Detecting Activities of Daily Living in First-person Camera Views

Hamed Pirsiavash, Deva Ramanan

Computer Science Department, UC Irvine

Motivation

0000

A sample video of Activities of Daily Living

Applications Tele-rehabilitation

Long-term at-home monitoring

- Kopp et al,, Arch. of Physical Medicine and Rehabilitation. 1997.
- Catz et al, Spinal Cord 1997.

Applications Life-logging

So far, mostly "write-only" memory!

This is the right time for computer vision community to get involved.

- Gemmell et al, "MyLifeBits: a personal database for everything." Communications of the ACM 2006.
- Hodges et al, "SenseCam: A retrospective memory aid", UbiComp, 2006.

Related work: action recognition

There are quite a few video benchmarks for action recognition.

UCF sports, CVPR'08

Hollywood, CVPR'09

KTH, ICPR'04

UCF Youtube, CVPR'08

Olympics sport, BMVC'10

VIRAT, CVPR'11

Collecting interesting but natural video is surprisingly hard. It is difficult to define action categories outside "sports" domain

Wearable ADL detection

It is easy to collect natural data

Wearable ADL detection

It is easy to collect natural data

ADL actions derived from medical literature on patient rehabilitation

Outline

- Challenges
 - What features to use?
 - Appearance model
 - Temporal model
- Our model

 "Active" vs "passive" objects
 Temporal pyramid
- Dataset

• Experiments

8

Challenges What features to use?

Low level features

(Weak semantics)

High level features

(Strong semantics)

Space-time interest points Laptev, IJCV'05

Human pose

Difficulties of pose:

- Detectors are not accurate enough
- Not useful in first person camera views

Challenges What features to use?

Low level features

(Weak semantics)

High level features

(Strong semantics)

Space-time interest points Laptev, IJCV'05 Human pose

Object-centric features

Difficulties of pose:

- Detectors are not accurate enough
- Not useful in first person camera views

Challenges Occlusion / Functional state

"Classic" data

Challenges Occlusion / Functional state

Challenges long-scale temporal structure

"Classic" data: boxing

Challenges long-scale temporal structure

"Classic" data: boxing

Wearable data: making tea

Outline

- Challenges
 - What features to use?
 - Appearance model
 - Temporal model
- Our model
 - "Active" vs "passive" objects
 - Temporal pyramid
- Dataset

• Experiments

"Passive" vs "active" objects

Passive

Active

"Passive" vs "active" objects

Passive

Active

"Passive" vs "active" objects

Passive

Active

Better object detection (visual phrases CVPR'11) Better features for action classification (active vs passive)

Appearance feature: bag of objects

Appearance feature: bag of objects

Temporal pyramid

Coarse to fine correspondence matching with a multi-layer pyramid

Inspired by "Spatial Pyramid" CVPR'06 and "Pyramid Match Kernels" ICCV'05

Outline

- Challenges
 - What features to use?
 - Appearance model
 - Temporal model
- Our model

 "Active" vs "passive" objects
 Temporal pyramid
- Dataset

• Experiments

22

making cold food/snack Rinerspoorhorit mug/cup dish knife/spoon/fork

Wearable ADL data collection

- 20 persons
- 20 different apartments
- 10 hours of HD video
- 170 degrees of viewing angle
- Annotated
 - Actions
 - Object bounding boxes
 - Active-passive objects
 - Object IDs

Prior work:

- Lee et al, CVPR'12
- Fathi et al, CVPR'11, CVPR'12
- Kitani et al, CVPR'11
- Ren et al, CVPR'10

Average object locations

pan

Passive

Active

Active objects tend to appear on the right hand side and closer

- Right-handed people are dominant
- We cannot mirror-flip images in training

Outline

- Challenges
 - What features to use?
 - Appearance model
 - Temporal model
- Our model

 "Active" vs "passive" objects
 Temporal pyramid
 - romporar pyrar
- Dataset

Experiments

Experiments

Baseline

Space-time interest points (STIP) Laptev et al, BMVC'09

Our model

Object-centric features

24 object categories

High level features

Low level features

Accuracy on 18 action categories

• Our model: 40.6%

• STIP baseline: 22.8%

Accuracy on 18 action categories

• Our model: 40.6%

• STIP baseline: 22.8%

	Classification
	accuracy
Bag of STIP	16.5
Temporal pyramid of STIP	22.8

• Temporal model helps

	Classification
	accuracy
Bag of STIP	16.5
Temporal pyramid of STIP	22.8
Object detectors	32.7

- Temporal model helps
- Our object-centric features outperform STIP

	Classification
	accuracy
Bag of STIP	16.5
Temporal pyramid of STIP	22.8
Object detectors	32.7
Active/passive object detectors	40.6

- Temporal model helps
- Our object-centric features outperform STIP
- Visual phrases improves accuracy

	Classification
	accuracy
Bag of STIP	16.5
Temporal pyramid of STIP	22.8
Object detectors	32.7
Active/passive object detectors	40.6
Ideal active/passive object detectors	77.0

- Temporal model helps
- Our object-centric features outperform STIP
- Visual phrases improves accuracy
- Ideal object detectors double the performance

	Classification
	accuracy
Bag of STIP	16.5
Temporal pyramid of STIP	22.8
Object detectors	32.7
Active/passive object detectors	40.6
Ideal active/passive object detectors	77.0

- Temporal model helps
- Our object-centric features outperform STIP
- Visual phrases improves accuracy
- Ideal object detectors double the performance

Results on temporally continuous video and taxonomy loss are included in the paper

Summary

Data and code will be available soon!

Summary

Data and code will be available soon!

Summary

Data and code will be available soon!

