
Integration of Motion Cues in Optical and Sonar Videos for 3-D Positioning

S. Negahdaripour, H. Pirsiavash, H. Sekkati

Electrical and Computer Engineering Department

University of Miami

Coral Gables, FL 33124-0640

shahriar(h.pirsiavash)@(umiami)miami.edu

Abstract

Target-based positioning and 3-D target reconstruction
are critical capabilities in deploying submersible platforms
for a range of underwater applications, e.g., search and
inspection missions. While optical cameras provide high-
resolution and target details, they are constrained by limited
visibility range. In highly turbid waters, target at up to dis-
tances of 10s of meters can be recorded by high-frequency
(MHz) 2-D sonar imaging systems that have become intro-
duced to the commercial market in recent years. Because of
lower resolution and SNR level and inferior target details
compared to optical camera in favorable visibility condi-
tions, the integration of both sensing modalities can enable
operation in a wider range of conditions with generally bet-
ter performance compared to deploying either system alone.

In this paper, estimate of the 3-D motion of the integrated
system and the 3-D reconstruction of scene features are ad-
dressed. We do not require establishing matches between
optical and sonar features, referred to as opti-acoustic cor-
respondences, but rather matches in either the sonar or op-
tical motion sequences. In addition to improving the mo-
tion estimation accuracy, advantages of the system com-
prise overcoming certain inherent ambiguities of monocu-
lar vision, e.g., the scale-factor ambiguity, and dual inter-
pretation of planar scenes. We discuss how the proposed
solution provides an effective strategy to address the rather
complex opti-acoustic stereo matching problem. Experi-
ment with real data demonstrate our technical contribution.

1. Introduction

Underwater search and inspection of manmade struc-

tures is part of routine maintenance as well as home-

land security operations. Cost, efficiency and eliminating

risk to human divers calls for automated technologies that

rely on the deployment of unmanned submersible vehicles

equipped with imaging systems. While optical cameras give

high-detailed images of target surfaces in good visibility

conditions, these sensors can become ineffective in many

harbor waters and other highly turbid environments.

Recent physics-based imaging systems and technique

targeted for fog and haze offer some improvement in tur-

bid underwater conditions [20, 21]. Also, laser scanning

systems provide increased operational range [15], and inte-

gration with traditional close-range photogrammetry meth-

ods previously explored for terrestrial application may ad-

dress certain challenges due to resolution, accuracy, speed

and other operational requirements [5]. However, optical

systems do not match the performance and range of 2-D
high-frequency imaging sonar systems that readily pene-

trate silt and mud [4, 11, 22]. The strategy to fuse visual

cues from optical and sonar images can potentially provide

enhanced 3-D reconstruction performance in comparison to

the utilization of each sensing modality alone, and would

generally extend the operational range. This strategy has

been applied to 3-D sonar and optical cameras, to register

3-D sonar data with known 3-D object models [8, 6], and

to track seafloor natural contours for navigation [3]. More

recently, deployment of 2-D sonar and optical cameras in

stereo configuration has been proposed as a new paradigm

in 3-D reconstruction, however, only a theoretical treatment

of the epipolar geometry has been presented [16].

Estimation of 3-D motion and target structure is highly

sought in target-based positioning and 3-D object recon-

struction and (or) recognition in search and inspection of

manmade structures (pipelines, ships, dams, bridges, etc.).

Monocular motion problem has been studies extensively

in the computer vision literature, and application for sonar

video cameras is a natural extension. While either sensing

modality can be deployed individually under favorable envi-

ronmental [12], integration of visual motion cues in optical
and sonar images - as proposed in this paper – can provide

a solution for a larger range of medium conditions.

Deployment of an opti-acoustic system in stereo configu-

ration for 3-D reconstruction requires establishing matches
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in optical and stereo images, referred to as the opti-acoustic
correspondence problem [16]. This undoubtedly is the most

difficult issue in developing a suitable 3-D target reconstruc-

tion technique, as the image formation processes of the two

sensing modalities follow different physical principles. Our

method based on visual motion cues circumvent this prob-

lem by exploiting the epipolar geometries of the optical and

sonar sequences, dealing with the correspondence problem

in each of the optical and sonar motion pairs, separately. In

addition to improved estimation, the integration of motion

cues from the two sensing modalities allows us to overcome

certain inherent ambiguities of monocular vision, e.g., up to

scale 3-D reconstruction, and dual interpretation of planar

surfaces. We have devised an efficient method based on the

hierarchical estimation of 3-D motion for planar surfaces.

As it becomes evident, the assumption of scene planarity

can be readily relaxed by computing the essential matrix in-

stead, with more matches. While not a topic of this paper,

we discuss how the solution proposed here can provide an

effective approach to address the opti-acoustic correspon-

dence problem by propagating certain seed matches along

epipolar lines [7, 13]. Effectiveness of the proposed ap-

proach is demonstrated based on results from experiments

with real data.

1.1. Overview

As stated, proposal to utilize an opti-acoustic stereo

imaging for 3-D scene reconstruction requires solving the

correspondence problem, which is yet to be solved [16]. As

explained below, our solution here can establish the prelim-

inary step in addressing this difficult correspondence prob-

lem, by the integration of visual motion cues in sonar and

optical video imaging systems. This paper is concerned

with all but the last step of the following process:

1. Features are more abundant in optical images, and we

can generally identify scene points that (roughly) lie on

some dominant plane Πg . With a minimum of 4 correspon-

dences of co-planar points, we can fix the underlying pro-

jective transformation, which can be decomposed into the

rigid body motion {Ro, to} of the camera and the normal

vector no of Πg , up to the well-known scale factor ambi-

guity of monocular video. We are not restricted to planar

surfaces, as we can alternatively deploy 5 points in arbi-

trary configurations [19]. In this case, we make use of the

essential matrix, rather than the projective homography of

planar points, and decomposition to {Ro, to} up to scale-

factor ambiguity;

2. We utilize information from the sonar sequence to re-

solve the scale factor ambiguity. This does not require ex-

plicit matching between optical and sonar images, only a

minimum of one match in the sonar sequence;

3. We can now determine the 3-D positions of points on

the plane Πg , in both views. In fact, having established the

epipolar geometry of the motion sequences, we can con-

struct any 3-D point from 2 projections in either the sonar

or optical views. However, the estimated motion is not opti-

mal, as we have not fully utilized all available information.

4. We subsequently solve an optimization problem, utiliz-

ing optical and sonar matches {po, p′
o} and {ps, p′

s}, re-

spectively, to update the motion and plane parameters;

5. Reconstruction of 3-D points can now be carried out by

triangulation with matched features in the optical and sonar

views. Furthermore, we can readily establish optic-acoustic

matches by reprojection onto the 4 views. While not the

scope of this paper, various strategies can be adopted to

propagate these sparse matches. For example: 1) Regions

within sets of nearby 3-D triplets {Pi, Pj , Pk} can be ap-

proximated by planar patches and reprojected onto the four

views, initializing a local search with small regions to refine

the match. The epipolar geometry of the stereo system, de-

rived in [16], can be applied to restrict the problem to a 1-D

search.

In this work, the scope has been limited to planar scenes

since we can carry out experiments that allow us to read-

ily assess accuracy; i.e., position/pose of the reconstructed

plane.

2. Preliminaries
2.1. Notation

P = (X, Y, Z)T and P̃ = (PT , 1)T denote a 3-D point

P and its homogeneous coordinates. Coordinates in the

sonar and optical coordinate systems are denoted Ps and

Po. Perspective projection of P onto the optical image is

po = (x, y), with homogeneous coordinate p̃s = λ(po, 1)T

(‖λ‖ > 0):

p̃i = CiP̃o (1)

where Ci is the 3 × 4 camera matrix of view i. For the

sonar view, we employ the spherical coordinates [θ, φ,�]T ,

comprising range, azimuth angle and elevation angle:

Ps =

 Xs

Ys

Zs

 = �
 cos φ sin θ

cos φ cos θ
sinφ

 . (2)

Inverse of this transformation is

θ = tan−1

(
Xs

Ys

)
, φ = tan−1

(
Zs√

X2
s + Y 2

s

)
, (3)

and � =
√

X2
s + Y 2

s + Z2
s .

2.2. Sonar to Optical Transformation

The transformation between the coordinate systems of

the sonar and optical cameras are defined in terms of 3×3

rotation matrix R and 3-D translation vector t:

Ps = RPo + t (4)



The transformation parameters, namely, rotation matrix and

translation vector can be determined by external calibration

of the opti-acoustic system [17].

2.3. Motion Transformation

Let {Ro, to} and {Rs, ts} denote the transformation be-

tween the coordinate systems of the optical and sonar cam-

eras in two viewpoints of the opti-acoustic system. These

allows us to write

P′
k = RkPk + tk k = {s, o} (5)

where (.)′ denotes coordinates in the second view.

Clearly, {Ro, to} and {Rs, ts} are not independent, as

the motion of the sonar and optical cameras are related by

the rigidity constraint. We can readily show that

{Rs, ts} =
{

RRoRT , (I − RRoRT )t + Rto
}

(6)

2.4. Plane Representation

We utilize the projective transformation of points on a

single plane Πg . A point P on Πg with normal n satisfies

the equation Px · nx = −1, where x = {s, o} allows us

to use either the optical or sonar coordinate system as the

reference frame. We can readily show that

ns =
(

1
1 − tT Rno

)
Rno (7)

2.5. Image Measurements

Denoting 3 × 4 camera matrices {C, C′} of two optical

views, perspective projections of a 3-D scene point P

p̃ = CP̃o

p̃′ = C′P̃
′
o

(8)

give the optical matches in two views. The corresponding

sonar measurements comprise the range and azimuth an-

gles, given in (2). It is more suitable to work with 2-D

point ps = (xs, ys) = �(sin θ, cos θ) as sonar measure-

ments. Therefore, quadruplet set {po, p′
o, ps, p′

s} comprises

the opti-acoustic matches of a 3-D point P in two positions

of the integrated system.

The epipolar geometry of the opti-acoustic system is

fixed by extrinsic calibration of the two cameras [16]. We

next address how to establish the epipolar geometries for

the two views of each of the sonar and optical cameras.

2.6. Epipolar Geometry of Opti-Acoustic Stereo
System

As emphasized, our theoretical results requires neither

the overlapping views of the integrated system, nor exploit-

ing the stereo epipolar geometry. More precisely, we do not

assume or take advantage of opti-acoustic correspondences

between features in the optical and sonar views. Rather we

utilize matches in two consecutive views of each camera.

However, our method depends on the exterior calibration

of the opti-acoustic system, and thus it is useful to borrow

some results from the epipolar geometry of an opti-acoustic

stereo system [16].

For a feature po in the optical image, its match lies on

the epipolar contour given by

�2D(θ) − N(θ) = 0; (9)

D(θ)=((u31u12 − u32u11) sin θ+(u31u22 − u32u21) cos θ)2

N(θ)= (u31σ2 − u32σ1)2+
((u12σ1 − u11σ2) sin θ+(u22σ1 − u21σ2) cos θ)2

uk1 =y rk3 − rk2, uk2 =x rk3 − rk1 (k=1, 2, 3)
σi = txu1i + tyu2i + tzu3i (i=1, 2)

This can be readily transformed to the rectangular form

ps = (xs, ys) = �(sin θ, cos θ).

2.7. Epipolar Geometry of Motion Sequences

2.8. Optical Views

Assume No correspondences {po, p′
o} in the optical mo-

tion sequence, where Nop > 4 are the projections of non-

collinear co-planar scene points. It is well-known that each

correspondence satisfies an up-to-scale projective transfor-

mation

p′
o � Qopo (10)

The up-to-scale 3×3 projective transformation matrix Qo

is fixed with the minimum of 4 correspondences [14]. As

stated, our results can be readily generalized to non-planar

points, utilizing a minimum of 5 points that fix the underly-

ing essential matrix [19].

2.9. Sonar Views

The transformation of scene points in the sonar reference

frame are given by:

P′
s = QsPs; Qs = (Rs + tsnT

s ) (11)

It can be readily shown that sonar image points ps =
(xs, ys) satisfy the transformation:

ps = Hsp′
s Hs =

[
ααq11 ααq12 βq13

ααq21 ααq22 βq23

]
(12)

where qij denote the elements of Qs, αα = cos φ/ cos φ′ and

β = � sin φ/ cos φ′.



3. Computing Epipolar Geometry of Motion
Sequences

3.1. Up to Scale 3-D Reconstruction

It is well-known that Q is fixed by the motion of the cam-

era and the orientation of the scene plane: Qo � Ro + tono,

where � denotes the up to scale equality. Furthermore, it

has been shown that up-to-scale Qo is generally decompos-

able into two interpretations, the true and dual solutions, in

the form {R, k−1to, kno} [14]; here, k is any non-zero con-

stant that is associated with the well-known inherent scale

factor ambiguity of monocular vision. (Again, we empha-

size that we can generally utilize the essential matrix to

achieve the sought after decomposition up to the same scale

factor ambiguity, but require a minimum of 5 matches [19]).

Without loss of generality, the surface normal no may be

fixed to a unit vector: ko = (‖no‖)−1
. Thus, optical camera

translation to and planar surface normal no are known up to

unknown scale ko: t̂o = k−1
o to and n̂o = kono.

It goes without saying that a RANSAC-based implemen-

tation allows us to identify the outliers, e.g., mainly matches

corresponding to non-coplanar scene points.

3.2. Resolving the Scale Factor Ambiguity

Taking note of (7), the surface normal in the sonar coor-

dinate system is in the form

ns = ‖ks‖n̂s; ks =
k−1

o

1 − k−1
o tT Rn̂o

n̂s = sign(ks)Rn̂o

(13)

Note that we have determined R from the decomposition

of the projective transformation Qo. Thus, the scale factor

ambiguity is resolved if we determine the magnitude of the

surface normal ks in the sonar coordinate system.

Expressing the surface normal in terms of magnitude ks

and unit vector n̂s = (n̂x, n̂y, n̂z)T , we can write the plane

equation Ps · ns = −1 in the form

ks ((n̂x sin θ + n̂y cos θ) cos φ + n̂z sin φ)=−1/� (14)

It follows that

sin(φ + γ) =
−1

ks�
√

(n̂x sin θ + n̂y cos θ)2 + n̂z
2

(15)

where γ = tan−1

(
n̂x sin θ + n̂y cos θ

n̂z

)
(16)

Knowing the surface normal magnitude ks, this equation

gives the elevation angle of each planar point:

φ = {φs, π − φs}

φs =−γ + sin−1

 −1

ks�
√

(n̂x sin θ + n̂y cos θ)2 + n̂z
2


(17)

The correct solution is chosen based on imaging constraint

−δφ ≥ φ ≤ δφ, since 2-D sonar camera projection rays

have limited width 2δφ in the elevation direction. In the

limit as δφ −→ 0, we obtain the pencil beam of 3-D sonar

imaging systems; e.g., [1]. As an example, δφ = 7[deg] in

a DIDSON camera [2].

Alternatively, if the elevation angle is known, we can de-

termine the scale factor from

ks =
−1

� sin(γ + φ)
√

(n̂x sin θ + n̂y cos θ)2 + n̂z
2

(18)

From these results, it can be readily established that the

motion transformation of sonar image points in (12) can be

expressed in terms of the unknown scale factor ks: Hs de-

pends on the unknown elevation angles φ and φ′, which in

turn are given in terms of the normal scaling according to

(17); Note that φ′, the elevation angles in the second sonar

view are fixed by the sonar transformation (11), except for

the unknown scaling. Equivalently, we can express these

results in terms of unknown scaling in the optical coordi-

nate system through (14). Despite the complexities of these

equations, a one-parameter nonlinear optimizing problem

can be readily solved. Furthermore, we can readily dis-

tinguish the correct solution from the dual solution as the

dual solution is not satisfied by the sonar motion transfor-

mation. Theoretically, a single match in the sonar view that

lies on Πg gives two equations for fixing the unknown scal-

ing, though many more are used in practice. We do not

address how we identify the matches that lie of the sought

after plane, however, a RANAC-based implementation can

establish a potential approach.

To summarize, the up-to-scale estimates of motion and

plane normal are determined from a minimum of 4 optical

image correspondences of co-planar scene points. The scale

factor is recovered from a minimum of one sonar image cor-

respondence. In practice, this solution is sub-optimal, as it

does not fully exploit the visual cues in the sonar views.

In particular, 8 of the 9 unknowns are determined solely

from the motion cues in the optical sequence. We can utilize

this solution as an initial guess for a non-linear optimization

method that accounts for all available measurements.

3.3. MLE Formulation

We model the measurement noise in the positions of

features in the optical and sonar views, po = (x, y) and

ps = (xs, ys), by additive Gaussian distribution. This as-

sumption has been utilized in a large body of relevant work

in motion vision research with satisfactory results; see [9].

Furthermore, independent Gaussian model of the uncertain-

ties in sonar image feature positions xs and ys translates to

Rayleigh distribution for sonar range measurements, which

agrees with the speckle noise model for sonar imaging sys-



tems [23]. This allows us to minimize the Mahalanobis dis-

tance between the measurements and reprojections as the

ML estimate 1.

Accordingly, we minimize

E(R,T,n)=(
∑

No
(po − p̂o)

T Σ
o−1

(po − p̂o)+∑
No

(p′
o − p̂′

o)
T Σ

o−1
(p′

o − p̂′
o)

)
+Λ(

∑
Ns

(ps − p̂s)
T Σ

s−1
(ps − p̂s)+∑

Ns
(p′

s − p̂′
s)

T Σ
s−1

(p′
s − p̂′

s)
) (19)

where No and Ns denote the number of matches in the op-

tical and sonar views, and (̂.) denotes any reprojection. In

our results, the covariances matrix Σ
o

and Σ
s

of the optical

and sonar measurement vectors have been set by assuming

localization uncertainties of 1 [pix].

In addition to the relative scaling of the optical and sonar

reprojection error magnitudes, the inclusion of Λ, provides

for the interpretation of the optimization formulation as a

regularization problem: Either sonar or optical measure-

ments interchangeably can play the role of the regularizer.

where adjustment of Λ is generally made in accordance with

the medium turbidity condition and acoustic clutter level, in

order to control how one camera’s measurements regularize

the solution based on measurements from the other. A the-

oretical foundation for the optimal selection of Λ, yet to be

developed, will require verification through controlled ex-

periments with a relatively large set of data under various

medium conditions. Here, it is used mainly to normalize

the average reprojection errors of the two sequences.

The unknown motion and surface parameters {R,T,n}
may be defined in the coordinate system of either camera,

and are transformed from one system to another through the

relationship in (6).

We have applied the the Levenberg-Marquardt algorithm

to solve this nonlinear optimization problem. Impact of out-

liers is minimized by removing points with reprojection er-

rors that exceed an acceptable level. This has currently been

set according to the distribution of the optical and sonar re-

projections errors for the initial solution, which serves as the

start point of the final iterative optimization process. Out-

liers typically include points with large measurement error,

or relatively large distances from the plane Πg (compared

to their distances to the stereo system), as well as incorrect

correspondences.

3.4. Application to Opti-Acoustic Correspondence
Problem

While not the scope of this paper, the proposed solution

serves as a preliminary step in establishing opti-acoustic

1based on the estimated solution and the models in (10) and (12).

matches for a denser reconstruction of 3-D objects: A set

of 3-D points are reconstructed by triangulation from each

pair of Np and Ns optical and sonar matches. Reprojec-

tion of optical points onto the sonar image gives their sonar

matches, and vice-versa. These give Np + Ns quadruplet

matches in 4 views that serve as initial seeds to identify

other matches by propagation. A particular approach is to

define planar patches from sets of triplet 3-D points, say by

Delaunay triangulation (not all 3-D points lie on Πg). New

matches are found by reprojecting each patch back onto

both images and performing local search along correspond-

ing epipolar lines. In addition to geometric constraints,

physical models may be incorporated, where model param-

eters may be estimated from initial quadruplet matches.

4. Experimental Results
We start with an example of the epipolar geometry of a

calibrated opti-acoustic stereo imaging system. The exte-

rior calibration is based on a nonlinear optimization method

utilizing a set of matching features on a planar grid [18].

Fig. 1 shows the selected features, verifying that the match-

ing points lie on corresponding epipolar curves. With a cal-

ibrated system, we can apply the proposed 3-D motion esti-

mation technique.

Our first experiment is based on a data set acquired at the

pool facility of Teledyne Benthos, N. Falmouth, MA. Col-

lected in an indoor pool, the sonar grid images are corrupted

by multiple returns due to reflections from the water sur-

face and various pool walls. For the purposes of this paper,

it suffices to use features matches manually, since we are

assessing the accuracy of motion integration which is the

main contribution. In practice, existing matching methods

(e.g., SIFT [10]) can be applied since we require temporal

correspondences among optical and among sonar features

independently, and in particular sub-pixel accuracy can lead

to improved performance in motion estimation.

Fig. 2 shows the stereo pairs, superimposed with the

matched features (green circles). Crosses depict the pro-

jections of initial solution that is calculated from projec-

tive homography decomposition of the optical sequence

(red), and scale determined from the sonar sequence. The

final estimate from the MLE formulation is depicted by

green crosses. While the initial solution matches the op-

tical features well, there is larger discrepancies for the

sonar features. Note that the scale is not necessary for

the optical projections, and thus initial estimation of scale

does not affect the location of reprojected points. Overall,

the errors are decreased through the integration of motion

cues. In the absence of ground truth to asses motion ac-

curacy, we can compare the estimated normal of the plane

from our motion cues, with that obtained in the calibra-

tion process. Estimated surface normals in the optical view

from calibration, as well as initial and final processing are



Figure 1. Epipolar geometry of corresponding features in a calibrated opti-acoustic stereo pair.

Figure 2. Consecutive optical (a-b) and sonar (a’-b’) views of the grid with matching features for motion estimation (green circles). Crosses

show reprojections based on initial solution from projective homography decomposition of the optical sequence (red) and final estimate

from proposed solution by integration of optical and sonar motion cues (green).



Figure 3. (a,a’) Sample stereo pair with features used for motion estimation. (b) Estimated 3-D planar grid points relative to the two

consecutive positions of the optical camera, and (b’) 6 positions of the optical camera in the last experiment with the closed trajectory.

Ideally, initial and final camera coordinate frames X0Y0Z0 and X5Y5Z5 should coincide.

ncal = [−.18, .22,−0.67], nini = [−0.33, 0.47,−0.45]
and nfin = [−.26, .45,−0.58], respectively. There is a

large improvement after the integration process.

A second experiment is based on data collected in our

water tank with higher turbidity; see figs. 3 (a,a’). Here we

have shown the first stereo pair superimposed by features

in each camera used for motion estimation (yellow circles),

and the 3-D points relative to the two positions of the opti-

cal cameras established by our motion estimation method.

To quantify accuracy based on ground truth over a longer

trajectory: 1) Motion estimation has been repeated for a se-

quence of 6 such opti-acoustic stereo images; 2) First pair

have been added to the end of the sequence to close the tra-

jectory. Therefore, using the initial pose as the reference,

the trajectory should end at the origin with the same exact

stereo pose. Table 1 summarizes the experimental results

for the monocular optical sequence, in comparison to the

proposed method based on integrated opti-acoustic motion

estimation. For the unknown scale factor of monocular se-

quence, we have used the optic-acoustic estimate. In (a,a’),

the red and yellow crosses are the reprojected features at

the end of the trajectory, for the monocular optical and opti-

acoustic estimates, respectively. In addition to the estimated

trajectory length, the reprojection errors, while comparable

in the optical camera coordinate frame, are noticeably im-

proved in the coordinate frame of the sonar camera.



Table 1. Various errors comparing estimation results of monocular

optical and opti-acoustic systems.

5. Summary
Integration of visual motion cues in the so-called opti-

acoustic stereo imaging system – by utilization optical and

sonar video cameras in stereo configuration – has been pro-

posed in reconstructing 3-D motion and 3-D scene fea-

ture positions. No initial matches in the optical and sonar

stereo pairs are necessary, only the correspondence between

matches in sonar and optical sequences, individually. The

proposed paradigm offers several advantages by providing

a mechanism for: 1) 3-D estimation in a wider range of

environmental conditions, that can be accomplished by ei-

ther camera alone; 2) Computing more accurate 3-D esti-

mates; 3) Overcoming the inherent ambiguities of monocu-

lar motion sequences; 4) Establishing opti-acoustic matches

by utilizing 3-D estimates at a small number of features

as seeds and propagation to nearby points along epipolar

curves. Results have been given for real data collected in

Benthos indoor pool and our tank facility in support of new

theoretical findings. Pool conditions were much more fa-

vorable for optical imaging, both for good visibility and

multiple acoustic reflections from various surfaces. The

tank data was collected under more turbid conditions. Data

to be collected under a wider range of conditions including

open waters will enable more extended testing of the pro-

posed method. Establishing opti-acoustic correspondences

is the immediate problem of interest.
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