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Motivation 
A sample video of Activities of Daily Living 
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Applications 
 Tele-rehabilitation 

•  Kopp et al,, Arch. of Physical Medicine and Rehabilitation. 1997. 

•  Catz et al, Spinal Cord 1997. 

Long-term at-home monitoring 



Applications 
 Life-logging 

•  Gemmell et al, “MyLifeBits: a personal database for everything.” Communications of the ACM 2006. 

•  Hodges et al, “SenseCam: A retrospective memory aid”, UbiComp, 2006. 

So far, mostly “write-only” memory! 

This is the right time for computer vision community to get involved. 
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There are quite a few video benchmarks for action recognition. 
 
 
 
 
 
 
 
 
 
 

Collecting interesting but natural video is surprisingly hard.  
It is difficult to define action categories outside “sports” domain 

Related work: action recognition 
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UCF sports, CVPR’08 

UCF Youtube, CVPR’08 

KTH, ICPR’04 

Hollywood, CVPR’09 

Olympics sport, BMVC’10 

VIRAT, CVPR’11 
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Wearable ADL detection 

It is easy to collect 
natural data 
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Wearable ADL detection 

ADL actions derived from medical 
literature on patient rehabilitation 

It is easy to collect 
natural data 
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•  Challenges 
–  What features to use? 
–  Appearance model 
–  Temporal model 

•  Our model 
–  “Active” vs “passive” objects 
–  Temporal pyramid 

•  Dataset 

•  Experiments 
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Outline 
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Challenges 
 What features to use? 

Low level features 

(Weak semantics) 

 

High level features 

(Strong semantics) 

Human pose 

Difficulties of pose: 
•  Detectors are not accurate enough 
•  Not useful in first person camera views 

Space-time interest points 

Laptev, IJCV’05 
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Challenges 
 What features to use? 

Low level features 

(Weak semantics) 

 

High level features 

(Strong semantics) 

Human pose Object-centric features Space-time interest points 

Laptev, IJCV’05 
Difficulties of pose: 
•  Detectors are not accurate enough 
•  Not useful in first person camera views 
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Challenges 
Occlusion / Functional state 

“Classic” data 



Challenges 
Occlusion / Functional state 

Wearable data 

“Classic” data 
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Challenges  
long-scale temporal structure 

“Classic” data: boxing 



Challenges  
long-scale temporal structure 

time 
Start boiling 

water 
Do other things 
(while waiting) 

Pour in cup Drink tea 

Difficult for HMMs to capture long-term temporal dependencies 

Wearable data: making tea 

“Classic” data: boxing 



•  Challenges 
–  What features to use? 
–  Appearance model 
–  Temporal model 

•  Our model 
–  “Active” vs “passive” objects 
–  Temporal pyramid 

•  Dataset 

•  Experiments 
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Outline 
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“Passive” vs “active” objects 

Passive Active 
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“Passive” vs “active” objects 

Passive Active 17 



“Passive” vs “active” objects 

Passive Active 

Better object detection (visual phrases CVPR’11) 
Better features for action classification (active vs passive) 
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Appearance feature: bag of objects 

Bag of detected objects 

fridge TV stove 

fridge TV stove 

SVM 
classifier 

Video clip 
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Appearance feature: bag of objects 

Bag of detected objects 

SVM 
classifier 

Video clip 

Active 
fridge 

Active 
stove 

Passive 
fridge 

Active 
fridge 

Active 
stove 

Passive 
fridge 
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Inspired by “Spatial Pyramid” CVPR’06 and “Pyramid Match Kernels” ICCV’05 

Temporal pyramid 
Coarse to fine correspondence matching with a multi-layer pyramid 

 

Temporal pyramid 
descriptor 

Video clip 

SVM 
classifier 

time 
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•  Challenges 
–  What features to use? 
–  Appearance model 
–  Temporal model 

•  Our model 
–  “Active” vs “passive” objects 
–  Temporal pyramid 

•  Dataset 

•  Experiments 
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Outline 
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Sample video with annotations 
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Wearable ADL data collection 

•  20 persons 
•  20 different apartments 
•  10 hours of HD video 
•  170 degrees of viewing angle 
•  Annotated 

–  Actions 
–  Object bounding boxes 
–  Active-passive objects 
–  Object IDs 
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Prior work: 
•  Lee et al, CVPR’12 
•  Fathi et al, CVPR’11, CVPR’12 
•  Kitani et al, CVPR’11 
•  Ren et al, CVPR’10 
 

 



Average object locations 

Active Passive Active Passive 

Active Passive 
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Active objects tend to appear on the right hand side and closer 
–  Right-handed people are dominant 
–  We cannot mirror-flip images in training 



•  Challenges 
–  What features to use? 
–  Appearance model 
–  Temporal model 

•  Our model 
–  “Active” vs “passive” objects 
–  Temporal pyramid 

•  Dataset 

•  Experiments 
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Outline 
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Experiments 

Low level features High level features 

Our model 
Object-centric features 

24 object categories 

Baseline 
Space-time interest points  

(STIP) Laptev et al, BMVC’09 
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Accuracy on 18 action categories 
•  Our model:      40.6%  
•  STIP baseline: 22.8% 
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Accuracy on 18 action categories 
•  Our model:      40.6%  
•  STIP baseline: 22.8% 
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Classification accuracy 

•  Temporal model helps 
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•  Temporal model helps 
•  Our object-centric features outperform STIP 

Classification accuracy 
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•  Temporal model helps 
•  Our object-centric features outperform STIP 
•  Visual phrases improves accuracy 

Classification accuracy 
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•  Temporal model helps 
•  Our object-centric features outperform STIP 
•  Visual phrases improves accuracy 
•  Ideal object detectors double the performance 

Classification accuracy 
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•  Temporal model helps 
•  Our object-centric features outperform STIP 
•  Visual phrases improves accuracy 
•  Ideal object detectors double the performance 

Results on temporally continuous video and taxonomy loss are included in the paper 

Classification accuracy 
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Summary 

Data and code will be available soon! 
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Summary 

Data and code will be available soon! 
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Thanks! 
 


