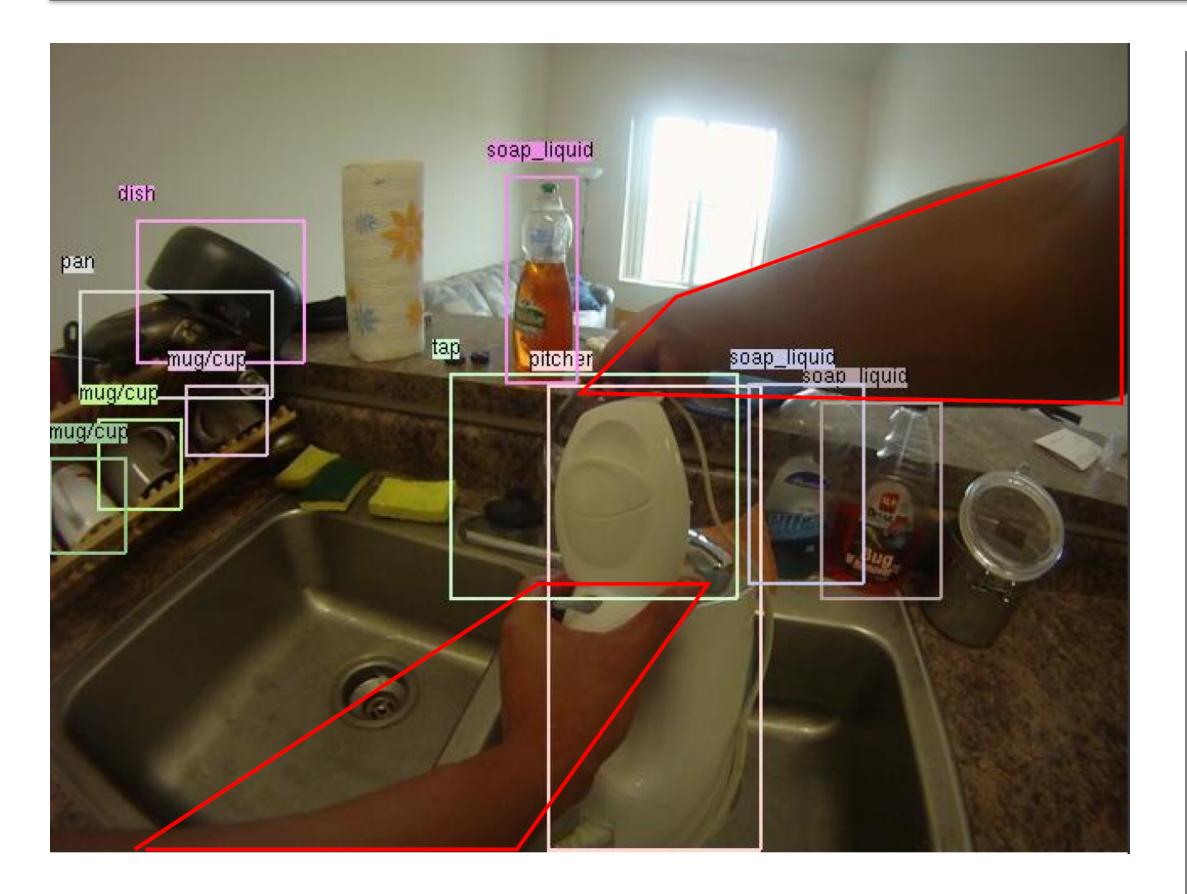
Detecting Activities of Daily Living in First-person Camera Views

Hamed Pirsiavash, Deva Ramanan



Motivation:

 Activity recognition is less well defined compared to object detection since it is difficult to:

- Define domain independent <u>categories</u>
- <u>Collect</u> natural footage with large intra-class variation
- We detect activities of daily living (ADLs) from first person wearable cameras
 - ADL categories derived from
 - medical literature on rehabilitation
 - Capturing data is <u>easy</u>.

Applications:

- Tele-rehabilitation
- Long-term, at-home monitoring instead of short-term inpatient care Life-logging
 - Process visual personal histories, avoiding "write-only" memories

Our contributions:

- Novel representations
- Dataset

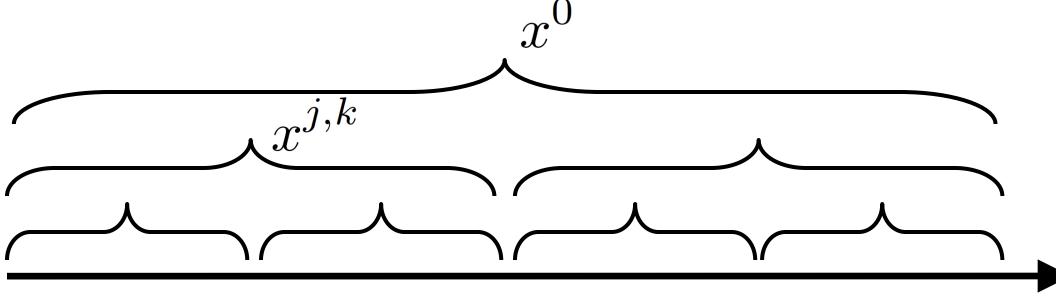
Novel representations:

• Object-centric activity models

• <u>Bag of objects</u> instead of bag of xyt interest points (STIP)

Temporal pyramid

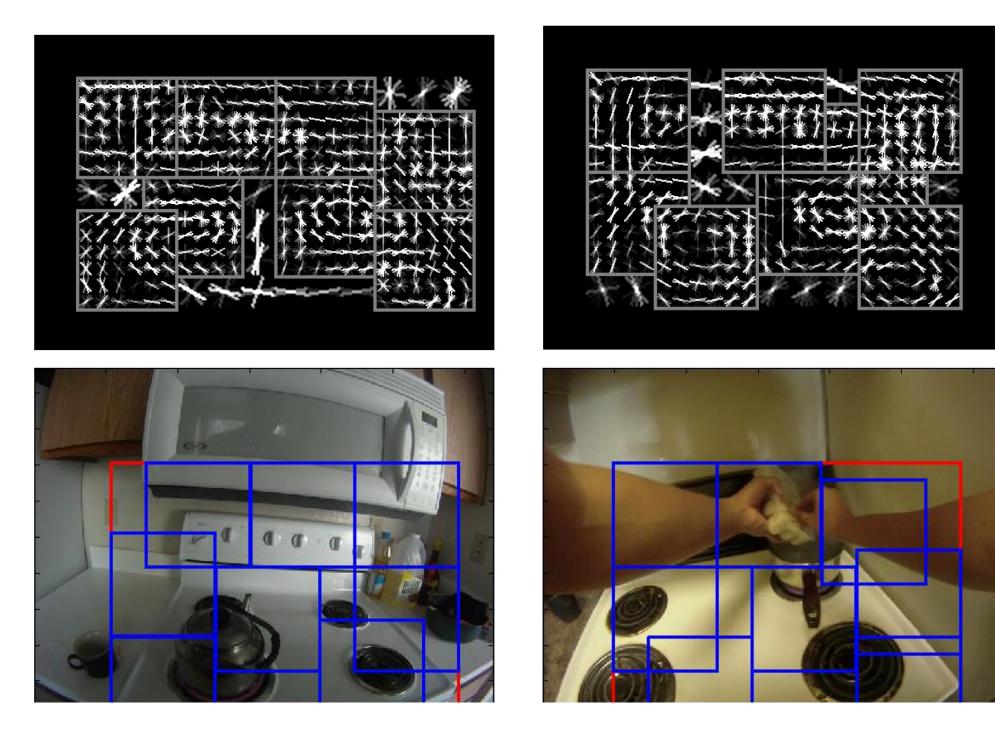
- Similar to spatial pyramid
- Models actions with long-term dependencies, eg. making tea
- Encodes temporal correspondence between model and data



Computational Vision Lab, University of California Irvine, CA, USA

Composite object models

- Objects look different when being interacted with
- Learn separate detectors for <u>active</u> and <u>passive</u> objects



Activity descriptor

• Score of the i' th object detector at point p = (x, y, s) $\operatorname{score}_{i}^{t}(p) \in [0, 1]$

 $f_i^t = \max \operatorname{score}_i^t(p)$

 $x_i^0 = \frac{1}{|T|} \sum_{t \in T} f_i^t$

• The best detection:

• j ' th level of the pyramid:

$$x_i^{j,k} = \frac{2^j}{|T^{j,k}|} \sum_{t \in T^{j,k}} f_i^t \quad ; \quad \forall k \in \{1...2^j\}$$

• Pyramid descriptor:

$$x = \begin{bmatrix} x_1^0 & \dots & x_i^{j,k} \dots & x_K^{L,2^L} \end{bmatrix}^T$$

• Learn activity-specific classifiers (SVMs)

Dataset:

- Size
 - One million frames, 10 hours of near-continuous video
 - 20 people, 20 homes

Annotation

 Activity label, object bounding box, object identity, and humanobject interaction

• Characteristics: Large variation in...

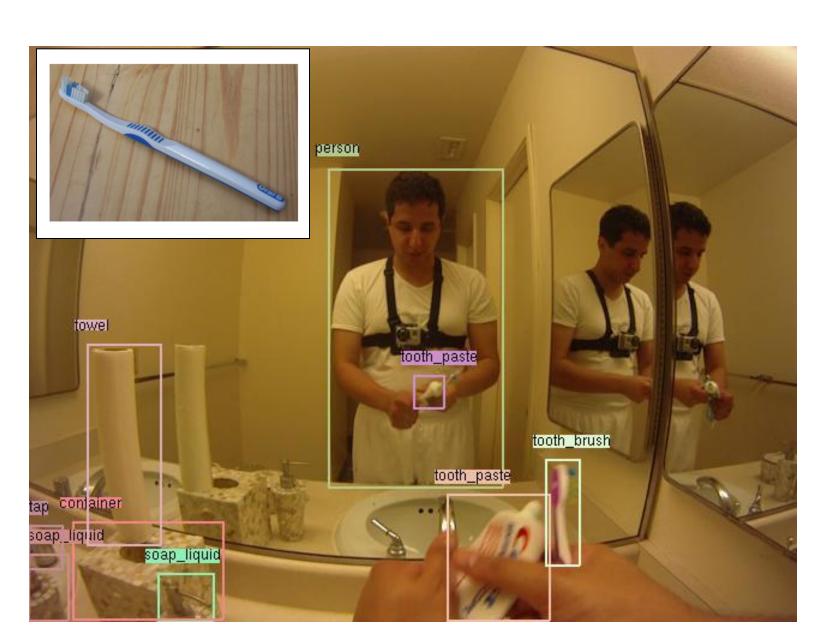
- Scenes (cf. existing wearable datasets)
- Object viewpoints/occlusions (cf. existing image datasets)
- Un-segmented variable-length activities (cf. action datasets)

Functional Taxonomy

• Non scripted ADL's

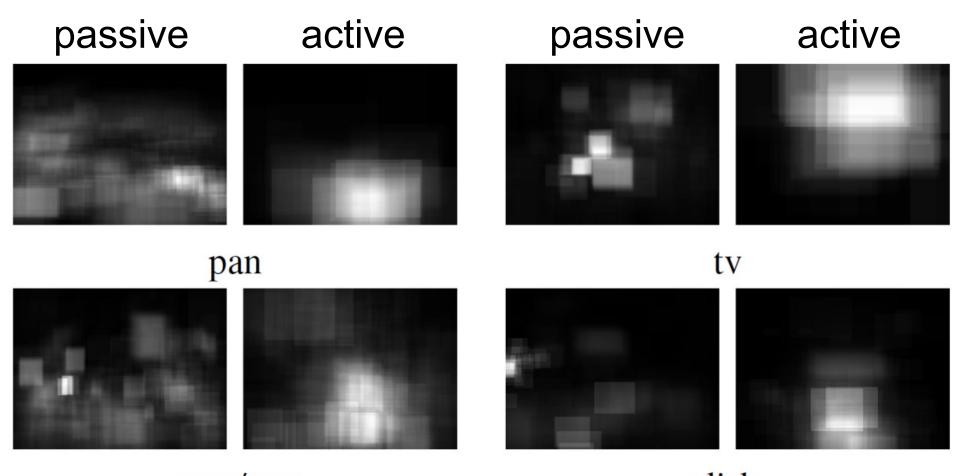
{hpirsiav, dramanan} @ ics.uci.edu

Variation in object state



Variation in object viewpoint

Variation in scenes



dish mug/cup Location and scale of active versus passive objects

Results:

Models

Conclusions:

 Real-world ADL recognition is "all about objects" and importantly, "objects being interacted with" Functional loss correlates with scene context Looking ahead: better models of object viewpoint, occlusion, and functional interactions

• **STIP:** space-time interest points (baseline) • **O:** Bag/pyramid of <u>objects</u> • AO: Bag/pyramid of <u>active objects</u> • IO: Bag/pyramid of ideal objects • IA+IO: Bag/pyramid of ideal objects and ideal active objects

	pre-segmented			
	class. accuracy		taxonomy loss	
	pyramid	bag	pyramid	bag
STIP	22.8	16.5	1.8792	2.1092
0	32.7	24.7	1.4017	1.7129
AO	40.6	36.0	1.2501	1.4256
ΙΟ	55.8	49.3	0.9267	0.9947
IA+IO	77.0	76.8	0.4664	0.4851

