  The 
following control law makes slackspin _τ  as small as possible.   

 If  
  max_ τττ ≤+ desspinorbital  

 then 
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  ( ) desspinorbital _0 τττ +=  

  0_ =slackspinτ  
 else 
  ( ) max0 ττ =  
  ( ) desspinorbitalslackspin __ 0 ττττ −−=  
Note that this control law behaves in a manner similar to the one in the optimal controller 
implementation.16 The difference is that this one is direct; it does not require running a 
quadratic program optimizer. 
      All that remains in order to prove stability is to show that slackspin _τ  is transient and 

appropriately bounded.  Actually, it is more precise to show that ( )CMxτ  and its 

integrals (and therefore θ&&  and its integrals) are transient and appropriately bounded. 

 

4.3. Stability and Bounds on Spin Torque 
 
Because CMx  behaves linearly, as discussed previously, this output is stable, as is the 

directly related value orbitalτ .  As mentioned previously, the remaining task is to show 

that ( )CMxτ  and its integrals (and therefore θ&&  and its integrals) are transient and 
appropriately bounded. 
      Assuming, for simplicity, that 1=I  Eq. (4) simplifies to ( ) θτ &&−=CMx . Thus, Eqs. 

(15, 13, 12, and 10) can be used to compute θ&& .  This is then integrated (either 
numerically, or analytically) to compute trajectories for θ , θ& .  The constants of 
integration are determined from initial conditions on θθ &, .  Thus, it is very easy to check 

whether bounds on θθ &,  will be violated.  In essence, the gap between the initial values 

for θθ &,  and the bounds on θθ &,  is a “reservoir” of spin torque ( )CMxτ  that can be 
used to assist )0(τ .  This reservoir is limited.  Its size depends on the initial values for 

θθ &,  and the bounds on θθ &, . 
      Trajectories using the above described methods are shown in Fig. 8. 
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Fi
Fig. 8. CM lateral position, CM lateral velocity, theta, and angular velocity are plotted versus time. As can be 
seen, theta deviates significantly from its desired value of 0, but theta and the derivative of theta (theta dot) do 
stay within reasonable bounds (maximum rotation of the body link is 0.2 radians). 
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Fig. 9. Solid line shows orbital torque versus time.  Dotted line shows maximum ankle torque. 
 

 
Fig. 10. Solid line shows the CP point, which stays within the support polygon boundary of 0.05 m. Dotted line 
shows the ZSCP point.  Note that this begins outside the foot support polygon boundary. As can be seen, the CP 
remains within the bounds of the support polygon, but the ZSCP does not.  This is consistent with the bulge in 
theta in the Fig. 8. 
 
 
The methods described above can also be used within a simple optimization algorithm to 
determine maximum initial CM x position for a range of initial theta positions, as shown 
in the following plot. 
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Fig. 11. Maximum stable initial lateral CM deflection as a function of initial hip joint angle position.  As the hip 
joint angle increases, the reservoir of stability is reduced, and the maximum initial lateral CM deflection such 
that the system is stable decreases.  Eventually, it reaches 0.05, which is the limit of the support polygon.  
Within the support polygon, the system can always be stabilized using ankle torque only, so initial hip joint 
angle is no longer a factor. 
 
 
A similar technique can be used to determine maximum initial CM x position for a range 
of initial CM x velocities, as shown in the following plot. 
 

 
Fig. 12. Maximum stable initial lateral CM deflection as a function of initial lateral COM velocity. If the CM is 
already moving towards the origin (in the negative direction in this case), the initial deflection can be large.  If 
the COM is moving away from the origin (in the positive direction), the initial deflection has to be smaller if the 
system is to stabilize. 
 
 
There is an important difference in the way that orbitalτ  and desspin _τ  are pre-determined.  

Because orbitalτ  is solely a function of the primary output, it is pre-determined 

completely and independently for all time.  desspin _τ , on the other hand, is a function of 
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( )CMxτ , which is affected by slackspin _τ , which, in turn, is affected by orbitalτ .  Thus, 

desspin _τ  can be pre-determined, but as a function of orbitalτ ;  it is not independent. 
 
 

5. Summary 
 
In this paper, we seek control strategies for legged robots that produce resulting kinetics 
and kinematics that are both stable and biologically realistic. Since the regulation of spin 
angular momentum has been observed in human standing, walking and running 
movements,1-5 we argue that biomimetic control schemes should explicitly control spin 
angular momentum, minimizing spin and CM torque contributions not only local in time 
but throughout movement tasks. Assuming a constant and zero spin angular momentum, 
we define the Zero Spin Center of Pressure (ZSCP) point. For human standing control, 
we show experimentally and by way of numerical simulation that as the ZSCP point 
moves across the edge of the foot support polygon, spin angular momentum control 
changes from regulation to non-regulation. However, even when the ZSCP moves beyond 
the foot support polygon, stability can be achieved through the generation of non-zero 
spin angular momentum and restoring CM forces that reestablish the CM position over 
the foot support polygon. In the design of control systems for legged biomimetic systems, 
we feel the location of the ZSCP point relative to the foot support polygon is an important 
design consideration. 
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