Detecting Activities of Daily Living in First-person Camera Views

Hamed Pirsiavash, Deva Ramanan

Computer Science Department, UC Irvine
Motivation

A sample video of Activities of Daily Living
Applications
Tele-rehabilitation

Long-term at-home monitoring
Applications

Life-logging

So far, mostly “write-only” memory!

This is the right time for computer vision community to get involved.

Related work: action recognition

There are quite a few video benchmarks for action recognition.

UCF sports, CVPR’08
KTH, ICPR’04
Olympics sport, BMVC’10
Hollywood, CVPR’09
UCF Youtube, CVPR’08
VIRAT, CVPR’11

Collecting interesting but natural video is surprisingly hard.
It is difficult to define action categories outside “sports” domain
Wearable ADL detection

It is easy to collect natural data
Wearable ADL detection

It is easy to collect natural data

ADL actions derived from medical literature on patient rehabilitation

- hygiene
 - personal hygiene
 - 5 washing hand/face
 - 6 drying hand/face
 - facial hygiene
 - 1 combing hair
 - 2 make up
 - oral hygiene
 - 3 brushing teeth
 - 4 dental floss

- external hygiene
 - 7 laundry
 - 15 vacuuming

- preparing food
 - 8 washing dishes
 - 9 moving dishes

- eating food
 - liquid
 - 10 making tea
 - 11 making coffee
 - 12 drinking water/bottle
 - 13 drinking water/tap
 - solid
 - 14 making cold food/snack

- entertainment
 - 16 watching TV
 - 17 using computer
 - 18 using cell
Outline

• Challenges
 – What features to use?
 – Appearance model
 – Temporal model

• Our model
 – “Active” vs “passive” objects
 – Temporal pyramid

• Dataset

• Experiments
Challenges
What features to use?

Low level features
(Weak semantics)

High level features
(Strong semantics)

Space-time interest points
Laptev, IJCV’05

Human pose

Difficulties of pose:
• Detectors are not accurate enough
• Not useful in first person camera views
Challenges
What features to use?

Low level features
(Weak semantics)

High level features
(Strong semantics)

Space-time interest points
Laptev, IJCV’05

Human pose

Object-centric features

Difficulties of pose:
• Detectors are not accurate enough
• Not useful in first person camera views
Challenges
Occlusion / Functional state

“Classic” data
Challenges
Occlusion / Functional state

“Classic” data

Wearable data
Challenges
long-scale temporal structure

“Classic” data: boxing
Challenges
long-scale temporal structure

“Classic” data: boxing

Wearable data: making tea

Start boiling water Do other things (while waiting) Pour in cup Drink tea

Difficult for HMMs to capture long-term temporal dependencies
Outline

• Challenges
 – What features to use?
 – Appearance model
 – Temporal model

• Our model
 – “Active” vs “passive” objects
 – Temporal pyramid

• Dataset

• Experiments
“Passive” vs “active” objects

Passive

Active
“Passive” vs “active” objects

Passive

Active
“Passive” vs “active” objects

Better object detection (visual phrases CVPR’11)
Better features for action classification (active vs passive)
Appearance feature: bag of objects

Video clip

Bag of detected objects

SVM classifier
Appearance feature: bag of objects

Video clip

Bag of detected objects

SVM classifier

Active fridge Passive fridge Active stove

Active fridge Passive fridge Active stove
Temporal pyramid
Coarse to fine correspondence matching with a multi-layer pyramid

Inspired by “Spatial Pyramid” CVPR’06 and “Pyramid Match Kernels” ICCV’05
• Challenges
 – What features to use?
 – Appearance model
 – Temporal model

• Our model
 – “Active” vs “passive” objects
 – Temporal pyramid

• Dataset

• Experiments
Sample video with annotations

making cold food/snack

knife/spoon/fork

mug/cup

dish

knife/spoon/fork
Wearable ADL data collection

- 20 persons
- 20 different apartments
- 10 hours of HD video
- 170 degrees of viewing angle
- Annotated
 - Actions
 - Object bounding boxes
 - Active-passive objects
 - Object IDs

Prior work:
- Lee et al, CVPR’12
- Fathi et al, CVPR’11, CVPR’12
- Kitani et al, CVPR’11
- Ren et al, CVPR’10
Active objects tend to appear on the right hand side and closer
 – Right-handed people are dominant
 – We cannot mirror-flip images in training
Outline

- Challenges
 - What features to use?
 - Appearance model
 - Temporal model

- Our model
 - “Active” vs “passive” objects
 - Temporal pyramid

- Dataset

- Experiments
Experiments

Baseline
Space-time interest points (STIP) Laptev et al, BMVC’09

Our model
Object-centric features
24 object categories

Low level features
High level features
Accuracy on 18 action categories

- Our model: 40.6%
- STIP baseline: 22.8%
Accuracy on 18 action categories

- Our model: 40.6%
- STIP baseline: 22.8%
Classification accuracy

<table>
<thead>
<tr>
<th></th>
<th>Classification accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag of STIP</td>
<td>16.5</td>
</tr>
<tr>
<td>Temporal pyramid of STIP</td>
<td>22.8</td>
</tr>
</tbody>
</table>

- Temporal model helps
Classification accuracy

<table>
<thead>
<tr>
<th></th>
<th>Classification accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag of STIP</td>
<td>16.5</td>
</tr>
<tr>
<td>Temporal pyramid of STIP</td>
<td>22.8</td>
</tr>
<tr>
<td>Object detectors</td>
<td>32.7</td>
</tr>
</tbody>
</table>

- Temporal model helps
- Our object-centric features outperform STIP
Classification accuracy

<table>
<thead>
<tr>
<th></th>
<th>Classification accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag of STIP</td>
<td>16.5</td>
</tr>
<tr>
<td>Temporal pyramid of STIP</td>
<td>22.8</td>
</tr>
<tr>
<td>Object detectors</td>
<td>32.7</td>
</tr>
<tr>
<td>Active/passive object detectors</td>
<td>40.6</td>
</tr>
</tbody>
</table>

- Temporal model helps
- Our object-centric features outperform STIP
- Visual phrases improves accuracy
Classification accuracy

<table>
<thead>
<tr>
<th>Method</th>
<th>Classification accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag of STIP</td>
<td>16.5</td>
</tr>
<tr>
<td>Temporal pyramid of STIP</td>
<td>22.8</td>
</tr>
<tr>
<td>Object detectors</td>
<td>32.7</td>
</tr>
<tr>
<td>Active/passive object detectors</td>
<td>40.6</td>
</tr>
<tr>
<td>Ideal active/passive object detectors</td>
<td>77.0</td>
</tr>
</tbody>
</table>

- Temporal model helps
- Our object-centric features outperform STIP
- Visual phrases improves accuracy
- Ideal object detectors double the performance
Classification accuracy

<table>
<thead>
<tr>
<th></th>
<th>Classification accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag of STIP</td>
<td>16.5</td>
</tr>
<tr>
<td>Temporal pyramid of STIP</td>
<td>22.8</td>
</tr>
<tr>
<td>Object detectors</td>
<td>32.7</td>
</tr>
<tr>
<td>Active/passive object detectors</td>
<td>40.6</td>
</tr>
<tr>
<td>Ideal active/passive object detectors</td>
<td>77.0</td>
</tr>
</tbody>
</table>

- Temporal model helps
- Our object-centric features outperform STIP
- Visual phrases improves accuracy
- Ideal object detectors double the performance

Results on **temporally continuous video** and **taxonomy loss** are included in the paper.
Summary

Data and code will be available soon!
Summary

Data and code will be available soon!
Summary

Data and code will be available soon!
Thanks!