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Opti-Acoustic Stereo Imaging: On System Calibration
and 3-D Target Reconstruction
Shahriar Negahdaripour, Hicham Sekkati, and Hamed Pirsiavash

Abstract—Utilization of an acoustic camera for range measure-
ments is a key advantage for 3-D shape recovery of underwater
targets by opti-acoustic stereo imaging, where the associated
epipolar geometry of optical and acoustic image correspondences
can be described in terms of conic sections. In this paper, we pro-
pose methods for system calibration and 3-D scene reconstruction
by maximum likelihood estimation from noisy image measure-
ments. The recursive 3-D reconstruction method utilized as initial
condition a closed-form solution that integrates the advantages
of two other closed-form solutions, referred to as the range and
azimuth solutions. Synthetic data tests are given to provide insight
into the merits of the new target imaging and 3-D reconstruction
paradigm, while experiments with real data confirm the findings
based on computer simulations, and demonstrate the merits of
this novel 3-D reconstruction paradigm.

Index Terms—Sensor integration, stereovision, 3-D reconstruc-
tion, underwater sonar imaging.

I. INTRODUCTION

V ISUAL search, inspection, and survey are critical in a
number of underwater applications in marine sciences,

maintenance, and repair of undersea structures and homeland
security. Video cameras, traditionally optical and more recently
acoustic, provide suitable sensing technologies. However,
dealing with environmental conditions that can change drasti-
cally with time and season, location, depth, etc., calls for novel
methodologies and deployment strategies. As an example, ex-
tending the visibility range in naturally illuminated underwater
images has been demonstrated by polarization-based image
analysis [19]. The method makes use of at least two images
taken through a polarizer at different orientations (e.g., hori-
zontal and vertical) for color correction and improved scene
contrast. Advantages can also come from the simultaneous use
of different and complementary sensors to exploit their unique
strengths and properties, while overcoming the shortcomings
and limitations of each sensing modality.
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Where visibility allows, potential integration of optical and
acoustic information can enhance the performance in compar-
ison with the processing of images from each sensor, alone. This
multisensor fusion strategy has been explored for registering
image data to known 3-D object models [5], and to automat-
ically navigate along natural contours on the sea floor, such as
sea grass [1]. The key advantage here is the exploitation of valu-
able scene information from a 3-D sonar [6].

In recent years, high-frequency 2-D sonar cameras have
emerged [17]; e.g., Dual-Frequancy IDentification SONar
(DIDSON) [27] and BlueView based on blazed-array tech-
nology [26]. The video imagery from these systems provide
high enough details to allow visual target recognition by human
operators in search and inspection [3], [20]. In particular,
many submersible platforms nowadays utilize a 2-D sonar
camera for remote control in poor visibility, while an optical
imaging system continues to serve as the navigation camera
in clear waters. In other words, the deployment of both sonar
and video cameras is becoming a standard practice to extend
the utility and operation range of the subsea vehicles. This
has motivated an investigation in deploying these multimodal
cameras in stereo configuration—namely “opti-acoustic stereo
imaging”—as a novel strategy for 3-D object reconstruction in
underwater applications [13], [15]. This study addresses some
fundamental problems: 1) establishing the epipolar geometry of
opti-acoustic stereo images; 2) derivation of certain closed-form
solutions that utilize the sonar and optical projection constraints
of the two stereo views in various ways. Furthermore, the earlier
computer simulations and our current experimental results point
to improved 3-D reconstruction performance compared to tri-
angulation in a traditional binocular system under a number of
conditions: 1) small stereo baseline; 2) deteriorating visibility,
where both optical cameras will suffer from inaccurate feature
detection and localization. Furthermore, advantages over 3-D
acoustic cameras include higher resolution and the availability
of visual data for target recognition and classification.

Just as for optical systems, noisy “opti-acoustic correspon-
dences” do not satisfy the epipolar geometry, and, therefore, 3-D
reconstruction from any of the earlier closed-form methods is
sub-optimal with respect to the maximum-likelihood estimates
(MLE) that take advantage of redundant constraints. Two ap-
proaches based on direct and indirect estimation of 3-D target
points from noisy observations were shown to produce compa-
rable results [18]. Each method rests on the representation of
range and bearing measurement noises by the Gaussian model.

This paper extends and improves on our earlier work on
opti-acoustic stereo imaging system calibration and 3-D re-
construction [14], [18]. First, the previous stereo calibration
method relies on determining the pose of each system relative
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Fig. 1. (a) World, sonar, and optical coordinate systems and their transformations, and planar calibration grid with 2-D projection coordinates ��� �� and ��� ��
of a sample grid point in the acoustic and sonar cameras. (b) Typical geometry of opti-acoustic stereo cameras relative to world frame, aligned with axes of the
planar calibration grid, in our real experiments.

to a planar calibration target. Being a critical step in estab-
lishing the epipolar geometry with high accuracy, we propose
a new method by utilizing a minimum of five opti-acoustic
correspondences to directly compute the relative pose of the
two cameras. This gives a more accurate estimate compared
to the previous indirect method. Next, a new recursive 3-D
reconstruction method is proposed by reformulating the MLE
problem with a revised noise model. Here, transformation from
the sonar range-bearing measurements to a rectangular image
form allows us to apply the Gaussian model to the uncertainty
in the rectangular image positions. This corresponds to the
modeling of noise in range and bearing by the more suitable
Rayleigh and uniform distributions, respectively [8], [23]. The
nonlinear estimation problem is solved iteratively by appli-
cation of the Levenberg–Marquardt algorithm [12]. Since a
good initial condition enhances the performance of recursive
schemes, we seek to improve on the closed-form range and
azimuth solutions that were derived in previous work [14],
[18]. By examining these solutions and their performances, we
have devised as a new solution the weighted average of these
two earlier ones. The weighting function is chosen based on
two important parameters associated with the optimum per-
formance regions of the range and azimuth solutions, namely,
the target distance and stereo baseline. Both are readily known
based on stereo system geometry and sonar measurements. By
careful design of computer simulations, we establish perfor-
mance baselines that are verified in experiments with real data
collected under comparable conditions (in an indoor pool1 and
our own water tank facility). Furthermore, the
epipolar geometry, as well as methods for system calibration
and for 3-D reconstruction, are tested with these real data. These
experiments provide comparisons between the optic-acoustic
and binocular stereo imaging systems.

Finally, it is noted that the effective application of our 3-D re-
construction methods during the course of an online underwater
operation requires automatic robust and accurate matching of
corresponding features in optical and sonar images. While we
recently explored a geometric approach to the opti-acoustic cor-
respondence problem [16], the results here are based on man-
ually matched features because we are mainly concerned with

1Courtesy of colleagues from Teledyne Benthos who made their pool facility
available to us.

assessing the performance of calibration and 3-D reconstruction
techniques.

The balance of the paper is organized as follows: Section II
covers a review of sonar camera technology, and various back-
ground material on the projection model of an opti-acoustic
system, the transformation between coordinate frames, the
image measurements, and the stereo correspondence con-
straints. The epipolar constraint is described in Section III. We
describe the new opti-acoustic stereo calibration method in
Section IV. Section V is devoted to the 3-D reconstruction from
opti-acoustic correspondences. Here, we study the closed-form
range and azimuth solutions, devise the new weighted solu-
tion, and present the nonlinear optimization formulation that
yields the MLE. Experiments with synthetic and real data
are presented in Section VI, providing validation of proposed
methods. Finally, we provide a summary of our contributions
in Section VII.

II. PRELIMINARIES

A. Sonar Cameras

Sonar cameras produce an image by recording the reflected
sound when the scene is insonified by acoustic pulses. In a 3-D
sonar (e.g., Echoscope [25]), the back-scattered signals are col-
lected by a 2-D array of transducers, and the image is formed
from “beam signals,” i.e., the echoes from fixed steering direc-
tions, specified by elevation and azimuth angles (see Fig. 1).
The range of 3-D points is determined from the round-trip
travel time of the acoustic wave based on the peak of the beam
signal.

The 2-D acoustic image formation is based on a number of
beams at varying bearings (azimuth angles), with range deter-
mined from the time of flight. In two existing technologies,
namely, DIDSON and BlueView systems, a total of 512 range
values are recorded within a fixed down-range (DR) window

[m]. This is typically set according to object
distances from the camera, thus establishing the down-range
resolution. Formed with acoustic lenses and transducer curva-
ture, DIDSON generates 96 beams with roughly az-
imuth and elevation widths. The transmitted beams
cover a total field of view of 28.8 in the azimuth direction with
0.3 resolution; this translates to a cross-range (CR) of roughly
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m . Built on blazed-array technology, the BlueView
offers a larger 45-degrees cross-range field of view with 1 res-
olution. Treatment as a 2-D sonar is mainly because of the
uncertainty in the elevation of an imaged 3-D point. While our
methods are applicable to any 2-D forward sector-scan sonar,
we discuss the DIDSON video camera in the remainder of this
paper, as our real data were acquired with this system.

The 2-D sonar cameras can produce high-quality images in
turbid waters [2], [20]; however, the small elevation width of
the transmitted beam limits the coverage area. Therefore, the
target is typically viewed at relatively small grazing angles to
increase the likelihood of imaging object features with distinct
sonar returns in each frame [see Fig. 1(b)].

B. Rectangular and Spherical Coordinates

A 3-D point may be expressed by rectangular or spherical
coordinates, or , respectively, where and

are azimuth and elevation angles, and is the range. Refer-
ring to Fig. 1, the relationship between rectangular and spherical
coordinates and the inverse transformation are

(1)

C. Coordinate Frames and Transformation

Let and denote
the coordinates of a 3-D world point in the
rectangular coordinate frames, denoted , , assigned to the
optical and sonar cameras [see Fig. 1(a)]. These two coordinate
systems are related to the world reference frame by a rigid body
motion transformation, comprising a 3 3 rotational matrix and
a 3-D translational vector and .
The relative pose of the optical and acoustic cameras can be
expressed in terms the two transformations with respect to the
world reference frame

(2)

where

(3)

D. Image Measurements

We assume that the 2-D position of the image of a 3-D
scene feature in the optical view satisfies the perspective pro-
jection model

(4)

where , denotes rows of
, and is the focal length of the optical camera. The range

and azimuth measurements of in the acoustic image are given
by

(5)
where , and denote rows
of . A rectangular sonar image with symmetric coordinate
units can be constructed based on the following
transformation:

(6)

It readily follows that

and (7)

E. Stereo Correspondence Constraint

The relationship between opti-acoustic correspondences
and is the fundamental constraint

not only for 3-D reconstruction, but also for other relevant
problems, such as stereo calibration. This is derived from the
transformation in (3), and can be expressed in the form

(8)

where denotes th row of . The dependent unknown can
be eliminated by noting that

(9)
Finally, we arrive at

(10)

III. EPIPOLAR GEOMETRY

The epipolar geometry is fundamental to 3-D reconstruction
from calibrated stereo views. For example, it allows us to solve
the correspondence problem as a 1-D search along the epipolar
contours. While the epipolar geometry of an opti-acoustic
system has been explored in detail in [15], it is useful for
completeness to summarize some relevant results.

Referring back to (3), we can establish the coordinate system
of one camera as the reference frame. Here, we select the optical
camera coordinate system, without loss of generality. Next, we
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rewrite the projection equations with the optical camera frame
as as the world reference

(11)
The epipolar constraint in an opti-acoustic stereo system—es-
tablishing the relationship between projections and of the
same scene point [15]—is derived by manipulating (3) and
(11)

(12)

The 3 3 symmetric matrix is given by

(13)

where and . As
noted, the match in the optical image of an acoustic-image
point lies on a conic section. It often becomes necessary to
establish the match of an optical image point . It has also
been shown that the epipolar geometry in the acoustic camera
satisfies the following constraint [15]:

(14)

where

(15)

Here, , , and is a 3
3 skew-symmetric matrix defined in terms of components of

(such that , for any vector ).

A. Measurement Noise Model

Image positions are typically noisy observations of the true
2-D projections , denoted here. The measure-
ment noise directly affects the accuracy in the solutions of the
calibration and 3-D reconstruction methods, but the impacts can
be rather different. To explain, calibration involves use of known
targets that are most suitable for feature detection and matching,
and can be carried out in ideal visibility conditions. Further-
more, corresponding features can be matched manually to avoid
gross mismatches. Measurement noise of the calibration process
may be modeled as additive Gaussian:

(16)

where is a normal distribution with zero mean and vari-
ance . The independent Gaussian model
of the uncertainties in and translates to Rayleigh and uni-
form distributions for range and azimuth uncertainties in agree-
ment with the model of the speckle noise [8], [23], which is as-
sessed to be the dominant effect in high-frequency short-range

sonar imaging systems [21]. Thus, an advantage in working with
to represent the sonar image coordinate of a 3-D

point is that the image noise is suitably modeled as Gaussian.
In contrast to the calibration process, 3-D reconstruction

makes use of features that are detected and matched auto-
matically under a variety of environmental conditions, and
thus outliers are inevitable. In our work, manual opti-acoustic
matching allows us to avoid outliers, putting the emphasis on
assessing the 3-D reconstruction accuracy of inliers. One should
note that the reconstruction of each 3-D point depends only
on the 2-D optical and acoustic projections of the same point
(it does not depend on the information from any other point).
Therefore, an outlier match affects only the accuracy of the
corresponding 3-D point. As it becomes apparent, the assumed
variances, representing the measurement uncertainties, weight
the appropriate terms in the optimization algorithm. There-
fore, one can study analytically the estimation degradation by
increasing the measurement variances.

IV. CALIBRATION OF OPTI-ACOUSTIC SYSTEM

As for optical images, imperfections in an acoustic lens
lead to image distortions and geometric deviations from the
ideal image model. A method for the intrinsic calibration of
a DIDSON camera has been devised, determining the lens
distortion parameters by utilizing one or more images of a
known planar grid [14].

The relative pose of the optical and acoustic cameras can be
established by extrinsic or stereo calibration, allowing us to
exploit the epipolar geometry in reducing the correspondence
problem to a 1-D search along the epipolar curves. To do this,
we also utilize a target with prominent opti-acoustic features
that can be readily matched, ideally automatically but manu-
ally if necessary. Again, we can utilize a planar grid. Manual or
manually guided feature matching is acceptable as calibration is
often carried out as an off-line process, computing results that
are later applied for 3-D reconstruction in online applications.

The points on a plane satisfy the relationship

(17)

where is the inward surface normal in
the optical camera coordinate system, and is the distance to
the plane along the axis of the optical camera. For calibration,
we need the surface normal in the sonar
coordinate system. This is given by

(18)

In establishing the relative pose of stereo cameras, orthog-
onality of the rotation matrix has to be enforced. This
can be achieved in several ways. We use the decomposition
into three rotations about the axes of the coordinate system:

where de-
notes a rotation about axis of the respective coordinate system
by angle . Substituting for from (17) into (10), each match
provides two constraints as given in (10), in terms of nine un-
knowns: the six pose parameters
and three parameters of the normal of the calibration target
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plane in the optical camera coordinate frame. We have redun-
dancy with correspondences. We can solve a nonlinear
optimization problem based on a suitable error measure.

We have adopted a modified implementation that minimizes
the 3-D distances between the reconstructions of planar grid
points from the optical and acoustic projections. Assume an es-
timate and of the 9 sought after parameters,
to initialize the nonlinear optimization algorithm. These are up-
dated during each step of an iterative estimation process. For a
feature in the optical image, we estimate the depth from
the plane equation in (17). Computing the other two coordinates

and from (4), we have an estimate of the 3-D point .
Utilizing (3), transformation to the sonar coordinate system with

gives us the estimated position . Next, we cal-
culate for the acoustic match the elevation angle

(19)

where

(20)

The coordinate of the 3-D point in the sonar would be ob-
tained from (1). Transforming to the optical coordinate system
with yields . The estimation problem is solved
by minimizing

(21)

The covariances and —not given here because of the
complexities of their expressions—are estimated by first-order
approximation from the Jacobian of the solution with respect to
the image projections and their uncertainties, and covariance of
the estimation parameters. The nonlinear optimization problem
in (21) has been solved by the Levenberg–Marquardt algorithm
[12].

V. 3-D RECONSTRUCTION

Given an opti-acoustic correspondence, the corresponding
3-D point can be calculated in closed form [15]. However, an
optimal solution in the maximum likelihood (ML) sense is
derived from a nonlinear method that requires the application
of iterative algorithms. Two such methods have been proposed
based on indirect and direct formulations, assuming a Gaussian
model for representing both the range and azimuth measure-
ment uncertainties [18]. Both approaches provide comparable
accuracy based on computer simulations with data corrupted by
additive Gaussian noise. However, neither gives optimal esti-
mates with real data, as the noise of an acoustic imaging system
is not in agreement with the Gaussian model. Here, the direct
method is revisited, reformulating the optimization problem
by representing the uncertainty in the sonar image position
by the Gaussian model. As stated earlier, this corresponds to

the Rayleigh model for range measurements, as reported for
acoustic image noise representation [8], [23].

Good initial estimates improve the convergence rate of re-
cursive estimation methods. Examining the performance of the
range and azimuth closed-form solutions proposed in [15], we
can devise an improved weighted average that takes advantage
of conditions when these two solutions perform best. This serves
to initialize our iterative direct method.

A. Closed-Form Solutions

In the context of opti-acoustic stereo imaging, stereo triangu-
lation deals with determining the 3-D point —or
equivalently, the position in either camera reference frames,
say —for any opti-acoustic correspondence

and . The asymmetrical form of
the optical and acoustic projection models in (4) and (5) leads
to derivation of various closed-form solutions, each with a
particular geometric interpretation.

The Range solution, the intersection of the optical ray with
the range sphere, is computed from the positive solution of

(22)

The correct solution must agree with the azimuth solution—the
intersection of the optical ray with the azimuth plane

(23)

It should be noted that while these closed-form expressions
yield the exact solution with perfect data, each gives a different
estimate with noisy observations. In particular, neither solution
is optimal in the maximum likelihood (ML) sense. In the next
section, we present a formulation that directly addresses this
shortcoming, however, it requires an iterative scheme to solve
a nonlinear optimization problem. In this case, our closed-form
solutions can provide the initial guess for the iterative MLE
method. Clearly, identifying the closed-form solution with the
best estimate with noisy data enhances the convergence of the
recursive method.

One approach is the fusion of the two earlier solutions by
weighted averaging

(24)

where the weight is chosen to be a sigmoid function, and the
transition takes into account the characteristics of the range and
azimuth solutions. It then becomes necessary to establish con-
ditions under which one solution outperforms the other, and to
determine if and how these depend on the imaging and environ-
mental factors.

We have analytically derived and compared the first-order ap-
proximation to the variance of each solution, seeking to iden-
tify the relevant parameters. This analysis and extensive com-
puter simulations with the range and azimuth solutions have re-
vealed that the target distance and the stereo baseline are two
critical factors. Luckily we know both quantities from the stereo
system geometry and range measurements of the sonar camera.
To demonstrate, we examine the inverse normalized error,
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Fig. 2. (a) Average Reconstruction SNR over 36 symmetrically distributed
points on a planar surface. (b) Error variances of azimuth and range solutions
for varying baseline and range as 2-D iso-distance contours, allowing the
selection of proper scaling to compute the weighted average solution � .

Fig. 3. Geometrical interpretation of sensitivities of closed-form (a) azimuth
and (b) range solutions to size of baseline. Reconstruction uncertainty regions
due to noisy optical image projection, and range and azimuth angle measure-
ments from sonar camera are highlighted by dotted lines.

defined as the ratio of the true target distance along the
viewing direction of the optical camera to the mean recon-
struction error (SNR of these solutions). For data, we utilize
points on a plane viewed relative to the opti-acoustic stereo
in the configuration shown in Fig. 1. We test with different
baselines cm and plane distances

cm . The noise variances are fixed
to pix for both optical and
acoustic cameras. Finally, we compute the average reconstruc-
tion SNR over 36 uniformly distributed points on the plane,
thus minimizing the effect of undesirable viewing angles for
certain scene points.

Fig. 2(a) shows the reconstruction SNRs for the range and
azimuth solutions, computed experimentally by ensemble aver-
aging over hundreds of simulations with different noisy sam-
ples from the assumed distribution. As stated, these plots are
in full agreement with analytical SNRs that are computed from
the first-order approximation of variances [18]. Important con-
clusions are:

• the range solution is relatively insensitive to baseline size,
while azimuth solution, as for traditional optical systems,
improves with increased baseline;

• the range solution SNR improves with target distance.

Fig. 4. Matching features in stereo pairs for two data sets.

Fig. 5. Stereo calibration establishes epipolar geometry. For each feature in
one image, corresponding epipolar contour in other view is computed from (12)
and (14).

These can be verified by the geometric interpretation of the es-
timation uncertainty, depicted in Fig. 3. Let us assume a fixed
noise level in the range and azimuth measurements. The re-
construction uncertainty region shrinks with increasing baseline
for the azimuth solution, but remains relatively constant for the
range solution. Furthermore, it can be readily verified graphi-
cally that the reconstruction error of the range solution remains
steady with increasing target range; thus, the SNR of the range
solution increase with target distance. The same information is
conveyed in Fig. 2(b) in the form of 2-D iso-distance contour
plots.

We are now ready to formalize these findings by assigning the
weighting factor in (24). Generally speaking, the azimuth so-
lution is weighted more heavily for larger baselines, while the
range solution would contribute more heavily for larger target
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Fig. 6. (a) Computer simulations of 3-D reconstruction error, assuming the same imaging and target configurations as for real data. Experiments are for various
optical and acoustic noise levels � and � , to check consistency with results for real data (b), (c), and to examine degradation rate with increasing noise
level. For real data, reconstruction is inferior when representing range and bearing noise as Gaussian (c), according to model in [18].

distances. Defining the weight in terms of the ratio of the base-
line to the target distance can serves this objective. We have se-
lected the sigmoidal form

(25)

where . The threshold is set
by determining, for a given stereo baseline, the critical depth

where the depth and azimuth solutions have equal variances
[see Fig. 2(b)]. This threshold can be precalculated and stored
in a lookup table. As one can verify from Fig. 2(a), the weighted
closed-form solution closely coincides with the range and
azimuth solutions, where either has the better performance.

B. Maximum Likelihood Formulation

We want to formulate an optimization problem to compute
the maximum likelihood estimate (MLE) of a 3-D point from
the noisy opti-acoustic correspondences and

. Representing the measurement uncertainties as a
zero-mean Gaussian, the MLE is determined by minimizing the
Mahalanobis distance between the vectors
and

(26)

where . Here, we utilize the pro-
jection model in (11) with 3-D points expressed in the optical
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camera coordinate frame. It is reasonable to assume indepen-
dency among components of the measured vector . This al-
lows us to write as a diagonal matrix with elements , and
thus we can write

(27)
This nonlinear least-squares optimization problem is efficiently
solved using the Levenberg–Marquardt algorithm [12].

C. First-Order Error Analysis

The reconstruction accuracy may be assessed by the covari-
ance of the estimate . This can be expressed in
terms of the covariance of the measurements

(28)

where is the covariance of the observation vector, and the
Jacobian can be determined analytically or esti-
mated numerically. While this approximation may not always
provide a tight bound on the estimation error, it is relatively
accurate for nondegenerate scene geometries and positions
with respect to the stereo system (as verified in our computer
simulations).

VI. EXPERIMENTS

A. Calibration

The relative pose of the stereo cameras, determined by ex-
terior calibration, fixes the epipolar geometry. The immediate
advantage is that for each feature in one image, the match in
the other stereo view can be located by a 1-D search along the
corresponding epipolar curve. We start with experiments for the
calibration of an opti-acoustic stereo system. In addition to the
verification of epipolar geometry, we utilize these results in as-
sisting us to manually establish image correspondences in the
3-D reconstruction experiments.

The calibration method described in Section IV has been ap-
plied to each of the two opti-acoustic stereo pairs, depicted in
the columns of Fig. 4; superimposed are the correspondences.
For any feature in one image, we can determine whether the cor-
responding epipolar contour passes through the matching fea-
ture in the other view. For the data in column (b), this has been
verified for four sample points in each image and the epipolar
curve in the other stereo view, computed from (12) and (14) (see
Fig. 5).

B. 3-D Reconstruction

To assess the 3-D reconstruction performance, we start with
computer simulations with noisy data (perfect data that is cor-
rupted with noise from a known distribution). This is to gain
insight into the performance of an opti-acoustic stereo imaging
system under various conditions. We then present results from
other experiments with real data sets.

C. Computer Simulations

Computer simulations allow us to assess the performance of
the 3-D reconstruction method under a variety of conditions.

Fig. 7. Sample opti-acoustic stereo pair, where circles depict matching points
in (a), (b) used for 3-D reconstruction, while crosses are projections of 3-D re-
constructed points. (c) 3-D reconstructed points and the estimated planar surface
during a priori stereo calibration.

Specifically, the goals are: 1) to examine the agreement be-
tween the numerical simulations with ground truth data (cor-
rupted with additive noise) and results from experiments with
real data, and 2) to quantify the degradation in performance for
higher noise levels. To meet the first objective, computer simu-
lations have been carried out with the camera and target geome-
tries that are determined from the calibration for the first real
data (see next section). For optical measurement noise, we have
assumed zero-mean Gaussian noise with variances of ,
2 [pix]. For the acoustic images, we have tested with variances

1, 2, 3 [pix]. The MLE method is applied to determine
the estimates for both the synthetic and real data.

Fig. 6(a) depicts the 3-D reconstruction error distributions for
a number of points on the planar grid. Among these, the cases

pix and pix are most comparable with
the results for real data; see (b). These uncertainty levels are
more or less consistent with the quality of the real data and the
accuracy of feature positions. The results for the larger noise
levels of , 2 and , 3 [pix] simulate less fa-
vorable conditions of optical and acoustic visibility and clutter.
The noted graceful degradation of performance is the desired
behavior. Finally, the results in (c) are obtained by applying the
MLE algorithm while representing the range and azimuth mea-
surement uncertainties by the Gaussian model [18]. Not only is
the performance inferior compared to (b), the reconstruction er-
rors deviate from the Gaussian distribution.

Overall, the reconstruction errors are much smaller for the
and components than for the component of the 3-D points.
This behavior is reminiscent of binocular optical stereo imaging
with (nearly) parallel cameras. In this example, the and
axes of the sonar system are nearly aligned with the and

axes of the optical camera; see Fig. 1(a).
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Fig. 8. Comparison of 3-D reconstruction for traditional binocular optical and opti-acoustic stereo imaging. Opti-acoustic stereo pair is given in column (b) of
Fig. 4. (a,a’) Two views of reconstructed 3-D point to examine how well the reconstructed points lie on a plane. (b,b’) Two views of best fitting planes for various
reconstruction methods. Perpendicular distances of 3-D points from corresponding best fitting plane (c), with their means and variances (c’).

D. Real Data

The first data set is comprised of the stereo views of a
planar metallic grid, collected in an indoor pool; see Fig. 7(a)
and (b). The grid is at a distance of roughly 1.5 m from the
optical camera, which is located at about 2.7 m to the left of
the acoustic camera. Acoustic images have been corrupted by
multiple returns from the water surface and various pool walls;
see Fig. 7(b-b"). Each stereo pair depicts the matched features
(circles) and the projections of the reconstructed 3-D points
(crosses).

While we do know the ground truth, we use as the estimation
error the distance of each reconstructed point from the plane.
For the plane, we have used the estimate from the calibration
process, which is independent of the reconstruction technique.
Recall that the calibration method gives both the stereo configu-
ration and the normal of the target plane in each camera coordi-
nate frame. Here, we expect that the estimate from calibration is
reasonably accurate since it is determined from a MLE formula-
tion with a reasonably large number of opti-acoustic correspon-
dences. The reconstructed points and uncertainty ellipsoids, as
well as the plane of the grid computed by our calibration algo-
rithm have been given in (c). Referring back to Fig. 6(b), the
estimated 3-D points are within 3.5% of their distances to the

optical cameras (utilizing the plane reconstruction from calibra-
tion as the ground truth).

The next experiment utilizes the pair in Fig. 4(a), collected
in a water tank with better acoustic insulation. In addition, we
have acquired a third image with an optical camera, allowing us
to determine the scene geometry independently from binocular
disparity cues (image not shown here due to space limitations).
A plastic planar grid is placed at an average distance of about
0.85 [m] along the viewing direction ( axis) of the optical
camera, which is positioned at a distance of about 1.22 m to
the left of the acoustic camera. The binocular stereo baseline is
13.6 [cm]. Here again, the and axes of the sonar system
are nearly aligned with the and axes of the optical
camera.

Fig. 8 depicts various results. In (a,a’), we have given two
views of various 3-D estimates: closed-form range, azimuth and
weighted solutions, ML method, the estimate from calibration,
as well as binocular disparity; the legend for various symbols
is given in (c’). The two chosen views are best for examining
how well the reconstructed points lie on a plane, one for all of
the estimates from various opti-acoustic methods and one for
the optical stereo system. From these plots, we conclude that
the estimates from various opti-acoustic methods are relatively
consistent, and rather different from those based on the optical
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Fig. 9. Comparison of 3-D reconstruction for traditional binocular optical and opti-acoustic stereo imaging. (a,a’,a") data set with correspondences; (b,b’) 2 views
of reconstructed 3-D points based on azimuth, range, and weighted solutions. (c,c’,c") 3 views of reconstructions for weighted and ML solutions and traditional
binocular optical stereo.

stereo system (which also exhibit the largest variations). The
tilt of the plane, by the visual inspection of the optical image,
appears to agree with the opti-acoustic estimate. To verify fur-
ther, we have computed for each method the best plane passing
through the estimated 3-D points, and again displayed from two
different views in (b,b’). For each method, we have computed,
and depicted in (c), the distances of all of the 3-D points from
the best plane. The mean and variances of these distances in (c’)
confirm the earlier conclusions. A notable observation is that the
discrepancies between the opti-acoustic and binocular stereo es-
timates are smaller for the points closer to the optical cameras,
where the latter is expected to provide more accurate results.

The last experiment also utilizes both opti-acoustic and
binocular optical stereo data [see Fig. 9(a,a’,a")]. The scene is
comprised of an artificial coral reef and a plastic toy lobster,
each hung on a rope in front of the planar grid. The optical
stereo images are horizontally rectified, and the correspon-
dences were established manually. These are comprised of

points also imaged in the sonar view (red), with five addi-
tional matching points on the supporting ropes (blue). The
opti-acoustic correspondences, for points on the lobster and the
reef, were established by employing the epipolar curves.

Fig. 9(b,b’) depicts two views of the reconstructed points
based on the azimuth, range and weighted average solutions.
The structure of the planar grid is emphasized in the near-top
view, while the near-frontal view allows the comparison among
solutions for each of the three objects. The solutions are con-
sistent for nearby objects (reef and lobster). For the more dis-
tant grid points, the range and azimuth solutions deviate and the
relative weight from (25) favors the former estimate that is ex-
pected to be more accurate for larger ranges. In (c,c’), two views
of the reconstructions based on the weighted solution, ML esti-
mate, and binocular disparity method are compared. The binoc-
ular stereo system seems to give better results for the nearby
objects, namely the lobster and the lobster, but becomes less ac-
curate for the distant planar grid.
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Fig. 10. Standard deviation of � , � and � components of the solution for three groups of points at distances � � ���� �m�, ���� �m� � � � ��� �m� and
� � ��� �m� from optical camera based on computer simulations with noisy samples from Gaussian distributions � � � � � and � � � � � �pix�. (Red:
Binocular Optical. Blue: Opti-acoustic).

The binocular stereo system seems to give better results for
the nearby objects, namely the lobster and the reef, but becomes
less accurate for the distant planar grid. To verify, we have ex-
amined the deviation in the solution with additive noise, taking
the reconstructed geometry as ground truth. Furthermore, points
were pooled into 3 groups based on their distances from the op-
tical camera: m , m m and

m . Fig. 10 depicts the standard variation of the solu-
tion for the , and components of estimated 3-D points,
determined from 200 noisy samples from Gaussian distributions

and pix . These results agree with
our conclusions from the reconstructions in Fig. 9, as well as
with the theoretical analysis of the relative reconstruction accu-
racy of opti-acoustic and binocular stereo systems, reported in
earlier work [15]. Assuming a fixed feature localization uncer-
tainty over the imge, of special importance as depicted in these
plots is the fact that the opti-acoustic stereo estimation accuracy
improves with increasing target distance.

VII. SUMMARY AND CONCLUSION

We have studied the 3-D reconstruction of underwater objects
by opti-acoustic stereo imaging—a paradigm to integrate infor-
mation from optical and acoustic camera systems with over-
lapping views [15]. We have proposed and analyzed methods
for system calibration and target scene reconstruction. The cali-
bration technique employs a minimum of five correspondences
from features on a planar grid to compute the relative pose of
the stereo cameras, but many more points over a large field of
view in one or more stereo pairs are necessary to obtain accurate
results.

The asymmetrical nature of the optical and acoustic pro-
jection equations and the redundant constraints from an
opti-acoustic correspondence for the reconstruction of cor-
responding 3-D points lend themselves to the derivation of
different closed-form solutions. Two such solutions based on
independent employment of the range and azimuth measure-
ments have simple geometric interpretations in the context
of “triangulation” within the opti-acoustic stereo imaging
framework. Neither solution provides an optimum estimate in
the maximum likelihood sense with noisy data, and thus we
have formulated a standard nonlinear optimization problem for
computing the MLE of 3-D target points from opti-acoustic
correspondences. Since the solution is determined iteratively,

convergence can be enhanced by initialization with a good
initial condition. This is obtained from a weighted average of
our two closed-form solutions. With the proposed formula for
the weighting function, this gives an estimate that fully utilizes
the advantages of each of the two solutions for a larger range of
imaging conditions.

The results from experiments with ground-truth synthetic
data serve to assess the performance of our 3-D reconstruction
method, and are verified with real data acquired under assumed
imaging geometry. That is, our experiments with real data
support the theoretical findings in reference to the performance
of various opti-acoustic reconstruction methods, and in com-
parison to a binocular optical system for close-range and distant
targets. Overall, we foresee good potential in the application of
this novel paradigm for underwater 3-D object reconstruction
in a wider range of environmental conditions. Complementing
this work is a geometric solution to the opti-acoustic correspon-
dence problem, aimed at devising a robust automatic stereo
matching method [16]. This is a critical component of bringing
to bear a complete computer system for the 3-D reconstruction
of underwater objects.
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