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Given a tree T with weight and length on each edge, as well as a lower bound L and an
upper bound U , the so-called length-constrained maximum-density subtree problem is to
find a maximum-density subtree in T such that the length of this subtree is between L
and U . In this study, we present an algorithm that runs in O (nU log n) time for the case
when the edge lengths are positive integers, where n is the number of nodes in T , which
is an improvement over the previous algorithms when U = �(log n). In addition, we show
that the time complexity of our algorithm can be reduced to O (nL log n

L ), when the edge
lengths being considered are uniform.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Given a tree T = (V , E), let w(e) be a positive real
function for representing the weight of an edge e ∈ E
and l(e) be a positive integer function for representing
the length of e. For a path (e1, e2, . . . , ek) in T , its den-
sity is defined as

∑k
i=1 w(ei)/

∑k
i=1 l(ei). Suppose now that

we are given a tree T , as well as two positive integers L
and U with L � U . Then the so-called length-constrained
maximum-density path (LDP) problem is to find a maxi-
mum-density path in T such that the length of this path is
between the lower bound L and the upper bound U . The
LDP problem [8,10], as well as its special case in which the
given T is a path [1,3,6,7,9], has applications for study-
ing alignment and GC-content of genomic sequences in
computational biology. Lin et al. were the first to study
this problem but with a restriction that all the consid-
ered edges are all equal in length and also proposed two
O (nL)-time algorithms to solve it [10], where n denotes
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the number of nodes in the given tree. Later, Lau et al. de-
signed an O (n log2 n)-time algorithm for the general case
of this problem with allowing the edge lengths to be any
positive real numbers and further reduced the time com-
plexity of this algorithm to O (n log n) when the lengths of
edges are uniform (i.e., l(e) = 1 for each e ∈ E) [8]. More
recently, by giving an extra parameter K that is a positive
integer, Hsieh and Cheng [4] have studied an variant of the
LDP problem that is to find a maximum-density path in T
such that the length of this path is between L and U and
the number of its edges is at least K . In this study, they
proposed an O (nK U )-time algorithm to solve this prob-
lem.

Lau et al. [8] studied the length-constrained maxi-
mum-density subtree (LDT) problem, a generalization of
the LDP problem, which is to find a maximum-density
subtree, rather than path, in the given tree T = (V , E)

with the length between L and U , where the density
of a subtree T ′ = (V ′, E ′) in T is similarly defined as∑

e∈E ′ w(e)/
∑

e∈E ′ l(e). Actually, as mentioned in [8], the
LDT problem has its applications in computer, traffic or
logistics network design. In [5], Hsieh and Chou studied a
variant of the LDT problem in which the weight and length
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functions were defined on nodes rather than edges. How-
ever, their algorithms can still be applied to solve the LDT
problem we considered in this study. In fact, as pointed
out in [11], the LDT problem with general integer edge
lengths can be shown to be NP-hard by a simple reduction
from the knapsack problem [2]. Currently, to the best of
our knowledge, the LDT problem can be solved in O (nU 2)

time using the algorithm proposed in [5,8] when the edge
lengths are positive integers and, in addition, it can be
solved in O (nL2) time using the algorithm designed in [8]
when the edge lengths are uniform. It should be noted
here that neither of algorithms in [5,8] for solving the
LDT problem with any integer edge lengths are polynomial
but pseudo-polynomial. Basically, these two algorithms uti-
lized the same idea that is first to transform the given
tree into a rooted binary tree and then use the dynamic
programming approach to find all maximum-weight sub-
trees with all possible lengths on the transformed binary
tree. Further note that the LDT problem with uniform edge
lengths can be simply considered as the problem of find-
ing a size-constrained maximum-density subtree (SDT) in a
given tree [10]. In [8], Lau et al. have shown that find-
ing an SDT in a general graph is still NP-hard. However,
as mentioned above, this problem can be solved in poly-
nomial time using the algorithm proposed in [8] when
the given graph is just a tree, where notably the time-
complexity of this algorithm is O (nL2) that is polynomial
because L � n.

In this study, we propose an improved algorithm on
the basis of a combination of divide-and-conquer and dy-
namic programming to solve the LDT problem. If the edge
lengths are positive integers, then our algorithm can solve
the LDT problem in O (nU log n) time, which is an improve-
ment over the previous algorithms when U = �(log n). If
the edge lengths are uniform, then the time-complexity of
our algorithm can be further reduced to O (nL log n

L ). Fi-
nally, we also show that the maximum-weight subtrees of
all sizes can be computed in O (n2) time.

The rest of this paper is organized as follows. Section 2
presents the main idea of the algorithm we used to solve
the LDT problem with positive integer lengths. Section 3
shows its further improvement in the case when all edge
lengths are uniform. Section 4 concludes the study with
some remarks.

2. Algorithm for solving the LDT problem in a tree

In the following, we propose a method to improve the
algorithms that were designed in [5] and [8] based on the
dynamic programming approach for solving the LDT prob-
lem. The basic steps of these two algorithms are as follows.
First, the algorithms transform the given tree into a rooted
binary tree. Next, for each node x in this binary tree, they
allocate a table of size U in which the ith entry, where
1 � i � U , represents the weight of a maximum-density
subtree whose root is at x and whose length is restricted
as i. Suppose that y and z are the two children of x. Then
a subtree rooted at x of length i can be constructed by
joining a subtree of length j rooted at y and a subtree
of length i − l(x, y) − l(x, z) − j rooted at z together with
edges (x, y) and (x, z). Based on this property, we can see
that there are O (U ) possible choices for the computation
of each entry in the table associated with x and therefore
the total computation of the table takes O (U 2) time.

The basic idea we used in our dynamic programming
algorithm is as follows. We first transform the input tree
into a rooted tree by choosing a node r as the root and
then we compute a maximum-density subtree contain-
ing r. Note that by removing r and all edges incident with
it, we can yield several subtrees, say T1, T2, . . . , Tdeg(r) . If
the optimal solution does not contain r, then it must be a
subtree of Ti , where 1 � i � deg(r). Actually, this idea was
also used in [8,11] to find a length-constrained maximum-
density path or a length-constrained heaviest path in a
tree.

Based on the above idea, we are dedicated to design
a dynamic programming algorithm, as described below, to
find a length-constrained maximum-density subtree con-
taining the root r. For each node x in the rooted tree T ,
we use Ax[i] to store the weight of a maximum-weight
subtree of length i that contains r and x, where Ax is a ta-
ble of size U . Initially, we set Ar[0] = 0 and Ar[i] = −∞
for i = 1,2, . . . , U and Ax[i] = −∞ for i = 0,1,2, . . . , U
for every non-root node x. Then we traverse the tree T
rooted at r in a depth-first search manner. In the travers-
ing process, there are two different directions to visit y:
(1) descending direction from a parent node x to y and
(2) ascending direction from a child node x to y. Depend-
ing on the traversing direction, we then assign a value to
A y[i], as described as follows, when we visit node y. If
the direction we visit y is descending, then we let A y[i] =
Ax[i − l(x, y)] + w(x, y) for i = l(x, y), l(x, y) + 1, . . . , U . If
the direction we visit y is ascending, then we let A y[i] =
max{Ax[i], A y[i]} for i = 0,1, . . . , U .

Actually, after the traversal is finished, we can prove
that Ar[i] is the weight of the maximum-weight subtree of
length i containing r according to Lemma 1, as described
below. Based on this property, therefore, the density of a
length-constrained maximum-density subtree containing r
is maxL�i�U Ar[i]/i. Note that during the traversing pro-
cess, we record the sequence of the nodes we have visited
and denote it by (r, . . . , x), where x is the currently visiting
node. Clearly, the graph induced by these nodes is a sub-
tree of T and for convenience we denote it by T (r, . . . , x).

Lemma 1. When we currently visit x, let (r, . . . , x) be the
sequence of the nodes we have traversed. Then Ax[i] stores
the weight of the maximum-weight subtree in T (r, . . . , x) of
length i that contains both r and x until new Ax[i] is computed.

Proof. We prove this lemma by induction on the sequence
of the visited nodes. Initially, T (r) is a subtree that con-
tains an isolated node r and clearly the lemma holds. Next,
we assume that the lemma holds for (r, . . . , x) and let y
be the next node we are going to visit. Then there are two
cases to be considered.

(1) Suppose that y is a child node of x. Then y is a leaf
in the induced subtree T (r, . . . , x, y). Therefore, if we re-
move y from any subtree of T (r, . . . , x, y) that contains r
and y, the resulting tree must be a subtree of T (r, . . . , x)
that contains r and x. According to the assumption, it is
clear that Ax[i − l(x, y)] + w(x, y), which equals to the
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value of A y[i] based on our method described above, is
the weight of a maximum-weight subtree in T (r, . . . , x, y)

of length i that contains r and y.
(2) Suppose that y is a parent of x. Let P be a max-

imum-weight subtree of T (r, . . . , x, y) with length i con-
taining r and y. Since y is the parent of x, our traversal
sequence must be in the order of (r, . . . , y, x, . . . , x, y). Let
Q be the subtree that is rooted at x. If P ∩ Q = ∅ then P is
a subtree of T (r, . . . , y, x, . . . , x, y)\Q = T (r, . . . , y) pass-
ing through r and y, indicating that the weight of P has
already been stored in A y[i]. If P contains a node in Q ,
then P must contain x. In this case, P is a maximum-
weight subtree of T (r, . . . , y, x, . . . , x) passing through r
and x and its weight was stored in Ax[i]. According to
our method, we will select the maximum one between
Ax[i] and old A y[i] and assign it to new A y[i]. In other
words, A y[i] keeps the weight of maximum-weight sub-
tree of T (r, . . . , x, y). �

When the traversal is completed, Ar[i] stores the
weight of a maximum-weight subtree in T (r, . . . , r) = T
of length i that contains r according to Lemma 1. There-
fore, the density of a length-constrained maximum-density
subtree containing r is maxL�i�U Ar[i]/i.

Given a tree T = (V , E), there exists a node c called
centroid such that deleting c results in several subtrees
each containing no more than |V |/2 nodes. We can find
this node by rooting T at some node first. Then we per-
form a postorder traversal on T to count the total number
of nodes below each node. The first node that has more
than |V |/2 nodes below it is a centroid. This can be done
in linear time.

Now, we describe our algorithm that proceeds as fol-
lows:

1. Find a centroid c of T .
2. Use the dynamic programming method described be-

fore to find a length-constrained maximum-density
subtree that contains c.

3. Separate T into several subtrees, say T1, T2, . . . , Tdeg(c) ,
by removing c and all edges incident with it from T ,
and recursively repeat steps 1 and 2 on these subtrees.

4. Compare deg(c) + 1 length-constrained maximum-
density subtrees with containing the centroid we ob-
tained in steps 2 and 3 and choose the one with the
highest density as the output.

Below, we analyze the time complexity of our algo-
rithm. Let T (n) be the time complexity of the algorithm
when the size of the input tree is n. Then step 1 can be
done in O (n), as described above. In step 2, we take O (U )

time to update the table associated with each node in the
input tree. Thus the time complexity of step 2 is O (nU ).
Clearly, according to our algorithm, T (n) can be written as
a recursive function as follows, where notably ni denotes
the size of Ti .

T (n) =
deg(c)∑

T (ni) + O (nU ).
i=1
Since ni � n/2, it is not hard to derive that T (n) =
O (nU logn).

Theorem 1. The LDT problem can be solved in O (nU logn) time.

3. Algorithms for solving the SDT problem in a tree

We here define the size of a tree as the number
of edges it contains and therefore the size-constrained
maximum-density subtree problem is equivalent to the
length-constrained maximum-density subtree problem with
uniform edge lengths. As pointed out in [8], if the size is
constrained between L and U , there exists a maximum-
density subtree with a size less than 3L. For completeness,
we give a more detailed proof below.

Lemma 2. A tree T of a size greater than or equal to 3L can be
separated into two edge-disjoint subtrees at least of the size L.

Proof. Let the tree T be rooted at some node r. Then we
perform a postorder traversal on T to compute the size
of subtree rooted at every node. Let x be the first node
we traverse in postorder such that the subtree rooted at
x has at least the size L. Let x1, x2, . . . , xk be the chil-
dren of x. Denote the subtree rooted at xi by T (xi) and
its size by size(T (xi)). Let j be the smallest positive inte-
ger such that

∑ j
i=1 size(T (xi)) + j � L. Such j must ex-

ist, since
∑k

i=1 size(T (xi)) + k is the size of the subtree

rooted at x, which is at least L. Let P = ⋃ j
i=1 T (xi)∪ (x, xi).

Then P is a subtree at least of the size L. But the size
of P is no greater than 2L. Suppose size(P ) > 2L. Then∑ j−1

i=1 size(T (xi)) + j − 1 = size(P ) − size(T (x j)) − 1. Re-
call that x is the first node whose induced subtree has
a size at least L, implying size(T (x j)) < L. As a result,∑ j−1

i=1 size(T (xi)) + j − 1 > L, which again contradicts to
the assumption that x is the first node whose induced sub-
tree has a size greater than or equal to L. Therefore, all the
edges which are in T but not in P induce another subtree
at least of a size L. �

If the size of T exceeds 3L − 1, then T can be sepa-
rated into two edge-disjoint subtrees, say T1 and T2, each
with size of at least L, according to Lemma 2. Then it is
clear that the higher density between T1 and T2 must
be higher than or equal to the density of T . To find a
size-constrained maximum-density subtree in a given tree,
we actually can employ the same algorithm for finding a
length-constrained maximum-density subtree described in
the previous section. For each node v in the given tree,
however, we only need to compute the table of Av ranging
from 1 to 3L −1, rather than U , if U is greater than 3L −1.
In addition, we do not need to consider those maximum-
density subtree whose size is less than L, since all these
subtrees do not satisfy the size constraint required to be at
least L. Therefore, we can reformulate the recursive func-
tion of the time complexity as follows, so that we can get
a tighter time bound.

T (n) =
{∑deg(c)

i=1 T (ni) + O (nL), n − 1 � L,

O (1), otherwise.
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Note that in the above recursive function, ni denotes
the size of the subtree induced by the ith child of the ini-
tial centroid c and the size of T is n − 1.

Corollary 1. A size-constrained maximum-density subtree in a
tree can be find in O (nL log n

L ) time when n − 1 � L.

Proof. Suppose by induction that T (m) < knL lg m
L for all

m < n, where k > 0 is a constant. Then we have T (n) �
kL

∑
ni−1�L ni lg ni

L + ∑
ni−1<L e + dnL, for some constants

d > 0 and e > 0. It should be noted that if all the sub-
trees have a size less than L, then the first term on
the right-hand side of the above inequality is zero. Ac-
tually, we can express the above inequality as T (n) �
kL

∑
i ni lg nmax

L + enL + dnL, where nmax = max{ni | ni −
1 � L}, and consequently T (n) � knL lg nmax

L + (d + e)nL �
knL lg n

2L + (d + e)nL. Here, we choose k such that k >

d + e. If the first term is zero, then T (n) < knL � knL lg n
L . If

the first term exists, then T (n) � knL lg n
L + (d + e − k)nL <

knL lg n
L . �

It is also possible to compute the maximum-weight
subtrees of all sizes in O (n2) time. The algorithm is the
same as the one we described above. But when applying
the dynamic programming approach on each tree, we con-
sider the table up to the size of the tree instead of 3L − 1.
In this way, the maximum-weight subtree of the size i is
the maximum of maximum-weight subtree of the size i in
each tree that has a size greater than or equal to i. In this
case, the recursive function for the time complexity of al-
gorithm becomes as T (n) = ∑deg(c)

i=1 T (ni) + O (n2).

Corollary 2. It takes O (n2) time to find the maximum-weight
subtrees of all sizes.

Proof. Clearly, T (n) �
∑deg(c)

i=1 T (ni) + en2 for some con-
stant e > 0. Suppose that T (n) < dn2. Then

T (n) <

deg(c)∑
i=1

dni
2 + en2 <

deg(c)∑
i=1

dni
n

2
+ en2

� dn2

2
+ en2 < dn2,

if we choose d > 2e. Therefore, T (n) = O (n2). �
4. Concluding remarks

In this study, we have proposed an O (nU logn)-time
algorithm for solving the maximum-density subtree prob-
lem, which is better than the previous algorithms when
bound U = �(log n). In addition, we have shown that
the time complexity of this algorithm can be reduced to
O (nL log n

L ) when the edge lengths in the given tree are
uniform. Actually, the idea behind the dynamic program-
ming we designed in this study can be used to compute
a length-constrained or size-constrained optimal subtree
with other objective functions in a tree, such as length-
constrained bottleneck subtree. As a future work, it would
be interesting to know if the space complexity of the
length-constrained maximum-density subtree problem can
be reduced to O (n + U ).
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